Routing and Performance Analysis of Double-Buffered Omega Networks Supporting Multi-Class Priority Traffic

D. C. Vasiliadis, G. E. Rizos, C. Vassilakis, E. Glavas
Proceedings of ICSNC 2008

In this paper the modeling of Omega Networks supporting multi-class routing traffic is presented and their performance is analyzed. We compare the performance of multi-class priority mechanism against the single priority one, by gathering metrics for the two most important network performance factors, namely packet throughput and delay under uniform traffic conditions and various offered loads, using simulations. Moreover, two different test-bed setups were used in order to investigate and analyze the performance of all priority-class traffic, under different Quality of Service (QoS) configurations. In the considered environment, Switching Elements (SEs) that natively support multi-class priority routing traffic are used for constructing the MIN, while we also consider double-buffered SEs, two configuration parameters that have not been addressed insofar. The rationale behind introducing a multiple-priority scheme is to provide different QoS guarantees to traffic from different applications, which is a highly desired feature for many IP network operators, and particularly for enterprise networks.

Note: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
PDF icon icsnc-2008-tr.pdf168.72 KB
Research area: