
A Collaborative Filtering Algorithm with Clustering
for Personalized Web Service Selection in Business

Processes

Dionisis Margaris and Panagiotis Georgiadis
Department of Informatics and Telecommunications

University of Athens
Athens, Greece

margaris@di.uoa.gr, p.georgiadis@di.uoa.gr

Costas Vassilakis
Department of Informatics and Telecommunications

University of the Peloponnese
Tripoli, Greece
costas@uop.gr

Abstract— Recommender systems aim to propose items that
are expected to be of interest to the users. As one of the most
successful approaches to building recommender systems,
collaborative filtering exploits the known preferences of a group
of users to formulate recommendations or predictions of the
unknown preferences for other users. In many cases, collaborative
filtering algorithms handle complex items, which are described
using hierarchical tree structures containing rich semantic
information. In order to make accurate recommendations on such
items, the related algorithms must examine all aspects of the
available semantic information. Thus, when collaborative filtering
techniques are employed to adapt the execution of business
processes, they must take into account the services’ Quality of
Service parameters, so as to generate recommendations tailored to
the individual user needs. In this paper, we present a collaborative
filtering-based algorithm which takes into account the web
services’ QoS parameters in order to tailor the execution of
business processes to the preferences of users. An offline clustering
technique is also introduced for supporting the efficient and
scalable execution of proposed algorithm under the presence of
large repositories of sparse data.

Keywords— collaborative filtering; clustering; business
processes; web services; quality of service; hierarchical tree;
performance

I. INTRODUCTION

A web service is an accessible application that other
applications and humans can discover and trigger to satisfy
multiple needs [25]. One of the major strengths of web services
is their ability to be composed into composite services, which
model high-level business processes. In general, providing
complete business processes, rather than making available
individual services, is essential and suits better user needs.
Composition addresses the situation of a user request that cannot
be satisfied by any available service, whereas a composite
service obtained by combining a set of available services might
be used to satisfy the user request [26].

The predominant way of specifying executable business
processes in the context of service oriented architecture
nowadays is the WS-BPEL language [1]. Executable business
process specifications include the designations of the services
that will be invoked to realize the business process, control flow

constructs (e.g. conditional execution and loops) as well as
variables to store, manipulate and communicate data. In
executable business process specifications however, the services
that will be invoked are selected at design time, i.e. when the
specification is created; in the current era however, business
processes need to be agile and adapt to the needs of the user.
This is particularly true in the context of service oriented
architecture, where each service may be offered by different
providers under different quality of service (QoS) terms: for
example, many banks may offer the “money transfer” service
with different execution time, commission cost, security levels
etc., and the user would want to either directly specify a specific
provider to carry out the task or define a selection policy,
according to which the runtime environment would select the
“best matching” service implementation.

QoS-driven service selection leverages agility and
tailorability of business processes, it however fails to consider
the satisfaction of service users in the “real world”. For instance,
a courier service may offer cheap rates and short delivery time,
however customers may be dissatisfied because parcels arrive
broken or wet, and this aspect is not reflected in the QoS
parameters. To this end, collaborative filtering-based techniques
have been proposed to drive the adaptation process [19][27] or
as complementary means to QoS-based service selection [28].
Collaborative filtering (CF) synthesizes the informed opinions
of humans (i.e. opinions that encompass the aspect of
satisfaction), to make personalized and accurate predictions and
recommendations [29]. In the context of collaborating filtering,
personalization is achieved by considering ratings of “similar
users” (in our case, uses of individual services by similar users),
under the collaborative filtering’s fundamental assumption that
if users X and Y have similar behaviors (e.g., buying, watching,
listening – in our case, selecting the same services) on some
items, they will act on other items similarly [5]. Many variations
of collaborative filtering algorithms and systems exist; however,
most of them usually take two steps: (a) look for users who share
the same rating patterns with the active user (the user who the
prediction is for) and (b) use the ratings from those like-minded
users found in (a) to calculate a prediction for the active user.

Collaborative filtering techniques have been proved to
exhibit degraded performance in the presence of large volumes

of data; to tackle this shortcoming, clustering schemes have
emerged [30][31]. Clustering schemes organize users and/or
items into clusters based on appropriate characteristics, and in
order to make a recommendation they first compute the
similarity between the target user and clusters, allowing for
rapidly locating similar elements and limiting processing to
these only.

In this paper we contribute to the state of the art of business
process adaptation through service recommendation by
presenting a novel approach for performing personalized web
service selection in business processes realized in the service-
oriented architecture; the presented approach employs
collaborative filtering techniques enhanced with a clustering
scheme to promote scalability, while it additionally takes into
account QoS specifications provided by the user to further refine
and personalize service selection. The QoS aspects are taken into
account in a twofold fashion, firstly by considering user-defined
bounds for service selection and secondly by incorporating QoS
attribute closeness into the similarity metric employed by the
collaborative filtering algorithm; the latter aspect extends the
practices used in published works such as [20][27], where
similarity is computed taking into account only the service
functionality. The presented approach considers the particular
characteristics of web services and SOA business processes,
such as service functional equivalence, QoS aspects of the
services and explicit specification of desired service providers,
and these characteristics are considered both in the clustering
scheme and the recommendation procedure.

The rest of the paper is structured as follows: section II
overviews related work, while section III presents the QoS and
collaborative filtering concepts used in this paper. Section IV
presents the clustering method employed, while section V
presents the algorithm for service recommendation. Section VI
evaluates the proposed approach in terms of performance and
quality of solutions formulated, in order to validate it and
substantiate its feasibility. Finally, section VII concludes the
paper and outlines future work.

II. RELATED WORK

Personalized web service selection in the context of business
processes has been an item research for almost a decade now.
Most works allow the user to specify a QoS-based service
selection policy [3][4][6][7][8][9][10][11], typically providing
bounds and weights of QoS attributes such as response time,
cost, availability [14] and so forth; then the adaptation
mechanism tries to find a suitable service composition, to realize
the requested business process in a fashion best suiting the
designated policy. To accomplish this task, existing approaches
follow two main strategies [2]: (i) horizontal adaptation, where
the composition logic has been specified beforehand (e.g. by
means of an executable business process specification) and the
main adaptation task is to select and invoke the service best
matching the user’s QoS policy and (ii) vertical adaptation,
where the adaptation mechanism may choose the composition
logic, under the constraint of delivering the requested
functionality. QoS bounds may be either defined at local level

(i.e. constraints pertain to the individual operations invoked
within the business process) or at global level (i.e. constraints
pertain to the composition as a whole).

Within all personalized web service selection approaches,
the adaptation mechanism needs to represent the functionality
offered by the individual service implementations, so as to
identify the pool of services that can be used to realize a specific
task. Some approaches only maintain information about service
equivalence [12], i.e. matching among services that deliver
exactly the same functionality. A more sophisticated scheme is
presented in [13], according to which a service S1 may be related
to service S2 through one of the following subsumption relations:
(i) S1 exact S2, for services having identical functionality, e.g.
they both reserve a hotel room, (ii) S1 plugin S2 where service S1
is more specific than S2 and can be therefore used in its place;
for example if S1 is “reserve a hotel room” while S2 is “reserve
accommodation” (including hotels, apartments, guesthouses
etc.), the goal of S2 can be accomplished through S1 since S1 does
book accommodation, (iii) S1 subsume S2 when S1 is more
generic than S2 and therefore cannot be always used in its place
(e.g. if S1 reserves accommodation and S2 reserves a hotel room,
we cannot unconditionally use S1 instead of S2 since the use of
S1 may result in booking an apartment instead of a hotel room.
Note that S1 subsume S2 does not always preclude the use of S1
instead of S2, however this can only be done under certain
conditions. In this work, we will not consider this case) and (iv)
S1 fail S2 if none of the exact, plugin, subsume relation applies.
A service matchmaking mechanism relying on subsumption
relations is presented in [50]; this mechanism operates over an
OWL-S ontology representing subsumptions and computes the
degree of semantic matching for a given pair of service
advertisement and request. Using subsumption relations offers
the advantage of broadening the set of choices regarding service
selection (a task S2 may be delivered by any service S1 for which
[S1 exact S2 or S1 plugin S2], while equivalence relations would
limit the choices to services S’1 for which [S’1 exact S2]).
Furthermore, subsumption relations organize services in a
semantic tree, which enables the use of standard similarity
metric computations that are essential for the operation of
clustering schemes and collaborative filtering techniques; hence
in this work we will adopt the use of subsumption relations.

The QoS attributes of the available services and their
equivalence or subsumption relations need to be stored in a
suitable repository, in order to be made available to the
adaptation mechanism. METEOR-S [14], WSMO [15] and
OPUCE [36] can be used to implement this repository. All these
schemes adopt ontologies for the representation of service-
related information, hence they provide the necessary expressive
power to encompass all necessary information.

In the domain of recommender systems, various approaches
for generating recommendations have been developed. It has
been proven that the CF-based recommendation approach is the
most successful and widely used approach for recommendation
systems [5]. CF recommends items for a particular user using
the opinions of other people based on the assumption that people
with similar tastes will rate things similarly [16]. It can be further

divided into user-based and item based CF approaches [17].
User-based CF first finds a set of nearest neighbors of a target
user by computing correlations or similarities between users.
The prediction value of unknown items to the target user is then
computed according to his/her nearest users. In contrast, item-
based CF attempts to find a set of similar items that are rated by
different users in some similar way. Then, for a target item,
predictions can be generated, for example, by taking a weighted
average of the active user’s item ratings on these neighbor items.
Item-based CF has been shown to achieve prediction accuracies
that are comparable to or even better than user-based CF
algorithms [18].

The basic assumption in CF approaches is that there are
sufficient historical data for measuring similarity between items.
This assumption does not hold however in various application
domains, therefore, CF approaches exhibit the problems of
sparsity (a situation that transactional data are lacking or are
insufficient) and cold-start (a situation in which the system
cannot draw any inferences for users or items about which it has
not yet gathered sufficient information). To improve the
prediction accuracy, hybrid recommender systems which
integrate other information sources with CF approaches have
been developed. Because the computation of item similarities is
independent of the methods used for generating predictions,
multiple knowledge sources, including structured semantic
information about items, can be brought to bear in determining
similarities among items [32]. The integration of semantic
similarities for items allows the system to make inferences based
on the underlying reasons for which a user may or may not be
interested in a particular item [32]. The approach taken in [33]
uses a domain ontology, and maps items to a set of concepts
corresponding to the ontology’s nodes; in order to find similar
users, semantic match against the domain ontology is
employed. [34] integrates the techniques of semantic similarity
and the traditional item-based collaborative filtering to handle
recommendation issues of one-and-only items in e-government
services, for instance in suggesting trade exhibitions. [35]
proposes a hybrid semantic recommendation system to provide
personalized government to business (G2B) e-services, in
particular, business partner recommendation e-services for
Australian small to medium enterprises (SMEs); this is
accomplished by first formulating a product semantic relevance
model and subsequently developing a hybrid semantic
recommendation approach which combines item-based
collaborative filtering (CF) similarity and item-based semantic
similarity techniques.

Works in [11][19][27][28] use CF techniques for service
selection. The goal of [11] is to predict Web service QoS values
based on past Web service QoS information collection from
different service users. [19] examines the use of CF for
suggesting web services to the users; the work in [19] however
considers individual services, not business processes (it is
however capable of suggesting service compositions delivering
a specific functionality). [27] employs CF to adapt the execution
of WS-BPEL processes, while [28] extends the work of [27] by
combining CF-based recommendations with a QoS-based
recommendations using the metasearch paradigm. These
approaches however employ standard user-based CF-
techniques, hence they exhibit limited scalability.

As far as clustering is concerned, it has been extensively
studied by researchers in psychology, statistics, biology and
other domains. [37] and [38] provide surveys of clustering
algorithms, while surveys for specific clustering algorithm
categories also exist, such as [39] which focuses on partitional
clustering algorithms. Recent developments in the field are
clustering algorithms for mining large databases or big data;
relevant surveys can be found in [40] and [41].

III. QOS AND CF CONCEPTS

In the following subsections we summarize the concepts from
the areas of QoS and CF, which are used in our work.

A. QoS concepts

The QoS aspects of web services are typically described by
means of attributes, to which values are assigned. [42] surveys
numerous web service QoS models, encompassing as much as
161 attributes. In this work, for conciseness purposes we will
consider only the QoS attributes responseTime (rt), cost (c) and
availability (av), adopting their definitions from [14]. The
presented algorithms can be easily extended to consider more
attributes, hence no loss of generality occurs.

The QoS policy for service selection within the business
process specification may include an upper and a lower bound
for each QoS attribute, i.e. for each service si invoked in the
context of the business process two vectors are defined
MINj=(minrt,j, minc,j, minav,j) and MAXj=(maxrt,j, maxc,j, maxav,j).
Additionally a weight vector W=(rtw, cw, avw), indicating how
important each QoS attribute is considered in the context of the
particular operation invocation is supplied. Weights apply to the
whole business process, rather than to individual services, since
they reflect the perceived importance of each QoS attribute
dimension on the process as a whole, and not its constituent
parts [3]. The values of QoS attributes are assumed to be
encoded in a “larger values are better” scheme, e.g. a service
having responseTime= 8 is actually faster than a service having
responseTime = 4.

B. Subsumption relation representation

In order to perform adaptation we need to use a formal
representation of the services’ functionality, and in particular a
representation of which services are able to realize a specific
task. As noted in section II, the use of subsumption relations
offers advantages over the use of plain equivalence
relationships, hence the use of subsumption relations is adopted
in this paper. The representation of subsumption relationships
between service categories (or abstract tasks, in horizontal
adaptation terminology) is addressed in [13] and [20] through
the use of trees; according to this approach, generic service
categories are located towards the tree root and specific service
categories are placed towards the leafs, and generic service
categories are connected with their specialization categories
through is-a links. Since in this work we are interested not only
in service categories but in concrete services also (because
concrete services will be the ones invoked during business
process execution), we extend the tree scheme used in [13]
and [20] by accommodating instance-of arcs, complementary to
the is-a arcs. An instance-of arc is drawn in the subsumption
relationship tree between service category C and concrete

service S, if and only if S implements exactly the functionality
specified by category C.

To illustrate this representation, let us consider the case of a
travel planning scenario containing the following activities:
ticket booking, hotel booking, and room service drink ordering.
In this case the subsumption relationships, including categories
and concrete services could be arranged as shown in Fig 1
(categories are denoted using a folder icon; concrete services are
denoted using a bullet mark).

Fig. 1. Subsumption relationships for the travel planning scenario

In order to perform adaptation, we need to locate, using the
subsumption relationship representation, the services that are
able to realize a specific task, and then choose among them the
most prominent one, according to the adaptation policy. As
noted in section II, a service can be used to realize a task if it is
connected to the task with either the exact or the plugin relation.
In the presence of service categories (abstract services) and
concrete services, the four rules listed below can be used to
compute the services that are candidate to deliver a specific task,

which is designated either via a category (abstract service) or a
specific service. (In the following, c represents a category, while
s1 and s2 represent services.)

 Rule Cex: c exact s1 iff c is the immediate parent of s1 (e.g.
Air travel and Swiss air in Fig. 1)

 Rule Cpl: c plugin s1 iff c is an ancestor of s1 (e.g. Ticket and
Swiss air in Fig. 1)

 Rule Sex:s1 exact s2 iff c: c is the immediate parent of s1 and
c is the immediate parent of s2 (e.g. Air France and Swiss air
in Fig. 1).

 Rule Splg: s1 plugin s2 iff ∃ c: c is the immediate parent of s1
and c plugin s2 (e.g. bookTicket and VIP Busses in Fig. 1).

In all other cases it is not possible to perform an
unconditional substitution, therefore a fail result is computed.

QoS attributes of concrete service implementations can be
straightforwardly accommodated in the representation requested
in Fig. 1: it suffices to attach to each node corresponding to a
concrete service a vector of the form QoSS=(rts, cs, avs), to
express the values of the specific service’s QoS attributes.

C. Explicit service invocations bindings

In real-world business processes, the consumer is allowed to
explicitly choose which implementations will carry out some
service(s) s/he needs in the context of the business process. For
example, in our travel planning scenario, the user may request
that accommodation booking is realized through the Hilton
service.

It is also possible that the user requests to skip the execution
of certain functionalities, e.g. a user may specify that no drink is
ordered; this is typically handled via a conditional execution
construct within the executable business process specification.
For simplicity purposes, in this paper we will assume that if a
service should not be invoked in the context of a particular
execution, this is designated through a specific input parameter
and therefore the condition within the conditional execution
construct has the simplified form

<condition>$orderDrink = false</condition>

Finally, functionalities that are neither explicitly bound to a
specific service implementation, nor are designated as “not to be
executed” are subject to adaptation, using the algorithm
described in section IV, below.

D. Past executions repository

Collaborative filtering algorithms rely on the existence of
user evaluations (ratings) or choices on items. A ratings
matrix [16] is used to store this information; each row in the
matrix corresponds to a user, while each column corresponds to
an item. Given that the goal of the proposed algorithm is to
perform personalized service selections in the context of
business process executions, a row in the matrix corresponds to
a particular execution of the business process and a column in
the matrix corresponds to a concrete service implementation.
We will use the term past executions repository to refer to this
matrix. Cell (i,j) in the past executions repository will be set to
true if service sj was used in the ith execution of the business
process, otherwise it will be set to the value of false.

Ratings matrixes tend to be sparse [16]: for representational
compactness purposes in this paper we will use a modified
notation according to which each column in the past executions
repository corresponds to a functionality included in the scenario
(e.g. room booking, ticket booking, drink ordering), each row
corresponds to a past execution and the value of cell (i,j)
designates the service that was used to realize task j within the
ith execution of the business process. If task j was skipped in the
context of the ith business process execution (because the user
designated that the functionality should not be executed), the
value of cell (i,j) will be set to null.

Table I illustrates a service usage pattern repository for the
travel planning scenario. In executions 1-6 all functionalities
were invoked, while in execution 7 the hotel accommodation
service was skipped.

TABLE I. EXAMPLE PAST EXECUTIONS REPOSITORY

exec Travel Hotel Drink
1 Swiss Hilton Heineken
2 Alitalia Hilton Heineken
3 Ryanair Hotel_1a Heineken
4 Alitalia Youth_Hostel Dom_Perignon
5 Ryanair Youth_Hostel Tap_Water
6 Budget_Travel Hotel_3B Tap_Water
7 Open_Seas Evian

E. Similarity and distance metrics for services

Both in the clustering method and in the collaborative
filtering algorithm, it is necessary to compute how similar (or
distant) two services are. Service similarity and distance metrics
will be used in these contexts to compute the similarity and
dissimilarity of two executions (an execution e of a business
process is effectively an n-dimensional vector of services e=(s1,
s2, …, sn), where the ith element e[i]=si corresponds to the service
that realized the ith task within the business process), either to
decide whether they should be clustered together or to determine
if a past execution is a prominent recommender for the current
adaptation. In this paper, we consider two dimensions to
measure similarity and distance between two services:

(a) their semantic similarity, corresponding to whether they
perform the same task; for instance the semantic
similarity between Ryan Air and Swiss Air (cf. Fig. 1) is
high, since both services realize the same functionality
(air travel), while services Evian and Coca-Cola are less
similar, since the first realizes the functionality Water
whereas the second realizes the functionality Beverage.
Note however that they do bear some similarity, since
they both realize the functionality Drink.

(b) their QoS characteristics likeness, corresponding to how
close are the non-functional parameters under which the
services realize the task. In regards to this aspect, Ryan
Air –being an economy airline– is not similar to Swiss air
(a full-service airline), although they deliver the same
functionality, since their cost and availability deviate
highly. On the other hand, Veen (an expensive, Finish
water) is similar to Dom Perignon (an expensive
champagne) since among the services in their categories
(water and alcohol, respectively) these services exhibit

the highest cost, the worst response time and comparable
ranks regarding their availability (cf. Table II).

TABLE II. SAMPLE QOS VALUES WITHIN THE REPOSITORY

Service responseTime cost availability
Dewars 6 3 8

Heineken 7 8 7
Dom Perignon 6 1 9

Coca cola 8 8 7
Pepsi 8 8 8
Veen 8 2 9
Evian 8 5 8

Tap water 8 10 6
Hilton 7 2 7

Grand Resort 7 3 7
Hotel_1A 8 5 5
Hotel_1B 8 6 5

Youth_Hostel 5 9 5
Hotel_3B 5 8 5
Alitalia 8 7 4

AirFrance 8 6 9
Swiss 10 3 10

Ryanair 9 9 3
VIP_Buses 7 3 7

Budget_Travel 6 9 7
Open_Seas 6 6 7

Cheap_LittleBoat 5 10 7

Regarding the semantic dimension, we adopt the semantic
similarity distance metric between two services proposed
in [20]; according to [20], the semantic similarity between two
services is:

ssim(s1,s2) = C–lw*PathLength – NumDownDirection

where:
 C is a constant set to 8 [20][24]
 lw is the level weight for each path within the

subsumption relation tree, and it depends on the depth of

the tree. To compute lw, we use the formula ൌ
ሺିିଵሻ

, where ln is the level of the service in the subsumption
relation tree and n is the tree height.

 PathLength is the number of edges counted from service
s1 to service s2 and

 NumDownDirection is the number of edges counted in the
directed path between service s1 and s2 and whose
direction is towards a lower tree level.

We further normalize this semantic similarity metric by
dividing it by C (i.e. 8), hence its value is always in the range [0,
1]. Combining all the above the semantic similarity between
services s1 and s2 is given by the formula
,ଵݏሺ݉݅ݏݏ ଶሻݏ ൌ

଼ି௪∗௧௧ିே௨௪௧

଼
.

Regarding the QoS aspect, the distance between two services
is computed using the Euclidean distance metric; in the
computation, each QoS dimension is weighted using the QoS
attribute weight specified for the current adaptation (c.f. section
III.A). Furthermore, the attributes values are normalized by
dividing them with the maximum value of the attribute within
the corresponding category, in order to reflect how close to the
maximum value within the category the specific value is; this is

analogous to the score normalization performed in metasearch
algorithms [45]. Combining all the above,

,ଵݏሺݐݏ݅݀ݍ ଶሻݏ ൌ ඩ ቆ
ଵሻݏሺݍ

ଵሻሻݏሺݐ௫ሺܿܽݍ
െ

ଶሻݏሺݍ

ଶሻሻݏሺݐ௫ሺܿܽݍ
ቇ
ଶ

∗ ݓ
∈ሼ௦௧,௩,௦்ሽ

where q(si) denotes the value of QoS attribute q (cost,
availability, response time) for service si, and wq is the weight
assigned to QoS attribute q. qmax(cat(si)) is the maximum value
present in the repository regarding QoS attribute q under the
category in which si is a direct child; for example, to compute
costmax(Ryan air) we (a) locate the category of Ryan air (Air
ticket), (b) find the children of the category (AlItalia, Air France,
Swiss air and Ryan Air), (c) extract their costs (7, 6, 3, 9) and
(d) compute the maximum value (which is equal to 9).

The QoS-based similarity of two services is then computed
as

,ଵݏሺ݉݅ݏݍ ଶሻݏ ൌ 1 െ ,ଵݏሺݐݏ݅݀ݍ .ଶሻݏ

Combining the semantic similarity with the QoS-based
similarity, we compute the overall similarity metric of two
services which is

,ଵݏሺ݉݅ݏ ଶሻݏ ൌ ,ଵݏሺ݉݅ݏݏ ଶሻݏ 	∗ ,ଵݏሺ݉݅ݏݍ ଶሻݏ

while the overall distance is calculated as

,ଵݏሺݐݏ݅݀ ଶሻݏ ൌ 1 െ ,ଵݏሺ݉݅ݏ ଶሻݏ

IV. CLUSTERING METHOD

As noted in the previous sections, the approach proposed in
this paper uses clustering to cater for scalability with the size of
the past executions repository. The computation of the clusters
is performed in an off-line fashion, and the clustered repository
is made available to the recommendation algorithm (described
in section V) as soon as the computation is complete; therefore,
the performance of the clustering technique does not penalize
the recommendation process. The cluster computation method
uses the CLARA clustering algorithm [44] to formulate clusters;
since the number of clusters K that will deliver the optimal
clustering performance is not however known a priori, the
iterated local search paradigm [47] is used to reduce the search
range for K, using the Silhouette coefficient [44] as a solution
quality metric. The steps of the clustering method are described
in the following paragraphs.

Step 1: The potential range of the optimal cluster number is
determined and the initial starting points of the iterated local
search are computed. Since for the optimal number of clusters
Copt it is expected that ݐܥ	 ൎ ඥܰ/2 [43], where N is in our
case the number of elements in the past executions repository

PER, the range [
ඥே/ଶ

ଶ
, 2 ∗ ඥܰ/2] will be tested to find the value

of Copt. We then extract the initial starting points of the iterated
local search with logarithmic cardinality from the above range
as follows:

1. The distance between the starting points is set to

݀ ൌ logଵሺ2 ∗ ඥܰ/2 െ
ඥܰ/2
2

ሻ ∗ 10

2. The set of initial starting points is set to

ISP={
ඥே/ଶ

ଶ

ௗ

ଶ
, ඥ

ே/ଶ

ଶ

ଷௗ

ଶ
, ඥ

ே/ଶ

ଶ

ହ∗ௗ

ଶ
, … , 2 ∗ ට

ே

ଶ
െ

ௗ

ଶ
ሽ.

Step 2. A hill climbing algorithm is executed for each isp ISP.
The hill climbing procedure is depicted in Fig. 2:

hillClimbing(PER, numClusters, d)
 K = numClusters
 optClustering = CLARA(PER, numClusters)
 optShilouetteValue = Silhouette(optClustering)
 range = d
 DO
 sampleDistance = log10(range)
 neighbors = {K – range / 2 + sampleDistance / 2,
 K – range / 2 + 3 * sampleDistance / 2,
 …
 K + range / 2 - sampleDistance / 2}
 improvement = FALSE
 FOR EACH n IN neighbors
 testClustering = CLARA(PER, n)
 testShilouetteValue = Silhouette(testClustering)
 if (testShilouetteValue > optShilouetteValue)
 improvement = TRUE
 optClustering = testClustering
 optShilouetteValue = testShilouetteValue
 K = n
 END IF
 END FOR
 range = sampleDistance
 UNTIL improvement==FALSE
 RETURN K, optClustering, optShilouetteValue

Fig. 2. Hill climbing algorithm

Effectively, for each starting point isp, the CLARA
clustering algorithm [44] is used to cluster the elements of PER
into isp clusters, and the Silhouette coefficient [44] of the
computed clustering is computed (the computation procedure is
described below). Subsequently, the neighborhood of the
starting point is searched for a better solution, and the best one
found replaces the implementing the steepest ascent hill
climbing paradigm [48], and the procedure continues until no
improvement to the solution is possible. The candidate solutions
examined at each step are generated by uniformly sampling
points around the current best solution. Initially, the range from
which the points are sampled is set to the distance d between
starting points calculated in step 1, this range is divided into
log(d) intervals, and the center of each interval is then tested to
determine if it provides a better solution. If the neighborhood
search leads to the discovery of a better solution, the search
continues in the neighborhood of the newly found solution,
decreasing however the range logarithmically, so as to elaborate
on the close neighborhood of the discovered solution.

When running the CLARA algorithm, it is required that a
metric is provided to calculate the dissimilarity between two
nodes (in our case, past executions in the PER). This metric
calculation is based on the Sørensen similarity index [21]
(alternatively known as Dice's coefficient [22]), according to
which the similarity of two sets A={a1, a2, …, an}, B={b1, b2, …,

bm}, is equal to ܵሺܣ, ሻܤ ൌ
ଶ∗|	∩|

||ା||
; the metric is suitably

modified to fit a domain with similarities, such as those defined

in section III.E. The modification follows the approach used in
the fuzzy set similarity index calculation, where the cardinality
of the intersection of two sets (i.e. the nominator in the Sørensen
similarity index formula) is computed as the sum of the
probabilities that a member belongs in both sets [23].
Correspondingly, when set member similarity between two past
executions of a business process pe1={s1,1, s1, 2, …, s1,n} and
pe2={s2,1, s2, 2, …, s2,n} is considered, the nominator of the
fraction is replaced by 2 ∗ ∑ ,ଵ,ݏ൫݉݅ݏ ଶ,൯ݏ ; therefore the
formula for computing the similarity between two past

executions is shaped as ݕݐ݅ݎ݈ܽ݅݉݅ݏሺ݁ଵ, ଶሻ݁ ൌ
ଶ∗∑ ௦൫௦భ,,௦మ,൯

|భ|ା|మ|
.

In this computation, if exactly one of s1,i and s2,i is null
(signifying that in the corresponding task was not executed in
the specific past execution), then ݉݅ݏ൫ݏଵ,, ଶ,൯=0. If both s1,iݏ
and s2,i are null (i.e. none of the tasks was executed), then
,ଵ,ݏ൫݉݅ݏ .ଶ,൯=1ݏ

Having the ݕݐ݅ݎ݈ܽ݅݉݅ݏሺ݁ଵ, ଶሻ metric available, the݁
corresponding dissimilarity metric is computed as
,ଵ݁ሺݕݐ݅ݎ݈ܽ݅݉݅ݏݏ݅݀ ଶሻ݁ ൌ 1 െ ,ଵ݁ሺݕݐ݅ݎ݈ܽ݅݉݅ݏ .ଶሻ݁

Step 3: The clusterings that have been produced by the
execution of the hillClimbing procedure of step 2 are collected,
and the one having the greatest Silhouette coefficient value is
chosen.

As noted above, the Silhouette coefficient [44] is used as a
quality metric to compare different clusterings. The Silhouette
coefficient of a clustering C={C1, C2, …, Cn}, this is computed
as follows:

1. For each past execution pe PER, let pe belong to cluster
Ci. We compute the average dissimilarity a(pe) of pe to all
other past executions belonging to the same cluster Ci, i.e.

ܽሺ݁ሻ ൌ
∑ ௗ௦௦௧௬ሺ,ᇲሻᇲ∈,

ᇲಯ

||ିଵ
. Dissimilarity

between two past executions ሺ݁, ᇱሻ is computed using݁
the formula described in step 2.
Additionally, for each cluster Cj C: Cj ≠ Ci, we compute
the average dissimilarity dj(pe) to all past executions
belonging to cluster Cj, and we define ܾ ሺ݁ሻ ൌ min

 ݀ሺ݁ሻ.

Finally, the silhouette value for pe is defined as

ሻ݁ሺݏ ൌ
ܾሺ݁ሻ െ ܽሺ݁ሻ

max	ሺܽሺ݁ሻ, ܾሺ݁ሻ

With the range of the silhouette weights being [-1, 1], a high
value of sw(pe) (close to 1) means that pe has been correctly
clustered, a low value (close to -1) means that pe would be
better clustered in a neighbor cluster while a value close to
0 indicates a borderline assignment.

2. Having computed the silhouette value of all past executions
pe, we compute the silhouette value for each cluster CiC
as the average of the silhouette values of past executions
within Ci, i.e. ݏሺܥሻ ൌ .ሻሻ݁ሺݏ∈ሺ݁݃ܽݎ݁ݒܽ

3. Finally, the silhouette value of clustering C is computed as
the average of the silhouette values of all clusters Ci within
C, i.e. ݏሺܥሻ ൌ .ሻሻܥሺݏ∈ሺ݁݃ܽݎ݁ݒܽ

After the clusters have been built, an index is created in each
cluster. This index maps the elements of the cluster to the leaf
nodes of the subsumption relation tree (c.f. fig 1), so as to
facilitate fast retrieval of cluster elements which refer to a
particular service implementation.

V. THE SERVICE RECOMMENDATION ALGORITHM

Having available the information listed in section III above,
upon each execution of a business process the adaptation
algorithm determines the concrete services that will realize the
tasks for which recommendations are requested for. The
selection of the services is performed using a collaborative
filtering algorithm, arranging in parallel to satisfy the QoS
restrictions specified for the QoS attributes of each task. In the
following paragraphs we elaborate on the steps of the algorithm;
to illustrate the functionality of the algorithm, we will use the
example request excerpt to the travel planning business process
depicted in Fig. 3:

<businessProcess id="TravelPlanning">
 <bindings>
 <task id="travelTicket" bind="recommend">Air ticket</task>
 <task id="accommodation" bind="explicit">Hilton</task>
 <task id="drink" bind="explicit">Heineken</task>
 </bindings>
 <QoSLimits>

<QoSBound taskid="travelTicket" attr="cost"
bound="min">4</QoSBound>

 </QoSLimits>
 <QoSWeights>
 <QoSWeight attr="responseTime">0.1</QoSWeight>
 <QoSWeight attr="cost">0.7</QoSWeight>
 <QoSWeight attr="availability">0.2</QoSWeight>
 </QoSWeights>
</businessProcess>

Fig. 3. Example business process execution request

which is essentially read as follows: “I want to stay at Hilton
Hotel, order Heineken from room service and I want a
recommendation for my air ticket booking. The recommended
service’s cost must be over 4 (recall that since attributes are
coded in a “larger values are better” scheme, a lower bound for
cost effectively filters out the most expensive ones) and the QoS
weights are response time=10%, cost=70% and
reliability=20%”. The repository of available services is as listed
in table 2. Throughout the example, we will consider that the
services’ QoS attribute values are as illustrated in Table II, the
subsumption relation tree is as depicted in Fig. 1 and the contents
of the contents of the past executions repository are as shown in
Table I.

Step 1: the adaptation algorithm formulates a task vector T=(t1,
t2, …, tn), where each ti corresponds to a task that is part of the
business process. The values of the elements ti are determined as
follows:

 if the task corresponding to element ti is explicitly bound to
a specific service, then the value of ti is set to the identifier
of this service.

 if either the corresponding task will not invoked in the
context of the specific business process execution then the
value of ti is set to null.

 if a recommendation is requested for the task, then the value
of ti is set to the category of the service for which the
recommendation is requested (e.g. Air Ticket or Ticket).
Subsequently, steps 2 and 3 below are executed for each
requested recommendation.

In our example, the task vector would be instantiated to
T=(Air Ticket, Hilton, Heineken).

Step 2: In order to formulate the recommendation for taski, the
k-nearest neighbors to the current request are retrieved from the
clustered past executions repository. Following the results
of [46], we have set k=50 (the maximum value of k used in [46]).
To retrieve the k-nearest neighbors, the similarity of the task
vector T with the cluster medoids is initially computed. The
similarity of the functionality vector with each medoid (which
corresponds to a past execution) is computed using the modified
version of the Sørensen similarity index [21] described in step 2
of section IV. The cluster with the highest similarity is selected
and searched for past executions pe that fulfill the criterion

taski(request) exact taski(pe) or taski(request) plugin taski(pe)

and additionally satisfy the QoS bounds set by the user. These
are the only rows that are useful for formulating a
recommendation for taski(request), since only these include
services that can be unconditionally used to realize the selected
task and additionally conform to the user-defined QoS
restrictions. Then, their similarity score with the task vector T is
computed and the past executions attaining the 50 highest scores
are the ones retained to be used as “recommenders” in the
subsequent steps. In order to retrieve the cluster elements
fulfilling the above mentioned criteria, the branch of the
subsumption relation tree corresponding to the requested
functionality is first located in the cluster’s index; subsequently,
its descendants satisfying the QoS bounds are found and finally
the cluster elements are retrieved through the index pointers. If
less than 50 recommenders are found, the search continues to the
remaining clusters, in descending order of similarity of the task
vector T with the cluster medoids. The output of this step is the
list of past executions retrieved (up to 50), with each past
execution being tagged with the similarity metric between itself
and the task vector T.

In our example, rows 2-5 of Table 1 would be retrieved, since
(a) rows 6-7 result to a fail subsumption relation, regarding the
ticket functionality “Air ticket” and row 1 does not satisfy the
QoS bound (the cost is lower than the specified threshold). The
similarity metrics between the retrieved rows and the task vector
T would be computed as follows (we first detail the computation
of the sum in the nominator or the ݕݐ݅ݎ݈ܽ݅݉݅ݏሺ݁ଵ, ,metric	ଶሻ݁
which is the complex part of the formula, and then proceed to
the computation of the modified Sørensen similarity index
value):

 ሺ݉݅ݏ ܶ, 2ሻݓݎ

ൌ	

ቆ1 െ ටቀ
଼.ହ

ଵ
െ

଼

ଵ
ቁ
ଶ
∗ 0.1 ቀ

.ଶହ

ଽ
െ

ଽ
ቁ
ଶ
∗ 0.7 ቀ

.ହ

ଵ
െ

ସ

ଵ
ቁ
ଶ
∗ 0.2ቇ ∗

଼ି
మ
య
∗ଵିଵ

଼

ቆ1 െ	ටቀ

଼
െ

଼
ቁ
ଶ
∗ 0.1 ቀ

ଶ

ଽ
െ

ଶ

ଽ
ቁ
ଶ
∗ 0.7 ቀ

െ

ቁ
ଶ
∗ 0.2ቇ ∗

଼ି
భ
య
∗ି

଼

ቆ1 െ ටቀ

଼
െ

଼
ቁ
ଶ
∗ 0.1 ቀ

଼

ଵ
െ

଼

ଵ
ቁ
ଶ
∗ 0.7 ቀ

ଽ
െ

ଽ
ቁ
ଶ
∗ 0.2	ቇ ∗

଼ି
భ
య
∗ି

଼
 =

0.87	*	0.79		1.0	*	1.0		1.0	*	1.0	ൌ	2.69	

and analogously for the remaining rows:

 ሺ݉݅ݏ ܶ, 3ሻݓݎ

ൌ 	1.95

 ሺ݉݅ݏ ܶ, 4ሻݓݎ

ൌ 	1.35

 ሺ݉݅ݏ ܶ, 5ሻݓݎ

ൌ 	1.39

Consequently, the similarity metrics, computed via the modified
Sørensen similarity index, between T and these rows are:

similarityሺT,	row2ሻ	ൌ	2	*	2.69	/	ሺ33ሻ		ൌ	0.896	

similarityሺT,	row3ሻ	ൌ	2	*	1.95	/	ሺ33ሻ		ൌ	0.65	

similarityሺT,	row4ሻ	ൌ	2	*1.35/	ሺ33ሻ	ൌ	0.45	

similarityሺT,	row5ሻ	ൌ	2	*1.39/	ሺ33ሻ	ൌ	0.46	

Step 3: Finally, the algorithm groups the rows retrieved in step
2 by the value of the service implementing the taski(request)
functionality and computes the sum of the modified Sørensen
similarity index values within each group. The service
corresponding to the group having the greatest sum is then
selected to realize the specific task in the context of the current
execution.

In our example, rows 2 and 4 form one group corresponding
to service Alitalia and achieving an overall score of 1.346, while
rows 3 and 5 form a second group corresponding to service
Ryanair with an overall score of 1.11. Thus, service Alitalia is
selected to realize the AirTravel task in the context of the current
scenario execution.

Steps 2-3 are repeated for each functionality functi(request)
for which a recommendation is requested.

VI. EXPERIMENTAL EVALUATION

In this section, we report on our experiments aiming to
evaluate the performance of the proposed approach, both in
terms of optimization time (the time needed to compute the
requested recommendations) and the quality of the solution. For
our experiments we used two machines. The first machine was
equipped with one 6-core Intel Xeon E5-2620@2.0GHz CPU
and 16 GB of RAM, which hosted the clients. The second
machine’s configuration was identical to the first, except for the
memory which was 64GBytes; this machine hosted the
algorithm’s executable, the semantic service repository and the
past executions repository. The machines were connected
through a 1Gbps local area network. The clustered semantic
service repository was implemented as in-memory structure; the
memory footprint of the repository was less than 50MB,
therefore this approach is feasible. Within the repository, the
semantic similarities between services (cf. section III.E) were
precomputed, in order to speed up the similarity calculation
process performed in the execution of step 2 of the
recommendation algorithm described in section V.

In order to evaluate our algorithm, we ran two sets of
experiments. In the first set, the past executions repository was
not clustered, implementing effectively an extension of the

algorithm proposed in [27] that considers the QoS aspect in the
service similarity metric (the algorithm in [27] uses only the
semantic distance as a similarity metric and does not employ
clustering). In the second set, the past executions were clustered
as described in section IV. In the experiments we have varied the
following parameters:

1. the number of concurrent invocations,

2. the size of the past executions repository,

3. the number of functionalities in the scenario and

4. the number of recommendations requested.

In all experiments, the semantic service repository was
populated with synthetic data having an overall size of 2.000
web services; these services account for 20 different tasks, with
each task having 100 alternative providers. The QoS attribute
values in this repository were uniformly drawn from the domain
[0,10]. When conducting a test for a particular number of tasks,
we synthetically generated 20 business processes, randomly
drawing implementations of distinct functionalities from the
repository, and the performance evaluation tests were run for
each of the generated scenarios. Each unique performance
evaluation test was run 100 times, and the average value was
computed and is shown in the following diagrams. The lower
QoS bounds for the tasks were randomly drawn from the domain
[0,4], while the respective upper QoS bounds were randomly
drawn from the domain [7.5,10]. The weights of the QoS
attributes were again randomly selected from the domain [0,1].
In all cases, a uniform distribution was used.

Fig. 4. Recommendation formulation time for varying levels of concurrency

Fig. 4 presents the time needed to generate a
recommendation under various concurrency level and past
executions repository sizes. Curves C-10K and NC-10K indicate
the performance of the clustering and the non-clustering
algorithm respectively when the past execution repository
contains 10K entries, and similarly for the other past execution
repository sizes (50K and 100K). For this experiment, a business
process with five tasks was used and one recommendation was
requested, while the remaining four tasks were explicitly bound
to specific service implementations. In this diagram, we observe
that the recommendation time needed by the clustering
algorithm increases linearly with the concurrency level (please
note that a base-10 logarithmic scale is used for the vertical axis).
Moreover, Fig. 4 shows that the time needed by the clustering

algorithm to formulate its recommendation increases slowly
when the size past execution repository increases, since when
the size of the repository increases by a factor of 10, the required
time increases only by 15% to 25%. On the contrary, the non-
clustering algorithm exhibits limited scalability, since the
recommendation time increases between 4.25 and 9.15 times
when the size of the repository increases by 10.

Fig. 5 illustrates the time needed to formulate the
recommendation when the number of tasks in the business
process varies. In these experiments, the concurrency level was
set to one and for each business process a single
recommendation was requested, while the remaining tasks were
explicitly bound to specific services. Curve naming follows the
pattern described for Fig. 4. In this diagram we can notice that
the clustered algorithm exhibits an increase in recommendation
time of 70% when the number of tasks in the business process
increases by a factor of 2, while the corresponding
recommendation time increment exhibited by the non-clustering
algorithm ranges between 205% and 288%. In both cases the
increment is owing to the higher dimensionality of the problem,
necessitating more computations in similarity comparisons.
Again we can observe that the clustering algorithm exhibits
better scalability with the number of entries in the past
executions repository, as compared with the non-clustering
algorithm; indeed, the time needed by the clustering algorithm
to formulate its recommendations increases by 15% to 21%
when the number of entries in the past executions repository
increases by a factor of 10, while the respective time for the non-
clustering algorithm increases between 545% and 780%.

Fig. 5. Recommendation formulation time for varying number of tasks in the

business process

Fig. 6 presents the time needed to formulate the
recommendations when the number of recommendations
requested per business process varies. In these experiments, a
business process containing six tasks was used and the
concurrency level was set to one. Curve naming follows the
pattern described for Fig. 4. In Fig. 6 we can notice that the time
needed for each recommendation is fairly stable, i.e. the time
needed to formulate two recommendations within a business
process is approximately double than the time needed to
formulate a single recommendation. This is expected, since the
algorithm presented in section V handles each recommendation
independently. In absolute times, the clustered implementation
has a clear performance advantage over the non-clustered one.
This diagram also reaffirms that the clustered algorithm exhibits

10

100

1000

10000

10 50 100 150 200

re
co

m
m

en
d

at
io

n
 f

o
rm

u
la

ti
o

n
 t

im
e

 (
m

s)

concurrent business processes executed

C-10K C-50K C-100K

NC-10K NC-50K NC-100K
0

50

100

150

200

250

300

350

5 6 7 8 9 10

re
co

m
m

e
n

d
at

io
n

 f
o

rm
u

la
ti

o
n

 t
im

e
 (

m
s)

tasks in business process

C-10K C-50K C-100K

NC-10K NC-50K NC-100K

high scalability with the number of entries in the past executions
repository, since the time needed for formulation
recommendation is found to increase by 15% to 24% when the
size of the repository increases by a factor of 10. On the contrary,
the corresponding time increment for the non-clustered
algorithm ranges between 655% and 771%.

Fig. 6. Recommendation formulation time for varying number of requested
recommendations

Finally, Fig. 7 depicts the QoS of the services recommended
by different algorithms, for ten representative trial cases and on
average. The representative trial cases were drawn from a pool
of 1,000 synthetically generated business processes; to draw the
representative cases, the business processes were clustered
according to the scheme presented in section IV and the cluster
medoids were chosen; the average however has been computed
using all 1,000 test business processes, and not only the
representative ones. The goal of this diagram is to provide
insight on how the QoS services recommended by the algorithm
in section V compares with the QoS of the services proposed by
plain QoS-based algorithms (the QoS-based algorithm described
in [9] has been used), and the QoS of service recommendations
made by the non-clustered version of the algorithm presented in
section V. The latter comparison aims to assess whether the
introduction of clustering may lead to inability to find some
matching entries (because they have been classified into a
different cluster than the one best matching the current request).
Finally, a “random” algorithm has been included, to provide
insight on how the QoS of the recommended services compares
to the average case.

In Fig. 7 we can observe that expectedly the QoS-only
algorithm achieves the highest QoS; however, as noted in the
introduction, this algorithm completely disregards the
satisfaction of service users in the “real world”. The non-
clustered algorithm produces recommendations having QoS in
the range [87%, 100%] of the optimal ones with an average
equal to 93%, while the QoS of the clustered algorithm’s
recommendations fall in the range [84%, 100%] with an average
of 90.9%. We can thus conclude that the CF-based algorithms
succeed in formulating recommendations with high QoS, while
additionally the introduction of clustering leads to a very small
QoS degradation (a maximum of 3% and an average of 2.1%),
offering on the other hand significant performance gains. The
recommendations offered by the CF-based algorithms are also
significantly better than those of the random algorithm, whose

QoS falls in the range [58%, 100%] of the optimal ones, with an
average of 68%.

Fig. 7. QoS of solutions proposed by individual algorithms and the combined

ones (with and without clustering)

Elaborating on the qualitative performance of the clustered
algorithm, the experiments have shown that the precision at
position n metric [49] for the algorithm ranges from 86% to
100% with an average of 94%. This means that the clustering
scheme achieves to retrieve, on average, 47 out of the 50 nearest
neighbors to the current request. Therefore, the
recommendations of the clustered and the non-clustered
algorithms are based on nearest neighbor datasets which are the
same to a great extent, and hence the actual recommendations
produced are identical in most cases, and very similar in the
remaining ones.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a collaborative filtering-
based algorithm with clustering for recommending web services
in order to realize personalization and tailoring of business
process execution. The proposed algorithm takes into account (i)
user-defined QoS weights and limits, (ii) the available services’
functionality and QoS attributes values and (iii) the history of
past executions of the business process, so as to select the most
appropriate recommenders and formulate the recommendations.
The similarity metric used in the CF process extends the ones
used in existing works by considering not only the functionality
resemblance, but additionally the closeness of the QoS
attributes. The proposed algorithm employs a clustering scheme
to improve recommendation time and leverage scalability. The
algorithm have been experimentally validated regarding both its
performance and the quality of recommendations offered, and it
has been found to be efficient (i.e. it introduces low overhead),
scalable with the size of the past executions repository and able
to formulate recommendations with high QoS.

Our future work will focus on considering incremental
clustering techniques such as BIRCH [51] and the one presented
in [52]. Incremental clustering will remove the need to construct
the clusters anew in order to accommodate the stream of new
execution traces into the past executions repository.
Additionally, different clustering algorithms will be evaluated
and compared with the CLARA algorithm used in the current
paper. Finally, we plan to conduct a user survey, in order to
measure the degree to which users are satisfied by the
recommendations generated by adaptation algorithm.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

re
co

m
m

e
n

d
at

io
n

 f
o

rm
u

la
ti

o
n

 t
im

e
 (

m
s)

#recommendations requested per business process

C-10K C-50K C-100K

NC-10K NC-50K NC-100K

0

1

2

3

4

5

6

7

8

9

10

In
st

1

In
st

2

In
st

3

In
st

4

In
st

5

In
st

6

In
st

7

In
st

8

In
st

9

In
st

1
0

A
V

G

Q
o

S
o

f
ad

ap
ta

ti
o

n

Trial business process

non-clustered clustered QoS-only random

REFERENCES
[1] OASIS WSBPEL TC. WS-BPEL 2.0. http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[2] V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, F. Lo Presti, “A
Performance Comparison of QoS-Driven Service Selection Approaches”,
Proceedings of ServiceWave 2011, Abramowicz W et al. (Eds.): LNCS
6994, 2011, pp. 167–178.

[3] LB. Zeng, AHN. Benatallah, M. Dumas, J. Kalagnanam, H. Chang, “QoS-
aware middleware for web services composition”. IEEE Transactions on
Software Engineering, vol. 30, no 5, 2004.

[4] C. Kareliotis, C. Vassilakis, S. Rouvas, P. Georgiadis. “QoS-Driven
Adaptation of BPEL Scenario Execution”, Proceedings of ICWS 2009,
pp. 271-278.

[5] CL. Hwang, K. Yoon, “Multiple Criteria Decision Making”, Lecture
Notes in Economics and Mathematical Systems, Springer-Verlag, 1981.

[6] O. Moser, F. Rosenberg, S. Dustdar, “Non-Intrusive Monitoring and
Service Adaptation for WS-BPEL”, Proceedings of WWW 2008, Beijing,
China, , 2008, pp. 815-824.

[7] Y. Xia, P. Chen, L. Bao, M. Wang, J. Yang, “A QoS-Aware Web Service
Selection Algorithm Based on Clustering”, Proceedings of ICWS11,
2011.

[8] C. Kareliotis, C. Vassilakis, P. Georgiadis, “Enhancing BPEL scenarios
with dynamic relevance-based exception handling”, Proceedings of
ICWS07, Salt Lake City, Utah, USA, 9–13 July 2013, pp.751–758.

[9] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated framework for
QoS-based adaptation and exception resolution in WS-BPEL scenarios”,
Proceedings of the ACM Symposium on Applied Computing, 2013,
Coimbra, Portugal.

[10] G. Canfora, M. Di Penta, R. Esposito, ML. Villani, “An Approach for
QoS-aware Service Composition based on Genetic Algorithms”,
Proceedings of the 2005 conference on Genetic and evolutionary
computation, 2005, pp. 1069-1075.

[11] Z. Zheng, H. Ma, M. Lyu, I. King, “QoS-Aware Web Service
Recommendation by Collaborative Filtering”, IEEE Transactions on
Services Computing vol. 4 no 2, 2011, pp. 140-152.

[12] S. Rinderle-Ma, M. Reichert, M. Jurisch, “Equivalence of Web Services
in Process-Aware Service Compositions”, Proceedings of ICWS'09, 6-10
July 2009.

[13] M. Paolucci, T. Kawamura, T. Payne, T. Sycara, “Semantic Matching of
Web Services Capabilities”, Proceedings of the International Semantic
Web Conference, Sardinia, 2002, pp. 333-347.

[14] J. O’Sullivan, D. Edmond, A. Ter Hofstede, “What is a Service?: Towards
Accurate Description of Non-Functional Properties”, Distributed and
Parallel Databases, vol. 12, 2002.

[15] J. Cardoso, A. Sheth, “Semantic e-Workflow Composition”, Journal of
Intelligent Information Systems, vol. 21 no 3, pp. 191-225, 2003.

[16] JB. Schafer, D. Frankowski, J. Herlocker, S. Sen, “Collaborative Filtering
Recommender Systems”, in “The Adaptive Web”, Lecture Notes in
Computer Science Volume 4321, 2007, pp 291-324.

[17] JL. Herlocker, JA. Konstan, LG. Terveen, JT. Riedl, “Evaluating
collaborative filtering recommender systems”, ACM Transactions on
Information Systems vol. 22, no 1, January 2004, pp. 5-53.

[18] M. Balabanovic, Y. Shoham. “Fab: content-based, collaborative
recommendation”, Communications of the ACM, vol. 40, issue 3, 1997,
pp 66-72.

[19] US. Manikrao, TV. Prabhakar, “Dynamic Selection of Web Services with
Recommendation System” Proceedings of the International Conference
on Next Generation Web Services Practices, 2005, pp. 117-121.

[20] A. Bramantoro, S. Krishnaswamy, M, Indrawan, “A semantic distance
measure for matching web services”, Proceeding of the 2005 international
conference on Web Information Systems Engineering, 2005, pp 217-226.

[21] TA. Sorensen, “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content, and its application
to analyses of the vegetation on Danish commons”, K dan Vidensk Selsk
Biol Skr 5, 1948, pp. 1-34.

[22] LR. Dice, “Measures of the Amount of Ecologic Association Between
Species”, Ecology vol. 26, no 3, 1945, pp. 297–302, doi:10.2307/1932409

[23] E. Hullermeier, M. Rifqi, S. Henzgen, R. Senge, “Comparing Fuzzy
Partitions: A Generalization of the Rand Index and Related Measures”,
IEEE Transactions on Fuzzy Systems, vol. 20, no 3, June 2012, pp. 546-
556.

[24] G. Hirst, D. St-Onge, “Lexical Chains as Representations of Context for
the Detection and Correction of Malapropisms”, chapter in “WordNet: An
Electronic Lexical Database”, Christiane Fellbaum (ed), chapter 13, 1998,
pp. 305-332, The MIT Press, Cambridge, MA.

[25] M. Papazoglou and D. Georgakopoulos, “Introduction to the Special Issue
on Service-Oriented Computing”, Communications of the ACM, 46,10,
October 2003.

[26] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, “ A
Foundational Vision of e-Services”, Web Services, E-Business, and the
Semantic Web, Lecture Notes in Computer Science Volume 3095, 2004,
pp 28-40

[27] D. Margaris, C. Vassilakis, P. Georgiadis, “Adapting WS-BPEL scenario
execution using collaborative filtering techniques”, Proceedings of the
IEEE 7th International Conference on Research Challenges in
Information Science, RCIS 2013, R. Wieringa, S. Nurcan, C. Rolland, J-
L. Cavarero (eds), Paris, France, 2013

[28] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated framework for
adapting WS-BPEL scenario execution using QoS and collaborative
filtering techniques”, Science of Computer Programming 98, 2015, pp.
707–734.

[29] M. Claypool, A. Gokhale, Y. Miranda, P. Murnikov, D. Netes, M. Sartin,
“Combining Content-Based and Collaborative Filters in an Online
Newspaper”. SIGIR '99 Workshop on Recommender Systems:
Algorithms and Evaluation, I. Soboroff, C. Nicholas, M. Pazzani (eds),
Berkeley, California, 1999

[30] S. Gong, “A Collaborative Filtering Recommendation Algorithm Based
on User Clustering and Item Clustering”, Journal of Software, Vol 5, No
7, 2010, pp. 745-752.

[31] A. Das, M. Datar, A. Garg, S. Rajaram, “Google News Personalization:
Scalable Online Collaborative Filtering”, Proceedings of the 16th
international conference on World Wide Web, 2007, pp. 271-280.

[32] B. Mobasher, X. Jin, Y. Zhou, “Semantically Enhanced Collaborative
Filtering on the Web”, in Web Mining: From Web to Semantic Web
Lecture Notes in Computer Science Volume 3209, 2004, pp 57-76

[33] J. Lee, K. Nam, S. Lee, “Semantics based collaborative filtering,” R. Lee,
N. Ishii (Eds.): Software Engineering, Artificial Intelligence, SCI 209,
2009, pp. 201-208

[34] X. Guo, and J. Lu, (2007) “Intelligent e-government services with
personalized recommendation techniques,” on the special issue on
Eservice Intelligence of International Journal of Intelligent Systems, vol.
22, no. 5, pp. 401-417.

[35] J. Lu, Q. Shambour, Y. Xu, Q. Lin, and G. Zhang, “BizSeeker: A hybrid
semantic recommendation system for personalized government-to
business e-services,” Internet Research, Vol. 20 (3), 2010, pp. 342 - 365.

[36] J. Yu, Q. Sheng, J. Han, Y. Wu, C. Liu, “A semantically enhanced service
repository for user-centric service discovery and management”, Data &
Knowledge Engineering, vol. 72, Feb 2012, pp. 202-218.

[37] A.K. Jain, R.C. Dubes, “Algorithms for Clustering Data”, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

[38] C.C. Aggarwal, C.K. Reddy, “Data Clustering: Algorithms and
Applications”, Chapman and Hall/CRC, 2013

[39] M.E. Celebi, “Partitional Clustering Algorithms”, Springer; 2015 edition
(November 7, 2014)

[40] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A.Y. Zomaya, S.
Foufou, A. Bouras, “A Survey of Clustering Algorithms for Big Data:
Taxonomy and Empirical Analysis”, IEEE Transactions on Emerging
Topics in Computing, 2(3), 2014, pp. 267 – 279.

[41] A.S. Shirkhorshidi, S. Aghabozorgi, T.Y. Wah, T. Herawan, “Big Data
Clustering: A Review”, Computational Science and Its Applications –
ICCSA 2014, LNCS 8583, 2014, pp 707-720

[42] S. Benbernou, I. Brandic, C. Cappiello et al., “Modeling and Negotiating
Service Quality”, Service Research Challenges and Solutions for the
Future Internet, Lecture Notes in Computer Science Volume 6500, 2010,
pp 157-208

[43] K. Mardia, J.T. Kent, J.M. Bibby, “Multivariate Analysis”, Academic
Press, 1980, ISBN: 0124712525

[44] L. Kaufman, P.J. Rousseeuw, “Finding Groups in Data: an Introduction
to Cluster Analysis”, John Wiley & Sons, ISBN: 0471735787

[45] D. He, D. Wu, “Toward a Robust Data Fusion for Document Retrieval”,
IEEE 4th International Conference on Natural Language Processing and
Knowledge Engineering - NLP-KE, 2008.

[46] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, Z. Chen, “Scalable
collaborative filtering using cluster-based smoothing”. In Proc. of SIGIR
’05, 2005.

[47] H.R. Lourenco, O.C. Martin, T. Stutzle, “Iterated Local Search”, n
"Handbook of Metaheuristics", edited by F. Glover and G. Kochenberger,
ISORMS 57, 2002, p 321-353.

[48] B. Coppin, “Artificial Intelligence Illuminated”, Jones & Bartlett
Learning, 2004, ISBN: 0763732303

[49] T-Y. Liu, J. Xu, T. Qin, W. Xiong, H. Li, “ LETOR: Benchmark Dataset
for Research on Learning to Rank for Information Retrieval”, Proceedings
of the SIGIR 2007 Workshop “Learning to rank for information retrieval”,
2007.

[50] M. Klusch, B. Fries, K. Sycara, “Automated Semantic Web Service
Discovery with OWLS-MX”, Proceedings of the 5th International Joint
Conference on Autonomous Agents and Multiagent Systems, H.
Nakashima, M.P. Wellman, G. Weiss, P.Stone (eds), 2006, pp. 915 - 922.

[51] T. Zhang, R. Ramakrishnan, M. Livny, “BIRCH: an efficient data
clustering method for very large databases”, Proceedings of the 1996
ACM SIGMOD international conference on Management of data
(SIGMOD '96), 1996, pp. 103-114.

[52] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental
clustering and dynamic information retrieval”, Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing (STOC '97),
1997, pp. 626-635.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeFangsongStd-Regular
 /AdobeFanHeitiStd-Bold
 /AdobeGothicStd-Bold
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeKaitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobeSongStd-Light
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /ARBERKLEY
 /ARBLANCA
 /ARBONNIE
 /ARCARTER
 /ARCENA
 /ARCHRISTY
 /ARDARLING
 /ARDECODE
 /ARDELANEY
 /ARDESTINE
 /ARESSENCE
 /ARHERMANN
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ARJULIAN
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Book
 /BodoniBT-BookItalic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Caladea-Bold
 /Caladea-BoldItalic
 /Caladea-Italic
 /Caladea-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carlito
 /Carlito-Bold
 /Carlito-BoldItalic
 /Carlito-Italic
 /Castellar
 /Centaur
 /Century
 /Century725BT-RomanCondensed
 /Century751BT-BoldB
 /Century751BT-BoldItalicB
 /Century751BT-ItalicB
 /Century751BT-No2ItalicB
 /Century751BT-RomanB
 /Century751BT-RomanNo2B
 /Century751BT-SemiBold
 /Century751BT-SemiBoldItalicB
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchlbkCyrillicBT-Bold
 /CenturySchlbkCyrillicBT-BoldIt
 /CenturySchlbkCyrillicBT-Italic
 /CenturySchlbkCyrillicBT-Roman
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ClarendonBT-Black
 /ClarendonBT-Bold
 /ClarendonBT-Light
 /ClarendonBT-Roman
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DejaVuSans
 /DejaVuSans-Bold
 /DejaVuSans-BoldOblique
 /DejaVuSansCondensed
 /DejaVuSansCondensed-Bold
 /DejaVuSansCondensed-BoldOblique
 /DejaVuSansCondensed-Oblique
 /DejaVuSans-ExtraLight
 /DejaVuSansMono
 /DejaVuSansMono-Bold
 /DejaVuSansMono-BoldOblique
 /DejaVuSansMono-Oblique
 /DejaVuSans-Oblique
 /DejaVuSerif
 /DejaVuSerif-Bold
 /DejaVuSerif-BoldItalic
 /DejaVuSerifCondensed
 /DejaVuSerifCondensed-Bold
 /DejaVuSerifCondensed-BoldItalic
 /DejaVuSerifCondensed-Italic
 /DejaVuSerif-Italic
 /DeVinneBT-Text
 /DFGothic-EB-WIN-RKSJ-H
 /DFKaiSho-SB-WIN-RKSJ-H
 /DFKaiShu-SB-Estd-BF
 /DFMincho-SU-WIN-RKSJ-H
 /DFMincho-UB-WIN-RKSJ-H
 /DFMincho-W5-WIN-RKSJ-H
 /DFPOP1-W9-WIN-RKSJ-H
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EmbassyBT-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /Exotic350BT-Bold
 /Exotic350BT-DemiBold
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /Freehand521BT-RegularC
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Gabriola
 /Gadugi
 /Gadugi-Bold
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /GentiumBasic
 /GentiumBasic-Bold
 /GentiumBasic-BoldItalic
 /GentiumBasic-Italic
 /GentiumBookBasic
 /GentiumBookBasic-Bold
 /GentiumBookBasic-BoldItalic
 /GentiumBookBasic-Italic
 /Geometric212BT-BookCondensed
 /Geometric212BT-HeavyCondensed
 /Geometric415BT-BlackA
 /Geometric706BT-BlackCondensedB
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-LightB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KaufmannBT-Regular
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KozGoPr6N-Bold
 /KozGoPr6N-ExtraLight
 /KozGoPr6N-Heavy
 /KozGoPr6N-Light
 /KozGoPr6N-Medium
 /KozGoPr6N-Regular
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPr6N-Bold
 /KozMinPr6N-ExtraLight
 /KozMinPr6N-Heavy
 /KozMinPr6N-Light
 /KozMinPr6N-Medium
 /KozMinPr6N-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /LeelawadeeBold
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LiberationMono
 /LiberationMono-Bold
 /LiberationMono-BoldItalic
 /LiberationMono-Italic
 /LiberationSans
 /LiberationSans-Bold
 /LiberationSans-BoldItalic
 /LiberationSans-Italic
 /LiberationSansNarrow
 /LiberationSansNarrow-Bold
 /LiberationSansNarrow-BoldItalic
 /LiberationSansNarrow-Italic
 /LiberationSerif
 /LiberationSerif-Bold
 /LiberationSerif-BoldItalic
 /LiberationSerif-Italic
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LinuxBiolinumG
 /LinuxBiolinumGB
 /LinuxBiolinumGI
 /LinuxLibertineDG
 /LinuxLibertineG
 /LinuxLibertineGB
 /LinuxLibertineGBI
 /LinuxLibertineGI
 /LinuxLibertineGZ
 /LinuxLibertineGZI
 /LithosPro-Black
 /LithosPro-Regular
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MesquiteStd
 /MgFutureUCPolBold
 /MgFutureUCPolBoldItalic
 /MgFutureUCPolItalic
 /MgFutureUCPolNormal
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftJhengHeiUIBold
 /MicrosoftJhengHeiUIRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftUighur-Bold
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /MicrosoftYaHeiUI
 /MicrosoftYaHeiUI-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /MyriadWebPro
 /MyriadWebPro-Bold
 /MyriadWebPro-Italic
 /Narkisim
 /News701BT-BoldA
 /News701BT-ItalicA
 /News706BT-BoldC
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Light
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NirmalaUI
 /NirmalaUI-Bold
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRAStd
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OpenSans
 /OpenSans-Bold
 /OpenSans-BoldItalic
 /OpenSans-Italic
 /OpenSymbol
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /PTSerif-Bold
 /PTSerif-BoldItalic
 /PTSerif-Italic
 /PTSerif-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /SakkalMajalla
 /SakkalMajallaBold
 /SchadowBT-Bold
 /SchadowBT-Roman
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUI-Semilight
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /SourceCodePro-Bold
 /SourceCodePro-Regular
 /SourceSansPro-Bold
 /SourceSansPro-BoldIt
 /SourceSansPro-It
 /SourceSansPro-Regular
 /Square721BT-Bold
 /Square721BT-BoldCondensed
 /Square721BT-Roman
 /Square721BT-RomanCondensed
 /Stencil
 /StencilStd
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldItalic
 /Swiss721BT-Heavy
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

