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1. Introduction 

In this technical report, we present the experimental findings from applying an 
algorithm that considers Item Adoption Eagerness Information in the rating prediction 
formulation process, in order to increase rating prediction quality in Collaborative 
Filtering (CF). 

To this end, the algorithm is applied to seven datasets, which are widely used in 
recommender system (RS) research. 

In short, the algorithm moderates the weight that each individual rating rV,i of user 
V on an item i is taken into account when formulating a rating prediction pU,i on that 
specific item for another user U, by considering the item adoption eagerness 
information; this aspect is reflected on the particular item’s adoption phases that the 
registered rating rV,i and the prediction pU,i to be formulated fall in. More specifically, 
the weight assigned to the rating rV,i in the context of recommending item i to user U 
is 

 𝐼𝐴𝐸_𝑓𝑎𝑐𝑡𝑜𝑟ሺ𝑈, 𝑉, 𝑖ሻ ൌ ቐ
EA,   𝑖𝑓  𝑟௎,௜ 𝑎𝑛𝑑 𝑟௏,௜ 𝜖 EA௜

LA,   𝑖𝑓  𝑟௎,௜ 𝑎𝑛𝑑 𝑟௏,௜ ∉ EA௜

DIFF, otherwise 
 (1) 

In formula (1) the EA is a constant that is used when both users’ ratings on item i, 
belong to the item’s EA lifetime phase; and -similarly- LA is a constant employed 
when both users’ ratings on item i, belong to its Late Adoption lifetime phase. The 
DIFF constant is employed when the two ratings belong to different lifetime phases 
of item i (Early and Late). 

In the presented experiments, the optimal values for the parameters that are used in 
the algorithm are investigated. 

 



 

 

2. Algorithm Tuning and Performance Evaluation 

In this section, we report on the experiments that were designed to:  
1. Determine the optimal parameters values for the EA, LA and DIFF 

parameters, used in the IAE_factor function of the presented algorithm. 
2. Compute the prediction improvement, introduced by the presented 

algorithm, due to the consideration of the item adoption eagerness 
information in the CF rating prediction computation process. 

In order to determine the optimal parameters values, we experimentally explored 
the parameter value solution space, by iteratively selecting parameter value 
assignments and examining the effect that the particular parameter value assignments 
have on rating prediction quality. To quantify rating prediction quality, we employed 
two widely used error metrics, namely the Mean Absolute Error (MAE), and the Root 
Mean Squared Error (RMSE). The use of two different metrics allows us to gain more 
detailed insight on the prediction accuracy achieved by each parameter setting, since 
the MAE metric handles all error scales in a uniform fashion, whereas the RMSE 
metric penalizes more severely larger errors. To compute the algorithm’s prediction 
error, in terms of MAE and RMSE, we exercised the standard “hide one” technique 
[1,2,3]: each user’s last rating in the database was hidden and then its value was 
predicted on the basis of the values of other, non-hidden ratings. We also performed a 
second experiment where, for each user, a random rating was hidden, and again its 
value was predicted on the basis of the values of other, non-hidden ratings. The results 
obtained from the two experiments were in close agreement (the differences observed 
were less than 1.8% in all cases), therefore for conciseness purposes we report only on 
the results of the first experiment. All our experiments were run on seven datasets. 
Five of these datasets are obtained from Amazon [4,5] and two from MovieLens 

Table 1: Datasets Summary  

Dataset name #Users #Items #Ratings Avg. #Ratings 
/ User 

Density DB size (in text 
format) 

Amazon “Videogames” [4,5] 8Κ 50Κ 157K 19.4 0.039% 4 ΜΒ 
Amazon “CDs and Vinyl” [4,5] 41Κ 486Κ 1.3M 31.6 0.006% 32ΜΒ 
Amazon “Movies and TV” [4,5] 46Κ 134Κ 1.3M 28.0 0.021% 31ΜΒ 
Amazon “Books” [4,5] 295Κ 2.3Μ 8.7M 29.5 0.001% 227ΜΒ 
Amazon “Digital Music” [4,5] 6K 35K 86K 13.9 0.040% 2MB 
MovieLens “Latest 100K – 
Recommended for education and 
development” [6,7] 

700 9K 100Κ 142.8 1.587% 2MB 

MovieLens “Latest 20M – 
Recommended for new research” 
dataset [6,7] 

138K 27K 20M 144.9 0.537% 486MB 

 



 

 

[6,7]; the Amazon datasets are relatively sparse, while the MovieLens datasets are 
relatively dense (a dataset DS is deemed to be very sparse if d(DS)≪1%, where d(DS) 

is the density of the dataset, defined as 𝑑ሺ𝐷𝑆ሻ ൌ #௥௔௧௜௡௚௦

#௨௦௘௥௦∗#௜௧௘௠௦
 [8]). We choose to test 

both sparse and dense datasets, in order to establish that the proposed algorithm can 
be used in every dataset.  

The seven datasets used in our experiments are summarized in Table 1 and have the 
following characteristics:  

1. They are up to date (published between 1996 and 2016). 
2. They are widely used as benchmarking datasets in CF research. 
3. They contain each rating’s timestamp, necessary in the proposed algorithm. 
4. They differ in regards to the type of item domain of the dataset 

(videogames, movies, music and books) and size (ranging from 2MB to 
486MB in plain text format).  

Each dataset was initially preprocessed, and users found to have less than 10 ratings 
were dropped, since predictions formulated for users with few ratings are known to 
demonstrate high error levels [1,9]. This procedure did not have any effect on the 
MovieLens dataset, since it includes only users that have submitted at least 20 ratings. 

For our experiments we used a machine equipped with six Intel Xeon E7 - 4830 @ 
2.13GHz CPUs, 256GB of RAM and one 900GB HDD with a transfer rate of 
200MBps, which hosted the datasets and ran the rating prediction algorithms.  

In the remainder of this section, we present and discuss the results obtained from 
applying the algorithm presented above on these seven datasets. 

2.1 Determining the optimal algorithm’s parameters 
The goal of the first experiment is to determine the optimal values regarding the 

EA, LA and DIFF parameters, used in the presented algorithm (c.f. equation 1). 
Recall from section 1 that the relevant parameters of the presented algorithm are: 
1. EA, moderates the weight of the a NN’s rating to the prediction formulated for 

a user U in the case that both users have evaluated the item in its EA lifetime 
phase, 

2. LA moderates the weight of the a NN’s rating to the prediction formulated for 
a user U in the case that both users have evaluated the item in its LA lifetime 
phase and 

3. DIFF, moderates the weight of the a NN’s rating to the prediction formulated 
for a user U in the case that the NN’s rating falls within the EA period of item i 
and the prediction falls within the LA period, or vice versa. 

From equations (4) and (5) we can observe that the final outcome of a rating 

prediction calculation depends on the ratios 
ா஺

௅஺
 and 

௅஺

஽ூிி
, rather than on the absolute 

values of EA, LA and DIFF. Therefore, in the conducted experiments we have fixed 
the value of LA to 1 and varied the values of EA and DIFF, exploring their domain 
space. Regarding the values of the EA parameter, we consider only values that are 
greater than or equal to1.0, under the rationale that two EA evaluations on the same 
item are more important than two LA ones, since, while early (late) adopters are 



 

 

bound to share the same mentality and criteria with other early (late) adopters, the 
probability of having two early adopter ratings is significantly smaller than having 
two late adopter ones. Respectively, regarding the values of the DIFF parameter, we 
consider only values that are less than or equal to 1.0, under the rationale that the 
utility of using an early (late) adoption period rating –which has been given following 
some specific mentality and criteria- to predict a late (early) adoption period rating 
-which would be formulated following different mentality and criteria- is low. In 
order to find the optimal setting for the aforementioned parameters, we explored 
different combinations of values for these parameters. In total, more than 70 value 
combinations were examined, however, in the rest of this paper we report only on the 
most indicative ones, for conciseness purposes. 

Figure 1 illustrates the average MAE reduction, of all the datasets summarized in 
Table 1, under different parameters values combinations, when similarity is measured 
using the PCC similarity metric. 

In Figure 1, we can observe that the setting delivering the highest reduction in the 
MAE is when the DIFF parameter is set to 0.5 and the EA parameter is set to 2.0, 
achieving an average MAE reduction of 3.7%. 

 

Figure 1: MAE reduction under different EA and DIFF parameter value combinations, 
using the PCC similarity metric 

Figure 2 pictures the average RMSE reduction of all the datasets summarized in 
Table 1, under different parameter values combinations, again when similarity is 
measured using the PCC similarity metric. 

In Figure 2, we can observe that the setting attaining the highest reduction in 
RMSE, is again when the DIFF parameter is set to 0.5 and the EA parameter is set to 
2.0. This setting achieves an average RMSE reduction of 3.18%. Generally, the 
reductions achieved for the RMSE metric follow the same pattern observed for the 
MAE metric in Figure 1. The magnitude of the RMSE reduction is smaller than that 
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of the MAE; the latter fact indicates that the algorithm manages to correct mostly 
small errors. 

 

Figure 2: RMSE reduction under different EA and DIFF parameter value 
combinations, using the PCC similarity metric 

Figure 3 depicts the average MAE reduction of all the datasets summarized in 
Table 1, under different parameter values combinations, when similarity is measured 
using the CS similarity metric. 

 

Figure 3: MAE reduction under different EA and DIFF parameter value combinations, 
using the CS similarity metric 

In Figure 3, we notice that the setting combination, delivering the highest reduction 
in MAE, is again when the DIFF parameter is set to 0.5 and the EA parameter is set to 
2.0, achieving an average MAE reduction of 3.55%. 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

DIFF=0.3 DIFF=0.4 DIFF=0.5 DIFF=0.6 DIFF=0.7 DIFF=0.8

R
M

S
E

 r
ed

u
ct

io
n

EA=1.0 EA=1.5 EA=2.0 EA=2.5

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

DIFF=0.3 DIFF=0.4 DIFF=0.5 DIFF=0.6 DIFF=0.7 DIFF=0.8

M
A

E
 r

ed
u

ct
io

n

EA=1.0 EA=1.5 EA=2.0 EA=2.5



 

 

Figure 4 illustrates the average RMSE reduction of all the datasets summarized in 
Table 1, under different parameters values combinations, when similarity is measured 
using the CS similarity metric. In Figure 4, we can observe that the setting attaining 
the highest reduction in the MAE is again when the DIFF parameter is set to 0.5 and 
the EA parameter is set to 2.0; this setting achieves an average RMSE reduction of 
3.02%. 

Similarly to the case when PCC similarity is used, the patterns of the MAE and the 
RMSE reduction under the CS similarity metric are highly alike. Again, the reduction 
achieved for the RMSE metric lags behind that of the MAE, indicating that the 
algorithm corrects mostly small errors.  

 

Figure 4: RMSE reduction under different EA and DIFF parameter value 
combinations, using the CS similarity metric 

The datasets used in the experiment are summarized in Table I, and the results 
obtained are listed in the following subsections. In the results presentation 
subsections, cells with a gray background indicate cases where the rating prediction 
accuracy of the proposed algorithm surpasses that of the plain CF algorithm, while 
cells with bold typeface indicate that the respective cell corresponds to the optimal 
performance (rating prediction accuracy or coverage) achieved. 

2.2 Performance evaluation 
In this section, we compare the results produced by the presented algorithm, with 

the ones produced by the CF variability algorithm, proposed in [3]. This algorithm 
was chosen for the comparison since it (i) is a state-of-the-art algorithm (proposed in 
2018), targeting the improvement of prediction accuracy in the context of CF, (ii) 
does not need extra information, regarding the users or the items (e.g. item categories 
or user social relationships) and (iii) does not deteriorate the prediction coverage. We 
note here that no other algorithm addresses the particular aspect of user behavior 
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considered by the proposed algorithm; thus, in the absence of such an algorithm, the 
comparison is made with an algorithm that exploits similar features of ratings (i.e. 
temporal features). 

Considering the optimal values of the EA and DIFF parameters, based on the 
results presented in the previous subsection, we can clearly see that the settings of 2.0 
and 0.5, respectively, proved to be the optimal ones, hence in the experiments 
presented hereafter we will use these particular settings. 

Figure 5 depicts the improvement in the MAE achieved by the proposed algorithm, 
when compared to the CF variability algorithm, proposed in [3], taking the 
performance of the plain CF algorithm as a baseline and using the PCC as the 
similarity metric, since this is the one tested in [3]. 

Clearly, the proposed algorithm surpasses the performance of the CF variability 
algorithm, in all the datasets tested, with its MAE reduction being 63.4% higher than 
that achieved by the CF variability algorithm (3.7% against 2.26% in absolute 
figures). At individual dataset level, the performance edge of the proposed algorithm 
against the CF variability algorithm ranges from 37% to 414%. 

Figure 6 depicts the respective improvement in the RMSE achieved by the 
proposed algorithm, when compared to the CF variability algorithm, proposed in [3], 
again taking the performance of the plain CF algorithm as a baseline, and under the 
PCC as the similarity metric. 

 

Figure 5: MAE reduction achieved by the proposed algorithm, in comparison to the CF 
variability algorithm, proposed in [3] 
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Figure 6: RMSE reduction achieved by the proposed algorithm, in comparison to the 
CF variability algorithm, proposed in [3] 

Again, the proposed algorithm is shown to surpass the performance of the CF 
variability algorithm in all datasets tested, with its RMSE reduction being 114.6% 
higher than that achieved by the CF variability algorithm (3.18% against 1.48% in 
absolute figures). At individual dataset level, the performance edge of the proposed 
algorithm against the CF variability algorithm ranges from 44% to 317%. 

Finally, we compare the performance of the proposed algorithm against the 
algorithm presented in [2], which is a state-of-the-art algorithm exploiting temporal, 
within-user history information, to achieve prediction error reduction in the context of 
CF-based rating predictions, and has also been shown to surpass the performance of 
other state-of-the art algorithms. The proposed algorithm achieves an average MAE 
improvement of 3.7% over all tested datasets, while the respective gains of the 
algorithm presented in [2] are 2.99%. While the relative difference is limited to 
23.7%, it is stressed here that the algorithm presented in [2] requires and exploits 
additionally information from social networks regarding the influence levels among 
users, which are not always available. Additionally, the algorithm presented in [2] 
exhibits a coverage drop, which is considerable in the context of sparse datasets; on 
the other hand, the proposed algorithm fully maintains the coverage levels. 
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3. Conclusions 

In this report we have presented the experimental findings from applying an algorithm 
that incorporates, in the rating prediction computation process, the aspect of the users’ 
eagerness to adopt new items and technologies, in order to improve prediction 
accuracy. The results indicate that the above algorithm introduces considerable 
prediction accuracy gains.  
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