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1. Introduction 
 
In this technical report, we present the preprocessor transformations and adaptation 

operations for improving QoS delivered by WS-BPEL scenario adaptation through 
service execution parallelization. The preprocessor transformations aim at restructuring 
the parallelizable operations to be executed in parallel, even though the WS-BPEL 
scenario designer has specified sequential execution. Exploitation of parallelism can 
serve as an aid to the adaptation process by broadening the set of alternatives available 
to the adaptation mechanism: since parallelism reduces the overall execution time, in 
the parallelized scenario it is possible to choose operations with higher response times 
but better values in other QoS dimensions (e.g. cost), with the composition respecting 
the overall WS-BPEL scenario execution time limits, but scoring higher in the other 
dimensions (e.g. having lower costs). 

The preprocessor also caters for making the scenario adaptation ready, i.e. inserting 
appropriate code to pass the data required to perform the adaptation to a newly 
introduced adaptation layer and redirect service invocations to this layer.  

The adaptation layer is responsible for computing the optimal execution plan, i.e. 
find the service implementations that best suit the user-specified QoS policy and invoke 
these implementations to realize the functionalities specified in the WS-BPEL scenario. 

Since the WS-BPEL scenario is restructured, the presented approach does not strictly 
follow the horizontal adaptation paradigm [1], however the changes to the composition 
logic are limited and performed in a fashion that enables the exploitation of exception 
handlers provided by the scenario designer, which may have been elaborately crafted 
to correspond to the particularities of the business process modeled by the WS-BPEL 
scenario.  

The rest of this report is organized as follows: in section 2, we present the underlying 
foundations regarding QoS. Section 3 lists the preprocessor transformations introduced 
to enable QoS-based adaptation. In section 4, we present the algorithm used for 
parallelization detection and the relevant transformations employed by the 
preprocessor. Section 5 details the execution architecture and elaborates on the 
adaptation operations. Finally, section 6 concludes the report.  
  



 

 

2. QoS concepts and collaborative filtering foundations 
 
QoS is generally defined in terms of attributes corresponding to non-functional 

aspects of services, with typical attributes being response time, availability, price, 
reputation, security and so forth [2]. In this paper, we will limit our discussion to 
attributes response time (rt), availability (av) and cost (c), for brevity reasons, adopting 
their definitions from [3]. This limitation does not lead to loss of generality since the 
extension of the proposed algorithm to include more QoS attributes is straightforward. 
Taking the above into account, each functionality implementation (realized as a service 
operation) considered in the adaptation process has a known QoS vector QoSS=(rts, avs, 
cs) which is recorded in an appropriate repository (e.g. METEOR-S [4] or WSMO[5]). 
The same repository should also provide information regarding which operations are 
equivalent. Within a WS-BPEL scenario, individual functionalities are composed into 
sequential or parallel flows to implement the business process. Considering the QoS 
parameters of the individual functionalities invoked and the type of their compositions 
(sequential or parallel), it is possible to compute the QoS value of the overall 
composition using the formulas shown in Table I [8]. As we can see from table 1, the 
response time of a sequential composition is equal to the sum of its components’ 
response time, while the response time of a parallel composition is equal to the 
maximum value. This difference is important in the context of this work, since the 
exploitation of available parallelization can lead to reduction of the overall response 
time. 

 
Table 1: QoS of composite services 

 QoS attribute 

 response time cost availability 

Sequential 
composition 

 ݐݎ


ୀଵ
  ܿ



ୀଵ
 ෑ ݒܽ



ୀଵ
 

Parallel 
composition 

max

 ݐݎ ܿ



ୀଵ
 ෑ ݒܽ



ୀଵ
 

In the context of adaptation, selection of the concrete service that will realize some 
functionality is typically driven by parameters specifying the upper and lower bounds 
for each QoS attribute. QoS bounds may either be defined as global constraints (i.e. 
express the desired values for the whole WS-BPEL scenario) or as local constraints 
(each such constraint expresses the desired values for a particular service invocation). 
When adaptation problems need to address global constraints performance is poor [6], 
therefore either local constraints are directly used (e.g. [7][8]) or methods for mapping 
global constraints to local constraints are employed (e,g, [6]). Complementary to the 
QoS bounds, a weight is assigned to each QoS attribute, indicating how important each 
QoS attribute is considered by the designer in the context of the particular business 
process modeled by the scenario. Weights always apply to the whole composition, 
rather than to individual services, since they reflect the perceived importance of each 



 

 

QoS attribute dimension on the process as a whole, and not its constituent parts [9]. In 
the proposed algorithm, the QoS specifications for a service within the WS-BPEL 
scenario may include an upper bound and a lower bound for each QoS attribute, i.e. for 
service sj included in a WS-BPEL scenario, the designer formulates two vectors 
MINj(minrt,j, minav,j, minc,j) and MAXj(maxrt,j, maxav,j, maxc,j). Additionally the 
designer formulates a weight vector W = (rtw, avw, cw), indicating how important each 
QoS attribute is considered by the designer in the context of the particular operation 
invocation. The values of the QoS attributes are assumed to be expressed in a “larger 
values are better” setup, e.g. a service having cost = 6 means that that it is cheaper than 
a service having cost = 4 [8]. 
  



 

 

3. Transformations to enable QoS-based adaptation 
 
In order to enable QoS-based adaptation, the WS-BPEL scenario designer must 

provide the relevant QoS parameters that apply to each invocation. In this work, we 
adopt the approach used in [8], according to which: 

1. for each invoke construct, the designer should provide the optional attribute name, 
assigning distinct names to the invoke constructs, 

2. for the invoke construct having the name attribute equal to invX, the designer should 
use the WS-BPEL variables QoSmax_invX and QoSmin_invX which designate the 
QoS bounds for the particular invocation and 

3. the designer should provide the WS-BPEL variable QoS_weight to specify the 
weight of each QoS attribute (recall that Weights always apply to the whole 
composition, rather than to individual services). 

4. The WS-BPEL designer may set the values for variables QoSmax_invX and 
QoSmin_invX and QoS_weight after examining the values of user-provided 
parameters, tailoring thus the QoS specification to the preferences of the user 
invoking the scenario. Fig. 2 shows an example of maximum QoS bounds 
specification for an operation invocation. 

Figure 1 presents an example of QoS parameter specification. 

 

Figure 1. QoS specification in the WS-BPEL scenario 
 

When the WS-BPEL scenario designer has crafted the scenario, including the QoS 
parameter specification, it submits it to the preprocessor, which is responsible for: 

1. arranging for connecting to the adaptation layer and retrieving a session id; the 
session id is used to distinguish among invocations to the middleware pertaining to 
individual executions of WS-BPEL scenarios performed within the WS-BPEL 
orchestrator. This is accomplished through an invocation to the getSessionId 
operation provided by the adaptation layer, which is inserted at the beginning of the 
scenario. 

2. providing for passing to the middleware all appropriate information regarding the 
operation invocations performed within the WS-BPEL scenario, their structure 
(parallel vs. sequential), the affinity groups, the QoS weights for the scenario (as set 
using the QoS_weight variable) and the QoS bounds for the different invocations (as 
specified through the QoSmin_invX and QoSmax_invX variables). This is realized 

<assign> 
 <copy> 
  <from><literal>7</literal></from> 
  <to variable="QoSmax_getQuote" part="respTime"/> 
 </copy> 
 <copy> 
  <from><literal>4</literal></from> 
  <to variable="QoSmax_getQuote" part="cost"/> 
 </copy> 
</assign> 
<invoke name="getQuote" partnerLink="hotel1" operation="getQuote" 

outputVariable="quote" inputVariable="roomTypeAndPeriod" /> 



 

 

through an invocation to the bpelScenarioInfo operation of the adaptation layer (c.f. 
section 5). This information will be used by the adaptation layer to formulate the 
execution plan, which is inserted before the first invoke operation within the 
scenario. 

3. modifying individual operation invocations so that they are redirected to the 
adaptation layer, instead of the actual web service operation initially specified in the 
WS-BPEL scenario. The adaptation layer will then forward the invocation to the 
appropriate implementation, according to the formulated execution plan. This is 
accomplished by modifying the partnerlink specification. The preprocessor arranges 
so that the headers of each invocation contain the session identifier, to enable the 
adaptation layer to distinguish the particular WS-BPEL scenario execution in the 
context of which this invocation is performed. 

4. inserting an invocation to the releaseSession operation of the adaptation layer as the 
last activity of the WS-BPEL scenario, to allow for release of resources dedicated to 
the particular execution. 

When the modified scenario is generated, it is deployed to the WS-BPEL orchestrator 
and made available for invocation. 



 

 

4. The parallelization algorithm and pre-processor 
transformations 
 

Although WS-BPEL provides the mechanisms to designate parallel execution of 
operation invocations, WS-BPEL scenario designers may not fully exploit the potential 
for arranging operations into parallel execution structures, similarly to the case that 
programmers typically write their programs in a single-threaded fashion [10][11]. This 
is owing to the fact that execution parallelization is a laborious task and WS-BPEL 
designers mostly focus on accurately realizing the business logic behind the WS-BPEL 
scenario they create, rather than pursue execution time optimizations. To this end, a 
tool that would be able to detect and exploit the parallelization opportunities available 
in WS-BPEL scenarios, would deliver the benefits of parallel execution without placing 
the parallelization burden on WS-BPEL scenario designers. 

In our approach, WS-BPEL scenario parallelization is undertaken by a preprocessor, 
which preprocesses the scenario before it is deployed to the WS-BPEL execution 
engine; parallelization can be driven by data flow and dependence analysis used in 
instruction-level parallelism [11], supplemented with techniques aiming to address the 
particularities of WS-BPEL execution (exceptions, compensations and side-effects) 
and aspects related to the QoS of the invoked services. The criteria for identifying 
invocations that can be executed in parallel are detailed in the following paragraphs; in 
these paragraphs, we will consider that operation invocation op1 appears in the WS-
BPEL scenario before operation invocation op2. 

WS-BPEL provides two main control flow structures for composing operation 
invocations into business processes, namely the sequence element which arranges for 
sequential execution of the invocations it contains, and the flow element which arranges 
for parallel execution of the invocations it contains. 
1. Two operation invocations op1 and op2 can be scheduled to run in parallel, if they 

have been designated to be executed in parallel in the original WS-BPEL scenario 
(as crafted by the WS-BPEL designer). 

2. Operations op1 and op2 are analyzed for existence of data dependence between them. 
Four types of dependences may exist between operation invocations [10][10]: 
a. True (or flow) dependence: op2 uses a parameter that is either directly returned 

by op1 as its result, or computed using the result of op1. In this case, clearly op2 
cannot be executed before op1 concludes its execution, since the value of some 
input parameter of op2 is yet unknown. 

b. Anti-dependence: op2 modifies a variable V by assigning to it its result value, and 
the same variable V is used as an input parameter to op1. In this case the 
operations cannot be executed in parallel because if op2 concludes before op1 is 
processed, variable V will be modified and thus the parameter passed to op1 will 
not have the correct value. 

c. Output dependence: both operations store their result to the same variable V. In 
a sequential execution, after op2 has concluded the value returned by op2 will be 
stored in V. If however op1 and op2 are scheduled to be executed in parallel, the 
value of the operation invocation that concluded last will be finally stored in V; 
therefore in the case that op1 concludes after op2, the execution result will be 
erroneous. 

d. Input dependence: both operations share an input parameter. 



 

 

If true dependence, anti-dependence or output dependence is identified between 
two invocations, then they cannot be scheduled to run in parallel; input dependence 
does not preclude parallel execution of the involved operation invocations [11]. 

3. Operations op1 and op2 cannot be scheduled to be executed in parallel if the 
invocation of op2 either (a) incurs some cost or (b) has some side-effect (e.g. creating 
a session, booking a ticket etc.)[5][4], unless the results of the invocation of op2 are 
undoable, through a compensation handler provided in the WS-BPEL scenario. This 
criterion targets the case in which an exception is raised during the invocation of 
op1: if op1 failed due to an exception and op2 were scheduled to run after op1, then 
op2 would not be executed at all (and thus the associated cost would not be incurred) 
since either the scenario would be terminated or control would be transferred to the 
appropriate fault handler. If however the invocations were executed in parallel, op2 
would run and therefore the associated cost would be incurred, which is undesirable; 
nevertheless, if the WS-BPEL scenario included a compensation handler for op2 it 
would be possible to execute the services in parallel and provide a fault handler 
which would arrange for invoking op2’s compensation handler to recuperate the cost 
stemming from the invocation of op2.  

4. Two operation invocations op1 and op2 cannot be scheduled to run in parallel if op1 
creates a side-effect (e.g. creation of a session/login, sending goods) and op2 depends 
on the existence of the side-effect. 

5. In all other cases, op1 and op2 are able to run in parallel. 
 
At the current development stage, only invocations belonging either to (i) the same 

sequence structured activity or (ii) nested sequence and flow activities, with no 
intervening conditional (if) or repetitive (while, repeatUntil, foreach) structured 
activities are considered. The development of the necessary techniques for control 
dependence checking and loop unrolling [11] to foster parallelization among 
invocations nested in different structured activities are part of our future work. Criteria 
1 and 2 in the above list, as well as the existence of the compensation handler stated in 
criterion 3 can be directly evaluated by analyzing the WS-BPEL scenario. The existence 
of a cost associated with the invocation of a service mentioned in criterion 3 can be 
directly retrieved from the service repository (e.g. METEOR-S [4]). Finally, side-
effects either created by the service (criteria 3 and 4) or needed by the service (criterion 
4) can be retrieved from a repository such as WSMO [5]. Obviously, instead of using 
two distinct repositories, the information needed may be stored into a single, 
comprehensive repository; in our implementation we have used a unified repository. 
When two (or more) operation invocations that were initially designated to run 
sequentially are restructured to run in parallel, their QoS limits regarding the response 
time can be relaxed. For instance, consider the case that a WS-BPEL scenario comprises 
of operation invocations O1 and O2 that are designated to be executed sequentially, with 
an upper bound on the response time 3 and 7 seconds, respectively; therefore the upper 
bound on the scenario execution time would be 10 seconds. If the scenario is 
restructured so that O1 and O2 are executed in parallel, then the upper bound of both 
operations’ execution time can be set to 10 seconds, a setting which provides guarantees 
that the WS-BPEL scenario will conclude in 10 seconds, but it also broadens the pool 
of operations that the adaptation mechanism can choose from to realize O1 and O2. 
Generalizing, if operations O1, O2, …, On were initially restructured to run sequentially 
and are restructured to run in parallel, then the upper bounds of their response time are 
set to ∑ ܷ

ோ்
ୀଵ , where ܷ

ோ்is the initially set upper bound for the run time of operation 
Oi. 



 

 

Taking the above criteria into account, the preprocessor analyzes the structure of the 
WS-BPEL scenario and determines which invocations can be parallelized. Operations 
within a sequential structure that are found to be parallelizable, are organized in a flow 
construct. Consider for instance the WS-BPEL scenario fragment illustrated in Figure 
2 (for conciseness purposes, only the relevant parts/attributes of the scenario are 
shown), while the corresponding graphical representation of the same scenario is 
illustrated in Figure 3. This scenario fragment arranges for getting a quote for a hotel 
room and booking it, renting a car and then paying for both items. The invocations are 
arranged in a sequential structure, however in this sequence, we can identify that 
invocations to getRoomQuote and rentCar may proceed in parallel, since they (a) have 
no interdependencies and (b) rentCar has an associated cost (the cost of invoking the 
service e.g. a commission; the actual fee for renting the car is paid later through 
finalizeReservation) and a side-effect (recording the car rental in the service provider’s 
database), however a compensation handler exists, therefore any incurred costs and/or 
side effects are undoable by invoking this compensation handler. 

 

 
Figure 2: Excerpt of sequential WS-BPEL scenario 

 

<sequence> 
  <invoke operation="getRoomQuote" outputVariable= "quote"  

inputVariable="roomTypeAndPeriod" name= "getQuote"/>  
  <invoke operation="reserveRoom" inputVariable= "quote" 

outputVariable="reservationInfo" name= "reserveRoom"/> 
  <invoke operation="rentCar" inputVariable= "carTypeAnd Period" 

outputVariable="carRentalInfo" name="rentCar"> 
    <compensationHandler> 

      <invoke operation="cancelRentCar" inputVariable= "carRentalInfo"> 
   </compensationHandler> 

  </invoke> 
  <assign> 
    <copy> 
      <from expression="$quote.price + $rentalInfo.price" /> 
      <to variable="paymentInfo" part="amount" /> 
    </copy> 
    <copy> 
      <from variable="creditCardInfo" /> 
      <to variable="paymentInfo" part="creditCard" /> 
    </copy> 
  </assign> 
  <invoke operation="finalizeReservation" name="doReserve" 

inputVariable="paymentInfo" outputVariable="receipt" /> 
</sequence> 



 

 

 
Figure 3: Graphical representation of the sequential WS-BPEL scenario 

 
Contrary, the invocation to reserveRoom must strictly be performed after the 

invocation to getRoomQuote has concluded, since reserveRoom uses variable quote as 
its input, which is produced by getRoomQuote (direct dependency). Similarly the 
invocation to finalizeReservation should follow the conclusion of both getRoomQuote 
and rentCar because variable paymentInfo (the input of finalizeReservation) is 
indirectly dependent on the output of rentCar (variable carRentalInfo) and 
getRoomQuote (variable quote), since the copy construct in Figure 2 uses the 
carRentalInfo and quote variables to calculate the value to be assigned to (a part of) 
reserveRoom’s input paymentInfo. A more subtle dependence exists between services 
reserveRoom and finalizeReservation, which cannot be determined by analyzing the 
scenario code alone: finalizeReservation can be performed only when a room has been 
reserved; this is a required side-effect for operation finalizeReservation, and this side-
effect is produced by operation reserveRoom, hence reserveRoom must have concluded 
before finalizeReservation is invoked. The information regarding the side effects is 
drawn by the preprocessor from the service repository, where it is recorded that 
reserveRoom creates the side effect and finalizeReservation depends on it. After the 
dependence analysis results have been computed, the WS-BPEL scenario is 
restructured to accommodate the available parallelism, as shown in Fig. 4 (only the first 
part which has changed is shown; the part that has remained intact has been omitted for 
brevity), while the corresponding graphical representation is shown in Fig. 5. Regarding 
the upper response time bound of the services that are restructured to be executed in 
parallel, the preprocessor arranges for designating that the upper response time bound 
of each of the invocations to getRoomQuote and rentCar is equal to the sum of the 
individual invocations, with the sum being again normalized to the [1, 10] scale. 

 



 

 

 
Figure 4: Excerpt of transformed (parallelized) WS-BPEL scenario 
 

 
Figure 5: Graphical representation of transformed (parallelized) WS-BPEL 

scenario 
 

<sequence> 
  <flow> 
    <invoke operation="getRoomQuote" inputVariable= "roomTypeAndPeriod" 

outputVariable="quote" name="getQuote" > 
      <compensationHandler> 

        <invoke operation="cancelRentCar" inputVariable="carRentalInfo"/> 
      </compensationHandler> 
    </invoke> 
    <invoke operation="rentCar" inputVariable="carTypeAndPeriod" 

outputVariable="carRentalInfo" name="rentCar" /> 
  </flow> 
  <sequence> 

    <invoke operation="reserveRoom" inputVariable="quote" 
outputVariable="reservationInfo" name="reserveRoom"/> 

<assign> 
… 

  </sequence> 
</sequence> 



 

 

 
An issue that needs to be addressed regarding these transformations, is the fact that 

one of the criteria for determining whether operations are parallelizable, and in 
particular the criterion examining whether the involved service incurs some cost 
(criterion 3 above) is based on the service repository contents. However, the service 
repository contents regarding this dimension may change i.e. either (a) a provider may 
begin charging a previously free service, hence operation invocations that were 
previously parallelizable cease to be so, or (b) a provider may stop charging a 
previously non-free service, in which case two invocations that were previously non-
parallelizable can now be scheduled to be executed in parallel. A similar issue exists 
for side-effect creation and requirement. To tackle this issue, the preprocessor takes the 
following two measures: 
1. to guard against selecting a non cost-free service, the preprocessor arranges for 

setting the upper bound for the cost of the particular invocation to zero (normalized 
to the [1, 10] scale). 

2. in all cases, the preprocessor establishes redeployment triggers, which consist of 
monitoring updates to the repository that fall into the previously described categories 
(cost, side-effect creation and side-effect requirement). When such a change is 
detected, the affected WS-BPEL scenarios are identified and a preprocessing and 
redeployment action is initiated for them, so that the preprocessor takes into account 
the updated contents of the repository (c.f. section 5).  

  



 

 

5. Adaptation architecture and operations 
 
The adaptation architecture, illustrated in fig. 6, adds to the standard SOA 

architecture three additional modules, the preprocessor, the adaptation layer and the 
redeployment triggers. 

 

 
Figure 6: The adaptation architecture 

 
The preprocessor performs transformations on the original WS-BPEL scenario by 

(a) restructuring service invocations to be performed in parallel under the conditions 
described in section 4 above (b) arranging for passing appropriate data to the adaptation 
layer to drive the adaptation and (c) redirecting service invocations to the adaptation 
layer, so as to be sent to the service implementations best matching the QoS 
specifications. The preprocessing step produces an enhanced WS-BPEL scenario, 
which is then deployed to the WS-BPEL orchestrator. The transformations performed 
by the preprocessor have been discussed in sections 3 and 4. 

 
Redeployment triggers periodically whether changes have occurred to the data within 

the repository on the basis of which decisions regarding parallelization capability have 
been made. This includes (a) cost of services (b) creation of side-effects by services and 
(c) requirement of side-effects by services. When such a modification is expected, the 
affected WS-BPEL scenarios are identified and, for each of them, the preprocessor is 
invoked to perform the applicable transformations, considering the updated service 
repository contents. Redeployment of the new preprocessed file is performed without 
affecting currently running instances of the scenario, exploiting the hot redeployment 
feature of contemporary WS-BPEL orchestrators (e.g. [12]). 

 
The adaptation layer intervenes between the WS-BPEL orchestrator and the actual 

web service implementations, arranging for formulating the WS-BPEL scenario 
execution plan, i.e. to choose for each operation invocation designated in the executing 
scenario the most appropriate implementation with respect to the QoS policy defined 
for the current execution. The adaptation layer uses integer programming to determine 
the optimal execution plan for the specific WS-BPEL scenario execution, subject to the 



 

 

QoS policy specified by the consumer, and stores this execution plan to the session 
memory. Subsequently intercepts service invocations performed in the context of the 
WS-BPEL scenario execution and redirects them to the chosen service 
implementations. In more detail the execution of a WS-BPEL scenario is performed as 
follows: 

5.1 Execution plan computation 
When the WS-BPEL scenario commences execution, it will first retrieve from the 

adaptation layer the session identifier, and afterwards it will invoke the 
bpelScenarioInfo operation of the adaptation layer to provide to it all the information 
required for the formulation of the execution plan. The adaptation layer will then 
compute the execution plan as follows: 

 
1. For each operation invocation, the adaptation layer retrieves from the repository 

those operations that are equivalent to the operation being invoked and satisfy the 
QoS bounds for the particular invocation. Thus, the set of possible operation 
assignments for operation opi POA(opi)={opi,1, opi,2, …, opi,x} is formulated as 
follows: ܱܲܣሺሻ ൌ ሼ	 ∈ 	ݐ݈݊݁ܽݒ݅ݑݍ݁		:ݕݎݐ݅ݏܴ݁ ∧ 	 ሾሺ݉݅݊௧, 
௦ݐݎ  ௧,ሻݔܽ݉ 	∧ 	ሺ݉݅݊,  ܿ௦  ,ሻݔܽ݉ ∧ 	ሺ݉݅݊,  ௦݈݁ݎ   ;,ሻሿሽݔܽ݉
recall that the min and max bounds per operation have been received as input to the 
bpelScenarioInfo operation. 

2. The adaptation layer formulates an integer programming (IP) problem, in order to 
produce the execution plan, i.e. a set of concrete operation assignments EP={cop1, 
cop2, …, copn} where copiPOA(opi), such that this set of assignment best matches 
the QoS parameters specified by the user. To this end, the candidate i for realizing 
operation opj (i.e. the ith element in POA(opj)) is assigned a utility value calculated 
by the following function [6]: 

ܷ൫,൯ ൌ 
ܳ௫ሺ݆, ݇ሻ െ ,ሻሺݍ
ܳ௫ᇲሺ݇ሻ െ ܳᇲሺ݇ሻ

∗ ݓ

ଷ

ୀଵ

 

where qk(oj,i) is the value of the kth QoS attribute of operation oj,i (the first QoS 
attribute corresponds to response time, the second one to cost and the third one to 
availability), wk being the weight assigned to the kth QoS attribute, ܳ௫ሺ݆, ݇ሻ ൌ
max

௦∈ைሺሻ
 ሻ [i.e. the maximum value of QoS attribute k among possible concreteݏሺݍ

operation assignments for operation j], and ܳ௫ᇲሺ݇ሻ [resp. ܳᇲሺ݇ሻ] being the 
	overall maximum (resp. minimum) value of QoS attribute k within the repository. 
Note that services with high QoS values have low utility function values. Given the 
utility function, the computation of the m-best solutions can be formulated as an 
integer programming optimization problem as follows: minimize the overall utility 
value given by: 

ܱܷ ொܸௌ ൌ  ܷሺ,ሻ ∗ ,ݔ

|ை൫ೕ൯|

ୀଵ

ே

ୀଵ

 

where N is the number of operation invocations within the WS-BPEL scenario, 
 ሻ| is the cardinality of POA(opi) and xj,i is a binary variable taking the valueሺܣܱܲ|
1 if opj,i is chosen for implementing operation opj of the WS-BPEL scenario and the 
value 0 otherwise. 



 

 

Since each operation opi designated in the original WS-BPEL scenario must be 
realized through exactly one operation in POA(opi), the constraint set 

 ,ݔ ൌ 1, 1 

|ை൫ೕ൯|

ୀଵ

݆  ܰ 

is added to the problem. In order to support transactional semantics of operations, 
which are possibly present when two or more invocations are made to services 
delivered by the same provider1, the adaptation layer adds constraints to the problem 
as follows: let us assume that operations opx and opy belong in the same affinity 
group, and POA(opx) = {ox,1, ox,2, …, ox,L(x)}, POA(opy) = {oy,1, oy,2, …, oy,L(y)}, the 
possible operation assignments for opx and opy, respectively. Without loss of 
generality, we assume that for the first k services in POA(opx) and POA(opy): 

provider(opx,m) = provider(opy,m)  1≤m≤k 

while  

provider(opx,m) ≠ provider(opy,m)  m>k 

Under this setting, transactional semantics are maintained if for the realization of opx 
and opy within the scenario, the corresponding services (i.e. services with the same 
index) from POA(opx) and POA(opy) are selected. To ensure this in the solution of 
the IP problem, the following constraints are added to the problem: 

௫, െ ௬, ൌ 0, 1	  ܽ	  	݇ 

This method is directly generalizable to cases where the affinity group contains more 
than two operation invocations; for example if the affinity group contained a third 
operation invocation opz, the set of constraints 

௫, െ ௭, ൌ 0, 1	  ܽ	  	݇ 

would be added to the problem. Notice that there is no need to include additional 
constraints to explicitly maintain transactional semantics between opy and opz (i.e. 
௬, െ ௭, ൌ 0ሻ, since this is guaranteed by the two introduced set of constraints 
by virtue of transitivity. 

This approach (a) exploits the concept of service replacement candidate, limiting 
service selection affinity only to the operations actually involved in the scenario and 
(b) further broadens the options available to the middleware by removing the need 
for affinity maintenance among services that coincidentally were set in the original 
scenario to be directed to the same service provider. 

Afterwards, the IP problem is solved and the solution is stored –coupled with the 
session id– to the session memory (cf. Fig. 6). 

5.2 Invocation adaptation 
When the adaptation layer intercepts an operation invocation (recall from section 3 

that the preprocessor arranges so that invocations are redirected to the adaptation layer), 
it retrieves from the session memory the selection made for the realization of the 
particular invocation in the context of the current WS-BPEL scenario execution (i.e. 

                                                 
1 An example of a case with transactional semantics is when a service invocation books a room while 

a subsequent one pays for the booking; clearly, the booking must be made to the hotel in which the room 
was booked, so if the adaptation mechanism redirects the booking request to hotel A, then the payment 
request should be redirected to Hotel A too. 



 

 

within the execution plan formulated as described in subsection 5.1) and redirects the 
invocation to that service. The reply is then collected and returned as a reply to the WS-
BPEL orchestrator. 

5.3 Cleanup and housekeeping 
Finally, when the WS-BPEL scenario reaches its end, it invokes the releaseSession 

web service, providing the session identifier as a parameter. The releaseSession service 
will then remove from the session memory all information pertaining to this session. 

 
 



 

 

6. Experimental evaluation 
In this section, we report on our experiments aiming to substantiate the feasibility of 

the proposed approach, both in terms of execution time (quantifying the introduced 
overhead and performance gains) and solution quality. For our experiments we used 
two machines: (a) a workstation, equipped with one 6-core Intel Xeon E5-
2620@2.0GHz CPU and 16 GB of RAM, which hosted the preprocessor and the clients 
and (b) a workstation with identical configuration to the first, except for the memory 
which was 64GBytes, that hosted the WS-BPEL orchestration engine (Apache ODE 
1.3.6), the adaptation layer, the target web services deployed on a Glassfish 4.1 
application server and the service repository. The machines were connected via a 1Gbps 
LAN. The service repository was implemented as in-memory hash-based structure, 
which proved more efficient than using a separate (memory or disk-based) database. 
Preprocessing time is not included in the overheads, since this is performed in an off-
line fashion and does not penalize the WS-BPEL scenario execution performance. In 
all experiments, the service repository was populated with synthetic data having an 
overall size of 1,000 web services; each web service included 3-8 operations and each 
operation was offered by a number of alternative providers, ranging from 5 to 50. Each 
service had at least 5 other services equivalent to it (i.e. having equivalents for all its 
operations). QoS attribute values in this repository were uniformly drawn from the 
domain [0, 10]. The WS-BPEL scenarios used in the experiments were synthetically 
generated by randomly drawing operations from the repository, and the performance 
evaluation tests were run for each of the generated scenarios; 1,000 scenarios were 
generated in total. We resorted to synthetic data due to the lack of a real-world test suite. 
In the scenario generation process, two consecutive functionality invocations were 
selected to be executed sequentially (sequence construct) with a probability of 0.7 and 
in parallel (flow construct) with a probability of 0.3. In our first experiment, we quantify 
(a) the time needed to formulate the WS-BPEL scenario execution plan, for varying 
degrees of concurrency (incurred once per execution), (b) the overhead imposed by the 
middleware intervention during service invocation (incurred for each invocation; the 
diagram illustrates the overhead sustained for all invocations within the scenario execu-
tions) and (c) the overall overhead per WS-BPEL scenario execution (Fig. 7). We can 
observe that all overheads remain relatively low, even for high degrees of concurrency, 
(an overall penalty of 250 msec for 200 concurrent invocations) and scales linearly with 
the concurrency degree.  

Fig. 8 compares the QoS of the execution plan formulated for a number of 
representative trial cases and on average by (i) the simple QoS-based algorithm 
described in [8] and (ii) the approach proposed in this paper. The average shown in the 
diagram has been computed considering all 1,000 WS-BPEL scenarios used in the 
experiment, while the representative trial cases were chosen so as to include different 
number of operation invocations (scenarios 1-3 contain 3 invocations, scenarios 4-6 
contain 6 invocations and scenarios 7-10 contain 8 invocations), varying settings 
regarding parallel flows (scenarios 1, 2, 4 and 7 contain no parallel flows, scenarios 3, 
5, 8 and 9 contain one parallel flow and scenarios 6 and 10 contain two parallel flows) 
and different numbers of data-dependent invocations (from one to seven; some data 
dependencies formed chains e.g. s1 is dependent on s2  s2 is dependent on s3, while 
other data dependencies were unconnected, e.g. s1 is dependent on s2  s3 is dependent 
on s4). 



 

 

 
Figure 7: Execution plan formulation overhead 

 
We chose to compare the proposed approach against the one described in [8], since 

the latter handles parallel flows and is exhaustive, always thus locating the optimum 
solution. The lower and upper QoS bounds for operation invocations were randomly 
drawn from the domains [0,4] and [6,10, respectively]. The weights of the QoS 
attributes were randomly selected from the domain [0,1]. In all cases, a uniform dis-
tribution was used. The diagram shows that the algorithm proposed in this paper 
achieves solutions whose QoS is on average higher by 22% than the corresponding 
solutions formulated by the algorithm described in [8]. This is due to the parallelization 
of operation invocations, which (a) lead to reduced response time and (b) due to the 
relaxation of the response time constraints allowed by the parallelization, the set of 
alternatives available to the adaptation mechanism is broadened (through allowing for 
selection of implementations with higher execution times than would be possible in the 
original scenario with sequential execution); this in turn provides opportunities for 
formulation of better execution plans, in the cases that the implementations that can 
now be selected score better in the rest QoS dimensions. 

 

 
Figure 8: QoS of solutions formulated by the proposed approach and the 

algorithm described in [8]. 



 

 

We can notice that in cases 1 and 7 the proposed approach, as well as the algorithm 
described in [8], achieve exactly the same score. This is due to the fact that the optimal 
services had already been chosen in the first place, hence even after the parallelization 
process, the web services selection is exactly the same. 
More specifically, in case 7, before the parallelization adaptation, processes A1 and B1 
had been chosen with QoS values of (7,7,8) and (8,6,8), respectively, as far as response 
time, cost and availability are concerned. The other options (equivalent web services) 
available for these two processes were A2 with QoS values of (3,4,5) and A3 with QoS 
values of (2,6,7), as far as A1 is concerned, and B2 with QoS values (5,3,2), as far as 
B1 is concerned, hence even after the parallelization process, the web services selection 
is exactly the same and the overall adaptation QoS score (considering rtw=avw= cw) is 
equal to (7+7+8+8+6+8)/6 = 7.33, as depicted in figure 8. 
 

 

 

 



 

 

7. Conclusions 
 
In this technical report we have presented the preprocessor transformations and 

adaptation operations for improving QoS delivered by WS-BPEL scenario adaptation 
through service execution parallelization. The preprocessor transformations aim at 
restructuring the parallelizable operations to be executed in parallel, even though the 
WS-BPEL scenario designer has specified sequential execution. Exploitation of 
parallelism can serve as an aid to the adaptation process by broadening the set of 
alternatives available to the adaptation mechanism: since parallelism reduces the 
overall execution time, in the parallelized scenario it is possible to choose operations 
with higher response times but better values in other QoS dimensions (e.g. cost), with 
the composition respecting the overall WS-BPEL scenario execution time limits, but 
scoring higher in the other dimensions (e.g. having lower costs). 

The preprocessor also caters for making the scenario adaptation ready, i.e. inserting 
appropriate code to pass the data required to perform the adaptation to a newly 
introduced adaptation layer and redirect service invocations to this layer. 
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