

Preprocessor transformations and adaptation operations for
improving QoS delivered by WS-BPEL scenario adaptation

through service execution parallelization

Technical Report TR-15002

Dionisis Margaris, Costas Vassilakis, Panagiotis Georgiadis
margaris@di.uoa.gr, costas@uop.gr, p.georgiadis@uoa.gr

September, 2015
Tripoli, Greece

September, 2015

University of Peloponnese
Department of Informatics and Telecommunications
Software and Database Systems Laboratory

1. Introduction

In this technical report, we present the preprocessor transformations and adaptation

operations for improving QoS delivered by WS-BPEL scenario adaptation through
service execution parallelization. The preprocessor transformations aim at restructuring
the parallelizable operations to be executed in parallel, even though the WS-BPEL
scenario designer has specified sequential execution. Exploitation of parallelism can
serve as an aid to the adaptation process by broadening the set of alternatives available
to the adaptation mechanism: since parallelism reduces the overall execution time, in
the parallelized scenario it is possible to choose operations with higher response times
but better values in other QoS dimensions (e.g. cost), with the composition respecting
the overall WS-BPEL scenario execution time limits, but scoring higher in the other
dimensions (e.g. having lower costs).

The preprocessor also caters for making the scenario adaptation ready, i.e. inserting
appropriate code to pass the data required to perform the adaptation to a newly
introduced adaptation layer and redirect service invocations to this layer.

The adaptation layer is responsible for computing the optimal execution plan, i.e.
find the service implementations that best suit the user-specified QoS policy and invoke
these implementations to realize the functionalities specified in the WS-BPEL scenario.

Since the WS-BPEL scenario is restructured, the presented approach does not strictly
follow the horizontal adaptation paradigm [1], however the changes to the composition
logic are limited and performed in a fashion that enables the exploitation of exception
handlers provided by the scenario designer, which may have been elaborately crafted
to correspond to the particularities of the business process modeled by the WS-BPEL
scenario.

The rest of this report is organized as follows: in section 2, we present the underlying
foundations regarding QoS. Section 3 lists the preprocessor transformations introduced
to enable QoS-based adaptation. In section 4, we present the algorithm used for
parallelization detection and the relevant transformations employed by the
preprocessor. Section 5 details the execution architecture and elaborates on the
adaptation operations. Finally, section 6 concludes the report.

2. QoS concepts and collaborative filtering foundations

QoS is generally defined in terms of attributes corresponding to non-functional

aspects of services, with typical attributes being response time, availability, price,
reputation, security and so forth [2]. In this paper, we will limit our discussion to
attributes response time (rt), availability (av) and cost (c), for brevity reasons, adopting
their definitions from [3]. This limitation does not lead to loss of generality since the
extension of the proposed algorithm to include more QoS attributes is straightforward.
Taking the above into account, each functionality implementation (realized as a service
operation) considered in the adaptation process has a known QoS vector QoSS=(rts, avs,
cs) which is recorded in an appropriate repository (e.g. METEOR-S [4] or WSMO[5]).
The same repository should also provide information regarding which operations are
equivalent. Within a WS-BPEL scenario, individual functionalities are composed into
sequential or parallel flows to implement the business process. Considering the QoS
parameters of the individual functionalities invoked and the type of their compositions
(sequential or parallel), it is possible to compute the QoS value of the overall
composition using the formulas shown in Table I [8]. As we can see from table 1, the
response time of a sequential composition is equal to the sum of its components’
response time, while the response time of a parallel composition is equal to the
maximum value. This difference is important in the context of this work, since the
exploitation of available parallelization can lead to reduction of the overall response
time.

Table 1: QoS of composite services

 QoS attribute

 response time cost availability

Sequential
composition

 ݐݎ

ୀଵ
 ܿ

ୀଵ
 ෑ ݒܽ

ୀଵ

Parallel
composition

max

 ݐݎ ܿ

ୀଵ
 ෑ ݒܽ

ୀଵ

In the context of adaptation, selection of the concrete service that will realize some
functionality is typically driven by parameters specifying the upper and lower bounds
for each QoS attribute. QoS bounds may either be defined as global constraints (i.e.
express the desired values for the whole WS-BPEL scenario) or as local constraints
(each such constraint expresses the desired values for a particular service invocation).
When adaptation problems need to address global constraints performance is poor [6],
therefore either local constraints are directly used (e.g. [7][8]) or methods for mapping
global constraints to local constraints are employed (e,g, [6]). Complementary to the
QoS bounds, a weight is assigned to each QoS attribute, indicating how important each
QoS attribute is considered by the designer in the context of the particular business
process modeled by the scenario. Weights always apply to the whole composition,
rather than to individual services, since they reflect the perceived importance of each

QoS attribute dimension on the process as a whole, and not its constituent parts [9]. In
the proposed algorithm, the QoS specifications for a service within the WS-BPEL
scenario may include an upper bound and a lower bound for each QoS attribute, i.e. for
service sj included in a WS-BPEL scenario, the designer formulates two vectors
MINj(minrt,j, minav,j, minc,j) and MAXj(maxrt,j, maxav,j, maxc,j). Additionally the
designer formulates a weight vector W = (rtw, avw, cw), indicating how important each
QoS attribute is considered by the designer in the context of the particular operation
invocation. The values of the QoS attributes are assumed to be expressed in a “larger
values are better” setup, e.g. a service having cost = 6 means that that it is cheaper than
a service having cost = 4 [8].

3. Transformations to enable QoS-based adaptation

In order to enable QoS-based adaptation, the WS-BPEL scenario designer must

provide the relevant QoS parameters that apply to each invocation. In this work, we
adopt the approach used in [8], according to which:

1. for each invoke construct, the designer should provide the optional attribute name,
assigning distinct names to the invoke constructs,

2. for the invoke construct having the name attribute equal to invX, the designer should
use the WS-BPEL variables QoSmax_invX and QoSmin_invX which designate the
QoS bounds for the particular invocation and

3. the designer should provide the WS-BPEL variable QoS_weight to specify the
weight of each QoS attribute (recall that Weights always apply to the whole
composition, rather than to individual services).

4. The WS-BPEL designer may set the values for variables QoSmax_invX and
QoSmin_invX and QoS_weight after examining the values of user-provided
parameters, tailoring thus the QoS specification to the preferences of the user
invoking the scenario. Fig. 2 shows an example of maximum QoS bounds
specification for an operation invocation.

Figure 1 presents an example of QoS parameter specification.

Figure 1. QoS specification in the WS-BPEL scenario

When the WS-BPEL scenario designer has crafted the scenario, including the QoS
parameter specification, it submits it to the preprocessor, which is responsible for:

1. arranging for connecting to the adaptation layer and retrieving a session id; the
session id is used to distinguish among invocations to the middleware pertaining to
individual executions of WS-BPEL scenarios performed within the WS-BPEL
orchestrator. This is accomplished through an invocation to the getSessionId
operation provided by the adaptation layer, which is inserted at the beginning of the
scenario.

2. providing for passing to the middleware all appropriate information regarding the
operation invocations performed within the WS-BPEL scenario, their structure
(parallel vs. sequential), the affinity groups, the QoS weights for the scenario (as set
using the QoS_weight variable) and the QoS bounds for the different invocations (as
specified through the QoSmin_invX and QoSmax_invX variables). This is realized

<assign>
 <copy>
 <from><literal>7</literal></from>
 <to variable="QoSmax_getQuote" part="respTime"/>
 </copy>
 <copy>
 <from><literal>4</literal></from>
 <to variable="QoSmax_getQuote" part="cost"/>
 </copy>
</assign>
<invoke name="getQuote" partnerLink="hotel1" operation="getQuote"

outputVariable="quote" inputVariable="roomTypeAndPeriod" />

through an invocation to the bpelScenarioInfo operation of the adaptation layer (c.f.
section 5). This information will be used by the adaptation layer to formulate the
execution plan, which is inserted before the first invoke operation within the
scenario.

3. modifying individual operation invocations so that they are redirected to the
adaptation layer, instead of the actual web service operation initially specified in the
WS-BPEL scenario. The adaptation layer will then forward the invocation to the
appropriate implementation, according to the formulated execution plan. This is
accomplished by modifying the partnerlink specification. The preprocessor arranges
so that the headers of each invocation contain the session identifier, to enable the
adaptation layer to distinguish the particular WS-BPEL scenario execution in the
context of which this invocation is performed.

4. inserting an invocation to the releaseSession operation of the adaptation layer as the
last activity of the WS-BPEL scenario, to allow for release of resources dedicated to
the particular execution.

When the modified scenario is generated, it is deployed to the WS-BPEL orchestrator
and made available for invocation.

4. The parallelization algorithm and pre-processor
transformations

Although WS-BPEL provides the mechanisms to designate parallel execution of
operation invocations, WS-BPEL scenario designers may not fully exploit the potential
for arranging operations into parallel execution structures, similarly to the case that
programmers typically write their programs in a single-threaded fashion [10][11]. This
is owing to the fact that execution parallelization is a laborious task and WS-BPEL
designers mostly focus on accurately realizing the business logic behind the WS-BPEL
scenario they create, rather than pursue execution time optimizations. To this end, a
tool that would be able to detect and exploit the parallelization opportunities available
in WS-BPEL scenarios, would deliver the benefits of parallel execution without placing
the parallelization burden on WS-BPEL scenario designers.

In our approach, WS-BPEL scenario parallelization is undertaken by a preprocessor,
which preprocesses the scenario before it is deployed to the WS-BPEL execution
engine; parallelization can be driven by data flow and dependence analysis used in
instruction-level parallelism [11], supplemented with techniques aiming to address the
particularities of WS-BPEL execution (exceptions, compensations and side-effects)
and aspects related to the QoS of the invoked services. The criteria for identifying
invocations that can be executed in parallel are detailed in the following paragraphs; in
these paragraphs, we will consider that operation invocation op1 appears in the WS-
BPEL scenario before operation invocation op2.

WS-BPEL provides two main control flow structures for composing operation
invocations into business processes, namely the sequence element which arranges for
sequential execution of the invocations it contains, and the flow element which arranges
for parallel execution of the invocations it contains.
1. Two operation invocations op1 and op2 can be scheduled to run in parallel, if they

have been designated to be executed in parallel in the original WS-BPEL scenario
(as crafted by the WS-BPEL designer).

2. Operations op1 and op2 are analyzed for existence of data dependence between them.
Four types of dependences may exist between operation invocations [10][10]:
a. True (or flow) dependence: op2 uses a parameter that is either directly returned

by op1 as its result, or computed using the result of op1. In this case, clearly op2
cannot be executed before op1 concludes its execution, since the value of some
input parameter of op2 is yet unknown.

b. Anti-dependence: op2 modifies a variable V by assigning to it its result value, and
the same variable V is used as an input parameter to op1. In this case the
operations cannot be executed in parallel because if op2 concludes before op1 is
processed, variable V will be modified and thus the parameter passed to op1 will
not have the correct value.

c. Output dependence: both operations store their result to the same variable V. In
a sequential execution, after op2 has concluded the value returned by op2 will be
stored in V. If however op1 and op2 are scheduled to be executed in parallel, the
value of the operation invocation that concluded last will be finally stored in V;
therefore in the case that op1 concludes after op2, the execution result will be
erroneous.

d. Input dependence: both operations share an input parameter.

If true dependence, anti-dependence or output dependence is identified between
two invocations, then they cannot be scheduled to run in parallel; input dependence
does not preclude parallel execution of the involved operation invocations [11].

3. Operations op1 and op2 cannot be scheduled to be executed in parallel if the
invocation of op2 either (a) incurs some cost or (b) has some side-effect (e.g. creating
a session, booking a ticket etc.)[5][4], unless the results of the invocation of op2 are
undoable, through a compensation handler provided in the WS-BPEL scenario. This
criterion targets the case in which an exception is raised during the invocation of
op1: if op1 failed due to an exception and op2 were scheduled to run after op1, then
op2 would not be executed at all (and thus the associated cost would not be incurred)
since either the scenario would be terminated or control would be transferred to the
appropriate fault handler. If however the invocations were executed in parallel, op2
would run and therefore the associated cost would be incurred, which is undesirable;
nevertheless, if the WS-BPEL scenario included a compensation handler for op2 it
would be possible to execute the services in parallel and provide a fault handler
which would arrange for invoking op2’s compensation handler to recuperate the cost
stemming from the invocation of op2.

4. Two operation invocations op1 and op2 cannot be scheduled to run in parallel if op1
creates a side-effect (e.g. creation of a session/login, sending goods) and op2 depends
on the existence of the side-effect.

5. In all other cases, op1 and op2 are able to run in parallel.

At the current development stage, only invocations belonging either to (i) the same

sequence structured activity or (ii) nested sequence and flow activities, with no
intervening conditional (if) or repetitive (while, repeatUntil, foreach) structured
activities are considered. The development of the necessary techniques for control
dependence checking and loop unrolling [11] to foster parallelization among
invocations nested in different structured activities are part of our future work. Criteria
1 and 2 in the above list, as well as the existence of the compensation handler stated in
criterion 3 can be directly evaluated by analyzing the WS-BPEL scenario. The existence
of a cost associated with the invocation of a service mentioned in criterion 3 can be
directly retrieved from the service repository (e.g. METEOR-S [4]). Finally, side-
effects either created by the service (criteria 3 and 4) or needed by the service (criterion
4) can be retrieved from a repository such as WSMO [5]. Obviously, instead of using
two distinct repositories, the information needed may be stored into a single,
comprehensive repository; in our implementation we have used a unified repository.
When two (or more) operation invocations that were initially designated to run
sequentially are restructured to run in parallel, their QoS limits regarding the response
time can be relaxed. For instance, consider the case that a WS-BPEL scenario comprises
of operation invocations O1 and O2 that are designated to be executed sequentially, with
an upper bound on the response time 3 and 7 seconds, respectively; therefore the upper
bound on the scenario execution time would be 10 seconds. If the scenario is
restructured so that O1 and O2 are executed in parallel, then the upper bound of both
operations’ execution time can be set to 10 seconds, a setting which provides guarantees
that the WS-BPEL scenario will conclude in 10 seconds, but it also broadens the pool
of operations that the adaptation mechanism can choose from to realize O1 and O2.
Generalizing, if operations O1, O2, …, On were initially restructured to run sequentially
and are restructured to run in parallel, then the upper bounds of their response time are
set to ∑ ܷ

ோ்
ୀଵ , where ܷ

ோ்is the initially set upper bound for the run time of operation
Oi.

Taking the above criteria into account, the preprocessor analyzes the structure of the
WS-BPEL scenario and determines which invocations can be parallelized. Operations
within a sequential structure that are found to be parallelizable, are organized in a flow
construct. Consider for instance the WS-BPEL scenario fragment illustrated in Figure
2 (for conciseness purposes, only the relevant parts/attributes of the scenario are
shown), while the corresponding graphical representation of the same scenario is
illustrated in Figure 3. This scenario fragment arranges for getting a quote for a hotel
room and booking it, renting a car and then paying for both items. The invocations are
arranged in a sequential structure, however in this sequence, we can identify that
invocations to getRoomQuote and rentCar may proceed in parallel, since they (a) have
no interdependencies and (b) rentCar has an associated cost (the cost of invoking the
service e.g. a commission; the actual fee for renting the car is paid later through
finalizeReservation) and a side-effect (recording the car rental in the service provider’s
database), however a compensation handler exists, therefore any incurred costs and/or
side effects are undoable by invoking this compensation handler.

Figure 2: Excerpt of sequential WS-BPEL scenario

<sequence>
 <invoke operation="getRoomQuote" outputVariable= "quote"

inputVariable="roomTypeAndPeriod" name= "getQuote"/>
 <invoke operation="reserveRoom" inputVariable= "quote"

outputVariable="reservationInfo" name= "reserveRoom"/>
 <invoke operation="rentCar" inputVariable= "carTypeAnd Period"

outputVariable="carRentalInfo" name="rentCar">
 <compensationHandler>

 <invoke operation="cancelRentCar" inputVariable= "carRentalInfo">
 </compensationHandler>

 </invoke>
 <assign>
 <copy>
 <from expression="$quote.price + $rentalInfo.price" />
 <to variable="paymentInfo" part="amount" />
 </copy>
 <copy>
 <from variable="creditCardInfo" />
 <to variable="paymentInfo" part="creditCard" />
 </copy>
 </assign>
 <invoke operation="finalizeReservation" name="doReserve"

inputVariable="paymentInfo" outputVariable="receipt" />
</sequence>

Figure 3: Graphical representation of the sequential WS-BPEL scenario

Contrary, the invocation to reserveRoom must strictly be performed after the

invocation to getRoomQuote has concluded, since reserveRoom uses variable quote as
its input, which is produced by getRoomQuote (direct dependency). Similarly the
invocation to finalizeReservation should follow the conclusion of both getRoomQuote
and rentCar because variable paymentInfo (the input of finalizeReservation) is
indirectly dependent on the output of rentCar (variable carRentalInfo) and
getRoomQuote (variable quote), since the copy construct in Figure 2 uses the
carRentalInfo and quote variables to calculate the value to be assigned to (a part of)
reserveRoom’s input paymentInfo. A more subtle dependence exists between services
reserveRoom and finalizeReservation, which cannot be determined by analyzing the
scenario code alone: finalizeReservation can be performed only when a room has been
reserved; this is a required side-effect for operation finalizeReservation, and this side-
effect is produced by operation reserveRoom, hence reserveRoom must have concluded
before finalizeReservation is invoked. The information regarding the side effects is
drawn by the preprocessor from the service repository, where it is recorded that
reserveRoom creates the side effect and finalizeReservation depends on it. After the
dependence analysis results have been computed, the WS-BPEL scenario is
restructured to accommodate the available parallelism, as shown in Fig. 4 (only the first
part which has changed is shown; the part that has remained intact has been omitted for
brevity), while the corresponding graphical representation is shown in Fig. 5. Regarding
the upper response time bound of the services that are restructured to be executed in
parallel, the preprocessor arranges for designating that the upper response time bound
of each of the invocations to getRoomQuote and rentCar is equal to the sum of the
individual invocations, with the sum being again normalized to the [1, 10] scale.

Figure 4: Excerpt of transformed (parallelized) WS-BPEL scenario

Figure 5: Graphical representation of transformed (parallelized) WS-BPEL

scenario

<sequence>
 <flow>
 <invoke operation="getRoomQuote" inputVariable= "roomTypeAndPeriod"

outputVariable="quote" name="getQuote" >
 <compensationHandler>

 <invoke operation="cancelRentCar" inputVariable="carRentalInfo"/>
 </compensationHandler>
 </invoke>
 <invoke operation="rentCar" inputVariable="carTypeAndPeriod"

outputVariable="carRentalInfo" name="rentCar" />
 </flow>
 <sequence>

 <invoke operation="reserveRoom" inputVariable="quote"
outputVariable="reservationInfo" name="reserveRoom"/>

<assign>
…

 </sequence>
</sequence>

An issue that needs to be addressed regarding these transformations, is the fact that

one of the criteria for determining whether operations are parallelizable, and in
particular the criterion examining whether the involved service incurs some cost
(criterion 3 above) is based on the service repository contents. However, the service
repository contents regarding this dimension may change i.e. either (a) a provider may
begin charging a previously free service, hence operation invocations that were
previously parallelizable cease to be so, or (b) a provider may stop charging a
previously non-free service, in which case two invocations that were previously non-
parallelizable can now be scheduled to be executed in parallel. A similar issue exists
for side-effect creation and requirement. To tackle this issue, the preprocessor takes the
following two measures:
1. to guard against selecting a non cost-free service, the preprocessor arranges for

setting the upper bound for the cost of the particular invocation to zero (normalized
to the [1, 10] scale).

2. in all cases, the preprocessor establishes redeployment triggers, which consist of
monitoring updates to the repository that fall into the previously described categories
(cost, side-effect creation and side-effect requirement). When such a change is
detected, the affected WS-BPEL scenarios are identified and a preprocessing and
redeployment action is initiated for them, so that the preprocessor takes into account
the updated contents of the repository (c.f. section 5).

5. Adaptation architecture and operations

The adaptation architecture, illustrated in fig. 6, adds to the standard SOA

architecture three additional modules, the preprocessor, the adaptation layer and the
redeployment triggers.

Figure 6: The adaptation architecture

The preprocessor performs transformations on the original WS-BPEL scenario by

(a) restructuring service invocations to be performed in parallel under the conditions
described in section 4 above (b) arranging for passing appropriate data to the adaptation
layer to drive the adaptation and (c) redirecting service invocations to the adaptation
layer, so as to be sent to the service implementations best matching the QoS
specifications. The preprocessing step produces an enhanced WS-BPEL scenario,
which is then deployed to the WS-BPEL orchestrator. The transformations performed
by the preprocessor have been discussed in sections 3 and 4.

Redeployment triggers periodically whether changes have occurred to the data within

the repository on the basis of which decisions regarding parallelization capability have
been made. This includes (a) cost of services (b) creation of side-effects by services and
(c) requirement of side-effects by services. When such a modification is expected, the
affected WS-BPEL scenarios are identified and, for each of them, the preprocessor is
invoked to perform the applicable transformations, considering the updated service
repository contents. Redeployment of the new preprocessed file is performed without
affecting currently running instances of the scenario, exploiting the hot redeployment
feature of contemporary WS-BPEL orchestrators (e.g. [12]).

The adaptation layer intervenes between the WS-BPEL orchestrator and the actual

web service implementations, arranging for formulating the WS-BPEL scenario
execution plan, i.e. to choose for each operation invocation designated in the executing
scenario the most appropriate implementation with respect to the QoS policy defined
for the current execution. The adaptation layer uses integer programming to determine
the optimal execution plan for the specific WS-BPEL scenario execution, subject to the

QoS policy specified by the consumer, and stores this execution plan to the session
memory. Subsequently intercepts service invocations performed in the context of the
WS-BPEL scenario execution and redirects them to the chosen service
implementations. In more detail the execution of a WS-BPEL scenario is performed as
follows:

5.1 Execution plan computation
When the WS-BPEL scenario commences execution, it will first retrieve from the

adaptation layer the session identifier, and afterwards it will invoke the
bpelScenarioInfo operation of the adaptation layer to provide to it all the information
required for the formulation of the execution plan. The adaptation layer will then
compute the execution plan as follows:

1. For each operation invocation, the adaptation layer retrieves from the repository

those operations that are equivalent to the operation being invoked and satisfy the
QoS bounds for the particular invocation. Thus, the set of possible operation
assignments for operation opi POA(opi)={opi,1, opi,2, …, opi,x} is formulated as
follows: ܱܲܣሺሻ ൌ ሼ	 ∈ 	ݐ݈݊݁ܽݒ݅ݑݍ݁		:ݕݎݐ݅ݏܴ݁ ∧ 	 ሾሺ݉݅݊௧,
௦ݐݎ ௧,ሻݔܽ݉ 	∧ 	ሺ݉݅݊, ܿ௦ ,ሻݔܽ݉ ∧ 	ሺ݉݅݊, ௦݈݁ݎ ;,ሻሿሽݔܽ݉
recall that the min and max bounds per operation have been received as input to the
bpelScenarioInfo operation.

2. The adaptation layer formulates an integer programming (IP) problem, in order to
produce the execution plan, i.e. a set of concrete operation assignments EP={cop1,
cop2, …, copn} where copiPOA(opi), such that this set of assignment best matches
the QoS parameters specified by the user. To this end, the candidate i for realizing
operation opj (i.e. the ith element in POA(opj)) is assigned a utility value calculated
by the following function [6]:

ܷ൫,൯ ൌ
ܳ௫ሺ݆, ݇ሻ െ ,ሻሺݍ
ܳ௫ᇲሺ݇ሻ െ ܳᇲሺ݇ሻ

∗ ݓ

ଷ

ୀଵ

where qk(oj,i) is the value of the kth QoS attribute of operation oj,i (the first QoS
attribute corresponds to response time, the second one to cost and the third one to
availability), wk being the weight assigned to the kth QoS attribute, ܳ௫ሺ݆, ݇ሻ ൌ
max

௦∈ைሺሻ
 ሻ [i.e. the maximum value of QoS attribute k among possible concreteݏሺݍ

operation assignments for operation j], and ܳ௫ᇲሺ݇ሻ [resp. ܳᇲሺ݇ሻ] being the
	overall maximum (resp. minimum) value of QoS attribute k within the repository.
Note that services with high QoS values have low utility function values. Given the
utility function, the computation of the m-best solutions can be formulated as an
integer programming optimization problem as follows: minimize the overall utility
value given by:

ܱܷ ொܸௌ ൌ ܷሺ,ሻ ∗ ,ݔ

|ை൫ೕ൯|

ୀଵ

ே

ୀଵ

where N is the number of operation invocations within the WS-BPEL scenario,
 ሻ| is the cardinality of POA(opi) and xj,i is a binary variable taking the valueሺܣܱܲ|
1 if opj,i is chosen for implementing operation opj of the WS-BPEL scenario and the
value 0 otherwise.

Since each operation opi designated in the original WS-BPEL scenario must be
realized through exactly one operation in POA(opi), the constraint set

 ,ݔ ൌ 1, 1

|ை൫ೕ൯|

ୀଵ

݆ ܰ

is added to the problem. In order to support transactional semantics of operations,
which are possibly present when two or more invocations are made to services
delivered by the same provider1, the adaptation layer adds constraints to the problem
as follows: let us assume that operations opx and opy belong in the same affinity
group, and POA(opx) = {ox,1, ox,2, …, ox,L(x)}, POA(opy) = {oy,1, oy,2, …, oy,L(y)}, the
possible operation assignments for opx and opy, respectively. Without loss of
generality, we assume that for the first k services in POA(opx) and POA(opy):

provider(opx,m) = provider(opy,m) 1≤m≤k

while

provider(opx,m) ≠ provider(opy,m) m>k

Under this setting, transactional semantics are maintained if for the realization of opx
and opy within the scenario, the corresponding services (i.e. services with the same
index) from POA(opx) and POA(opy) are selected. To ensure this in the solution of
the IP problem, the following constraints are added to the problem:

௫, െ ௬, ൌ 0, 1	 ܽ	 	݇

This method is directly generalizable to cases where the affinity group contains more
than two operation invocations; for example if the affinity group contained a third
operation invocation opz, the set of constraints

௫, െ ௭, ൌ 0, 1	 ܽ	 	݇

would be added to the problem. Notice that there is no need to include additional
constraints to explicitly maintain transactional semantics between opy and opz (i.e.
௬, െ ௭, ൌ 0ሻ, since this is guaranteed by the two introduced set of constraints
by virtue of transitivity.

This approach (a) exploits the concept of service replacement candidate, limiting
service selection affinity only to the operations actually involved in the scenario and
(b) further broadens the options available to the middleware by removing the need
for affinity maintenance among services that coincidentally were set in the original
scenario to be directed to the same service provider.

Afterwards, the IP problem is solved and the solution is stored –coupled with the
session id– to the session memory (cf. Fig. 6).

5.2 Invocation adaptation
When the adaptation layer intercepts an operation invocation (recall from section 3

that the preprocessor arranges so that invocations are redirected to the adaptation layer),
it retrieves from the session memory the selection made for the realization of the
particular invocation in the context of the current WS-BPEL scenario execution (i.e.

1 An example of a case with transactional semantics is when a service invocation books a room while

a subsequent one pays for the booking; clearly, the booking must be made to the hotel in which the room
was booked, so if the adaptation mechanism redirects the booking request to hotel A, then the payment
request should be redirected to Hotel A too.

within the execution plan formulated as described in subsection 5.1) and redirects the
invocation to that service. The reply is then collected and returned as a reply to the WS-
BPEL orchestrator.

5.3 Cleanup and housekeeping
Finally, when the WS-BPEL scenario reaches its end, it invokes the releaseSession

web service, providing the session identifier as a parameter. The releaseSession service
will then remove from the session memory all information pertaining to this session.

6. Experimental evaluation
In this section, we report on our experiments aiming to substantiate the feasibility of

the proposed approach, both in terms of execution time (quantifying the introduced
overhead and performance gains) and solution quality. For our experiments we used
two machines: (a) a workstation, equipped with one 6-core Intel Xeon E5-
2620@2.0GHz CPU and 16 GB of RAM, which hosted the preprocessor and the clients
and (b) a workstation with identical configuration to the first, except for the memory
which was 64GBytes, that hosted the WS-BPEL orchestration engine (Apache ODE
1.3.6), the adaptation layer, the target web services deployed on a Glassfish 4.1
application server and the service repository. The machines were connected via a 1Gbps
LAN. The service repository was implemented as in-memory hash-based structure,
which proved more efficient than using a separate (memory or disk-based) database.
Preprocessing time is not included in the overheads, since this is performed in an off-
line fashion and does not penalize the WS-BPEL scenario execution performance. In
all experiments, the service repository was populated with synthetic data having an
overall size of 1,000 web services; each web service included 3-8 operations and each
operation was offered by a number of alternative providers, ranging from 5 to 50. Each
service had at least 5 other services equivalent to it (i.e. having equivalents for all its
operations). QoS attribute values in this repository were uniformly drawn from the
domain [0, 10]. The WS-BPEL scenarios used in the experiments were synthetically
generated by randomly drawing operations from the repository, and the performance
evaluation tests were run for each of the generated scenarios; 1,000 scenarios were
generated in total. We resorted to synthetic data due to the lack of a real-world test suite.
In the scenario generation process, two consecutive functionality invocations were
selected to be executed sequentially (sequence construct) with a probability of 0.7 and
in parallel (flow construct) with a probability of 0.3. In our first experiment, we quantify
(a) the time needed to formulate the WS-BPEL scenario execution plan, for varying
degrees of concurrency (incurred once per execution), (b) the overhead imposed by the
middleware intervention during service invocation (incurred for each invocation; the
diagram illustrates the overhead sustained for all invocations within the scenario execu-
tions) and (c) the overall overhead per WS-BPEL scenario execution (Fig. 7). We can
observe that all overheads remain relatively low, even for high degrees of concurrency,
(an overall penalty of 250 msec for 200 concurrent invocations) and scales linearly with
the concurrency degree.

Fig. 8 compares the QoS of the execution plan formulated for a number of
representative trial cases and on average by (i) the simple QoS-based algorithm
described in [8] and (ii) the approach proposed in this paper. The average shown in the
diagram has been computed considering all 1,000 WS-BPEL scenarios used in the
experiment, while the representative trial cases were chosen so as to include different
number of operation invocations (scenarios 1-3 contain 3 invocations, scenarios 4-6
contain 6 invocations and scenarios 7-10 contain 8 invocations), varying settings
regarding parallel flows (scenarios 1, 2, 4 and 7 contain no parallel flows, scenarios 3,
5, 8 and 9 contain one parallel flow and scenarios 6 and 10 contain two parallel flows)
and different numbers of data-dependent invocations (from one to seven; some data
dependencies formed chains e.g. s1 is dependent on s2 s2 is dependent on s3, while
other data dependencies were unconnected, e.g. s1 is dependent on s2 s3 is dependent
on s4).

Figure 7: Execution plan formulation overhead

We chose to compare the proposed approach against the one described in [8], since

the latter handles parallel flows and is exhaustive, always thus locating the optimum
solution. The lower and upper QoS bounds for operation invocations were randomly
drawn from the domains [0,4] and [6,10, respectively]. The weights of the QoS
attributes were randomly selected from the domain [0,1]. In all cases, a uniform dis-
tribution was used. The diagram shows that the algorithm proposed in this paper
achieves solutions whose QoS is on average higher by 22% than the corresponding
solutions formulated by the algorithm described in [8]. This is due to the parallelization
of operation invocations, which (a) lead to reduced response time and (b) due to the
relaxation of the response time constraints allowed by the parallelization, the set of
alternatives available to the adaptation mechanism is broadened (through allowing for
selection of implementations with higher execution times than would be possible in the
original scenario with sequential execution); this in turn provides opportunities for
formulation of better execution plans, in the cases that the implementations that can
now be selected score better in the rest QoS dimensions.

Figure 8: QoS of solutions formulated by the proposed approach and the

algorithm described in [8].

We can notice that in cases 1 and 7 the proposed approach, as well as the algorithm
described in [8], achieve exactly the same score. This is due to the fact that the optimal
services had already been chosen in the first place, hence even after the parallelization
process, the web services selection is exactly the same.
More specifically, in case 7, before the parallelization adaptation, processes A1 and B1
had been chosen with QoS values of (7,7,8) and (8,6,8), respectively, as far as response
time, cost and availability are concerned. The other options (equivalent web services)
available for these two processes were A2 with QoS values of (3,4,5) and A3 with QoS
values of (2,6,7), as far as A1 is concerned, and B2 with QoS values (5,3,2), as far as
B1 is concerned, hence even after the parallelization process, the web services selection
is exactly the same and the overall adaptation QoS score (considering rtw=avw= cw) is
equal to (7+7+8+8+6+8)/6 = 7.33, as depicted in figure 8.

7. Conclusions

In this technical report we have presented the preprocessor transformations and

adaptation operations for improving QoS delivered by WS-BPEL scenario adaptation
through service execution parallelization. The preprocessor transformations aim at
restructuring the parallelizable operations to be executed in parallel, even though the
WS-BPEL scenario designer has specified sequential execution. Exploitation of
parallelism can serve as an aid to the adaptation process by broadening the set of
alternatives available to the adaptation mechanism: since parallelism reduces the
overall execution time, in the parallelized scenario it is possible to choose operations
with higher response times but better values in other QoS dimensions (e.g. cost), with
the composition respecting the overall WS-BPEL scenario execution time limits, but
scoring higher in the other dimensions (e.g. having lower costs).

The preprocessor also caters for making the scenario adaptation ready, i.e. inserting
appropriate code to pass the data required to perform the adaptation to a newly
introduced adaptation layer and redirect service invocations to this layer.

8. References

[1] V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, F. Lo Presti, “A Performance Comparison of QoS-Driven
Service Selection Approaches”, Proceedings of ServiceWave 2011, Abramowicz W et al. (Eds.): LNCS 6994,
2011, pp. 167–178.

[2] J. Cardoso, “Quality of Service and Semantic Composition of Workflows”, PhD thesis, Univ. of Georgia,
2002.

[3] O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What is a Service?: Towards Accurate Description of Non-
Functional Properties. Distributed and Parallel Databases, vol. 12 (2002)

[4] M. Alrifai, T. Risse, “Combining Global Optimization with Local Selection for Efficient QoS-aware Service
Composition”, Proc.s of the 18th international conference on World Wide Web (WWW '09), 2009, pp. 881-
890.

[5] D. Ardagna, B. Pernici, “Adaptive Service Composition in Flexible Processes”, IEEE Transactions on
Software Engineering, vol. 33, no. 6, June 2007, 369 – 384

[6] M. Alrifai, T. Risse, “Combining Global Optimization with Local Selection for Efficient QoS-aware Service
Composition”, Proc.s of the 18th international conference on World Wide Web (WWW '09), 2009, pp. 881-
890.

[7] C. Kareliotis, C. Vassilakis, P. Georgiadis, “Enhancing BPEL scenarios with dynamic relevance-based
exception handling”, Proceedings of ICWS07, Salt Lake City, Utah, USA, 9–13 July 2013, pp.751–758.

[8] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated framework for QoS-based adaptation and exception
resolution in WS-BPEL scenarios”, Proceedings of the ACM Symposium on Applied Computing, 2013,
Portugal.

[9] X. Fei, S. Lu, “A Dataflow-Based Scientific Workflow Composition Framework”, IEEE Transactions on
Services Computing 5(1), 2012, pp.45-58

[10] G. Goff, K. Kennedy, C.W. Tseng, “Practical Dependence Testing”, Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implementation, 1991, pp. 15-29.

[11] A.J. Bernstein, “Analysis of Programs for Parallel Processing”, IEEE Trans. on Electronic Computers”
Volume:EC-15(5), 1996, pp. 757–763.

[12] Red Hat. JBoss Enterprise SOA Platform 5: ESB Services Guide.
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_SOA_Platform/5.

