
An XML model for electronic services
C. Vassilakis1, G. Lepouras1, C. Halatsis1, T. Pariente Lobo2

1e-Gov Lab, Department of Informatics, University of Athens, 15784, Greece
2Indra Sistemas S.A., Velásquez 132, 28006 Madrid, Spain

costas@e-gov.gr, gl@e-gov.gr, halatsis@di.uoa.gr, tpariente@indra.es

Abstract: With the need for electronic services to be developed and
deployed more and more rapidly, it is imperative that concrete models of
electronic services are developed, to facilitate systematic work of
electronic service stakeholders, concrete semantics and coherent
representations across services developed within an organisation. Using
the XML language to develop such a model, offers a number of additional
advantages, such as rich semantics, facilitation of data interchange,
extensibility, high abstraction levels and possibility for mechanical
processing. In this paper we present the design aspects of an XML model
for electronic services, which has been used for building a repository of
interlinked elements representing e-services. A web-based interface for the
management of this repository and a tool for automatically compiling e-
service descriptions into executable images have been developed
alongside. The model has been evaluated by a mixture of electronic
stakeholders, and the results of this evaluation are also presented.

Keywords: e-government, electronic service, XML model

1 Introduction
Electronic Government, driven by an ever increasing and pervasive use of information
and communication technologies, is more and more affecting the public sector.
(European Commission, 1999). At both national and European level, strong will has
been declared for promoting electronic governance, mainly expressed through specific
projects and initiatives for developing and promoting electronic services (European
Commission, 2004; Italian Ministry of Innovations and Technology, 2004; US
Government, 2002), or supporting frameworks (UK online, 2004a, 2004b) since the
benefits from this area have become apparent to both service providers
(administrations) and service users (businesses and citizens) (Top of the web, 2003).
Insofar, however, the electronic service lifecycle does not employ any concrete,
formal representation model; rather, ad-hoc models are used, either specifically drawn
for the modelled electronic service or drafted by developers or integrators as
templates.
Using a formal model for describing an electronic service is considered necessary,
since this approach enables stakeholders (i.e. roles participating in the development of
electronic services, such as managers, domain experts, technical staff etc) to work
systematically on the task of recording all important aspects of the electronic service,
without the risk of omitting key elements or essential element attributes. Semantics
for each element and element attribute are also standardised, promoting the clear
separation of the different concepts involved in e-service modelling and facilitating
common understanding of e-service descriptions among e-service development
stakeholders. Automated checks for description completeness and integrity can also
be conducted against descriptions following a formal model.

Using an XML-based formal model for electronic services offers a number of
additional advantages:

• XML is an expressively rich language, allowing for any structural or semantic
concept to be appropriately modelled. Thus every aspect of the electronic
service can be represented in the e-service XML model. Note that “aspects of
an electronic service” may include forms and fields that comprise a service,
validation checks expressed in a high-level specification, documentation that
has emerged from the service analysis, related legislation, help that should be
available to end-users, specification of deadlines, definition of statistics that
need to be gathered etc. Interrelations between service elements or between
services can also be modelled.

• XML is considered nowadays the standard for data interchange, thus an XML
model for electronic services facilitates the communication and sharing of
service portions across either divisions of the same organisation or between
different organisations. This may be employed either for individual service
elements (e.g. a law or directive exported by a legislative body may be directly
imported in the description of a relevant service; a validation rule regarding
the VAT number format may be shared by all organisations that involve VAT
numbers in their services), or for service portions (e.g. the part of the service
that models the citizen’s personal data may be shared between divisions or
organisations delivering electronic services).

• Schemata are easily expandable to accommodate new features by simply
adding the new elements. Language features may be exploited to cater for
backwards compatibility – e.g. by including a minoccurs=”0” tag to a newly
introduced element designates it as optional, ensuring schema-level
compatibility for all existing instances of the particular schema.

• Since all aspects of the service that are considered important have been
recorded and stored in a concrete and unambiguous format, these descriptions
may be mechanically parsed and executable service images may be
automatically generated. Such an executable image will target a specific
deployment platform, e.g. a JSP container, a web server with a ColdFusion or
a PHP engine installed etc. Different generators may be employed to produce
code for different deployment platforms, which may potentially address
different client device technologies (e.g. PC-based web browsers, WAP
clients, iMode clients etc). Besides generating the executable service image,
the generator may also automatically produce a storage schema for documents
submitted through the specific service, since all data elements of the service
are known, along with any relevant properties (e.g. mandatory vs. optional,
single-occurrence vs. multiple occurrences, type of data etc).

The rest of the paper is organised as follows: section 2 surveys related work regarding
models of electronic services. Section 3 summarises the key elements of electronic
services and their interrelations; section 4 presents the important design aspects of the
XML model and provides hints on how model elements can be mechanically
processed and transformed into executable service schemata, while section 5 presents
an evaluation of the XML model. Finally, section 6 concludes and outlines future
work.

2 Related work
Although electronic services have received increased attention in the past few years,
mainly in the contexts of e-government, e-commerce and B2B services, related
frameworks and standards have not yet been developed accordingly. In (Piccinelli et
al. 2003) an architecture for electronic service management systems is presented,
which mainly analyses the business processes associated with electronic services in
the context of organisations. The paper also proposes a meta-model covering concepts
related to electronic services, such as business assets, workflow processes and
business roles; formal semantics and a UML mapping for these concepts are also
given. In (Vassilakis, 2003) an approach for enabling a holistic management of the
electronic service lifecycle is described. This approach employs modelling and
representation in high levels of abstraction and identifies business roles that are
involved in each stage of the development.
Regarding the use of XML in electronic services development and delivery, insofar
this has been limited to information interchange and modeling and filing of
documents submitted through electronic services. A noteworthy activity is carried out
by UK GovTalk for the development of standard XML schemata to be used in
electronic services (UKGovTalk, 2003)], covering the issue of what data should be
collected by specific services and how these should be structured. In (Juna Project,
2001) the use of XML for standardisation of interfaces is encouraged. ebXML is also
a major development for enabling XML to be utilized in a consistent manner for the
exchange of all electronic business data (ebXML committee, 2003).
BRML is another XML-related technology that can be used in the context of
electronic services. BRML provides a rule-based framework for developing rule-
based applications with major emphasis on maximum separation of business logic and
data, conflict handling, and interoperability of rules (BRML committee, 2003).
BRML however is a generic framework for the development of any application, not
just electronic services, thus additional effort is required by any organisation to tailor
the framework to its specific, e-service oriented needs. The event-condition-action
language for XML proposed in (Bailey et al., 2002) can be utilised to model workflow
aspects related to electronic services or validation rules, but is again too generic to be
used directly.
Finally, XML has been used for the development of personalised e-shopping
solutions, presenting adaptive menus and tailored pages (Weske, Schneider, 2002)
and for moving relatively small catalogues online (Sims, Tikekar, 2001).

3 Key elements of electronic services
An electronic service is, in general, a computerised counterpart of a form submission
business process in the paper-based world. In this context, the electronic service user
is presented with a set of forms to fill in (lengthy documents are subdivided into
multiple forms or form pages). Forms may be structured into areas, with each area
containing some conceptually interrelated fields; for example a form area may be
dedicated to collecting the citizen’s personal details. Form fields are the individual
elements that citizens need to fill; this is mainly performed by either writing some text
within the field area (e.g. writing 10,000.00 in the area corresponding to the Income
field) or by checking one of the available field options (e.g. yes or no for the Are you
married? field). Some fields may have repeating occurrences; for instance when an
enterprise declares the vehicles owned, the inputs corresponding to Vehicle type, C.C.
and Date of Purchase have to occur multiple times -one for each owned vehicle- as

illustrated in Figure 1. In an electronic version, some fields may be automatically
calculated (e.g. the sum of values in a column) or pre-populated (for example, the
personal details of the service user that has been authenticated via a login procedure);
in both cases, the values of these fields cannot be directly modified. Usually the forms
contain also instructions for the citizens, to guide them through the process of filling
in the form. Instructions are particularly useful in cases of complex forms, containing
fields whose semantics are not obvious.

Figure 1 – Input fields with multiple occurrences

Besides the above listed elements, which are addressed to the citizen that will fill in
the form, a form submission business process is associated with a number of elements
that are addressed to front-desk and back-office workers. Firstly, a form is defined on
the basis of some legislation, which describes the form purpose, contents, submission
periods etc. The legislation also usually defines some validation criteria, which
pertain to the values that are filled in by the citizens and must be met by every
submitted form. Examples of such validation criteria are “The SSN is mandatory”,
“The value in the income field should be a positive number”, “If the citizen declares
to be not married, the Spouse surname field should be left blank” and “Declared pre-
paid taxes may not exceed the 25% of the declared income”. In a paper-based
environment, most of the validation criteria are checked by the front-desk staff that
collects the form, whereas some other validation criteria (mainly those which either
require cross-checking with other documents and those that are particularly time-
consuming) are checked by the back-office workers.
When forms are submitted by citizens they need to be filed for reference and further
processing. In the electronic paradigm, form filing corresponds to storing the
electronic document in a database. Finally, from a form submission process certain
statistics may be computed, which may be related to the service as a whole (e.g. total
number of form submissions; average time to complete the form) or individual service
elements (for instance, average value of inputs to a specific field; number of times
that a validation check has failed; number of times a particular help text was
retrieved).

4 The e-service XML model
A model for electronic services, besides being able to represent all key elements
presented in the previous section, is strongly desirable to have a number of properties
to enhance its functionality and usefulness:

• Express concepts in the highest possible level of abstraction. Using high
levels of abstraction enables the immediate possessors of the knowledge to
input this knowledge to the system without the intermediation of analysts.
This feature supports the task of turning tacit knowledge into explicit, which
is a valuable asset for the organisation. Lower-level information might be

provided in specific cases, however, to facilitate the task of mechanical
processing.

• Use a minimal set of “base concepts”. The model should employ a small
number of orthogonal (non-overlapping) base concepts to formulate
complete descriptions of e-services. This approach reduces the time needed
by model users to learn and use the model and is in line with the minimality
principle of conceptual modelling (Bergamaschi, Sartori, 2002).

• Support collaborative work. An electronic service is a complex artefact,
which is jointly developed by stakeholders of different skills and
backgrounds (e.g. domain experts, managers, IT staff etc), with each
stakeholder contributing a set of elements to the overall description. The
model should, to the maximum extent possible, facilitate the separation of
the activities that need to be performed by each stakeholder and avoid
introducing unnecessary restrictions in the order that activities should be
performed by various stakeholders.

• Facilitate linking between elements. Various elements comprising an
electronic service are interrelated - for example, an input element may be
related to the piece of legislation that defines the electronic service contents,
to the examples that are presented to the user on how the element is filled in,
to the form it lies on, to the validation checks that verify that the input value
provided is conferment to the instructions etc. The model should be able to
represent such linkages, to allow developers to navigate along related objects
and maintainers to easily locate elements that are affected due to some
change (e.g. a change in the legislation may affect all linked elements).

• Enable the execution of completeness checks. Since an electronic service
comprises of numerous interrelated elements that should be defined and
elaborated by various actors, it is necessary for the model to make possible
checks that identify if any required (or desired) elements are missing. Once
the missing elements have been pinpointed, the respective stakeholders may
be notified about their outstanding tasks.

• Allow mechanical processing to produce executable service images. To the
extent that sufficient information has been included in the model, each
individual electronic service description can be processed and an executable
image for it can be produced for a particular execution environment (e.g.
WAR files for JSP containers (Apache Group, 2003; Zuffoletto, 2002)
ColdFusion scripts for the ColdFusion server engine (Hewit, 2001); PHP
scripts for PHP-enabled servers (Lerdorf, Tatroe, 2002) etc) by employing
generative programming techniques (Czarnecki, Eisenecker, 2000). This
task is possible due to the fact that within electronic services the possible
actions for a user are limited (complete a new form; edit an existing form;
delete a previously submitted form), thus suitable code fragments may be
generated for implementing these functionalities.

In order to support the dimensions presented above, a number of design-level
decisions were made for the model1. Firstly, besides the object types representing
electronic services, forms, element groups and individual elements (which are
indispensable parts of electronic services) only one additional top-level concept was
added to the model, namely the Knowledge Unit. The concept of a knowledge unit

1 The full XML model is not included in this paper for brevity reasons. The full XML model can be
found in (SmartGov Consortium, 2002)

encapsulates any information that may be associated with an electronic service or any
portion of it, including related legislation, documentation, design rationale, help text
or examples for the end users etc. A special tag indicates the purpose of the
knowledge unit, providing thus means to formulate different subcategories, depending
on the knowledge unit intended usage. Knowledge units may be interlinked with any
top-level concept (electronic service, form, element group and individual element or
another knowledge unit) in a many-to-many fashion, forming thus a semantically rich
network of information, which can be traversed in any direction; starting thus from a
specific point in this network, all related nodes may be easily reached. Knowledge
units may be also linked to selected elements that do not reside on the top-level of the
model, notably validation checks, which need to be documented, exemplified and
associated with related legislation. In addition to links from/to knowledge units, the
model supports links between service elements; for instance an electronic service is
linked to the forms it comprises of and these forms are in turn linked to the individual
elements or element groups that appear on each form. These links can be traversed as
well, allowing navigation through the electronic service hierarchy.
Regarding the abstraction level of the model concepts, the elements comprising each
concept have been chosen so as to be direct or close counterparts to notions that are
used by electronic service users, in order to enable stakeholders to work directly with
the model (through an appropriate front-end). For instance, an electronic service is
described (Figure 2) through an identifier (ESId), a short and long human-readable
description (serviceName and description), the form sets it includes
(includedFormSets – a “form set” is a set of forms targeted for a specific service
access environment e.g. web browser, WAP client, I-mode client etc) and the
knowledge units to which it is linked (linkedKUNodes). Additionally, the validation
rules that apply to documents that are submitted through the service are defined
(serviceValidationRule) and the authentication requirements for this service are
specified, by selecting among a library of methods (user name and password, smart
cards, unauthenticated etc). Finally, the allowed operations for the service are
designated (whether the users can submit, modify or delete documents), a date is set
after which the service becomes inoperative (deadline), and the statistics that need to
be collected for the service are listed (ESStatistics). The lifeCycle element is system-
maintained and records the modification dates and the users that have performed the
modifications.

<xs:element name="ES">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ESId" type="xs:string"/>
 <xs:element name="serviceName" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="includedFormSets" type="formSet" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="serviceValidationRule" type="validationMethod"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="authenticationRequirements" type="xs:string"/>
 <xs:element name="allowSave" type="xs:boolean"/>
 <xs:element name="allowEdit" type="xs:boolean"/>
 <xs:element name="allowDelete" type="xs:boolean"/>
 <xs:element name="deadline" type="xs:date"/>
 <xs:element name="lifeCycle" type="lifeCycleType"/>
 <xs:element name="serviceStatistics" type="ESStatistics"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
Figure 2 – XML schema for the “electronic service” model concept

Special care has been taken regarding the abstraction level of validation rules, which
are “traditionally” considered a task for IT staff. By analysing, however, a number of
electronic services2 it was found that the 80% approximately of the required
validation checks can be modelled after the following prototypes:

1. L1 ≤ A ≤ L2, where A is a document field and L1 and L2 constant values. This
prototype models cases where the value of a field should fall within a given
range, e.g. the number of days worked in a year may range from 0 to 300.

2. A Requires B. If a value is provided for field A then a value must be provided
for field B. For instance, if the Car Owner field is filled in, the field Car
licence plate number should be filled in as well.

3. A Precludes B. If a value is provided for field A then no value should be
provided for field B. For example, if the user fills in the field losses from trade
business, the field profits from trade business should be left blank, since it is
impossible to have simultaneously profits and losses from the same activity.

4. A cmp Β * c, where A and B are document fields, cmp is a relational operator
(=, ≠, >, ≥, <, ≤) and c is a constant value. This prototype enables the
specification of arithmetic constraints on the values of form fields, such as
profits from trade business cannot exceed total profits (in this example c is
equal to one) or cargo insurance fees should be less than the 2% of the
declared value of the transported goods.

Validation checks modelled after the above prototypes are coupled with a severity
level (either error, or warning) and with a message, which is displayed to the service
user when the check fails.
Validation checks at this abstraction level can be directly expressed by domain
experts, through an appropriate user interface. There is still, however, a 20% of
validation checks which are too complex to be modelled using these prototypes. To
this end, the ability to express a validation check in any general-purpose programming
language has been provided in the electronic service schema. Naturally, the

2 Seven electronic services were analysed to obtain the listed results. Two of them were simple, one-
form services with few fields, three services were of medium complexity (one-two pages with 40-60
fields) and two services were highly complex including more than 300 fields spread along 3-4 pages.

programming language that will be selected should match the architecture of the
service execution environment (e.g. Java for JSP containers, PHP for PHP-enabled
servers etc). This code may be either typed-in directly or a pointer to the file may be
provided. The XML schema used for modelling validation checks allows for
specification of either validation checks following the prototypes listed above, or for
validation checks directly expressed in a programming language, as shown in Figure
3. In Figure 3, the top-level entity is the validationRule complex type, which is
subsequently refined into the various sub-cases by means of the choice XML schema
construct.
<xs:complexType name="validationRule">
 <xs:choice>
 <xs:element name="compactRule" type="compactRule"/>
 <xs:element name=" nativeCodeFragment" type=" nativeCodeFragment"/>
 </xs:choice>
 <xs:element name="LinkedKUs" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>

<xs:complexType name="nativeCodeFragment">
 <xs:sequence>
 <xs:element name="langId" type="xs:string"/>
 <xs:choice>
 <xs:element name="codeText" type="xs:string"/>
 <xs:element name="fileSpec" type="xs:anyURI"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="compactSmartGovLang">
 <xs:sequence>
 <xs:choice>
 <xs:element name="betweenCheck" type="SGbetweenCheck"/>
 <xs:element name="requiresCheck" type="SGrequiresCheck"/>
 <xs:element name="precludesCheck" type="SGprecludesCheck"/>
 <xs:element name="relationCheck" type="SGrelationCheck"/>
 </xs:choice>
 <xs:element name="validationMessage" type="multilingualText" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="severity">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="warning"/>
 <xs:enumeration value="error"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Figure 3 – The XML schema for validation checks

In the area of collaborative work, the model for an electronic service includes
numerous items, which can be independently developed by different stakeholders. For
example, the visual layout of a form, essential for an electronic service, can be
independently developed from the knowledge units required for the service or the
validation checks that will check the values input to the form fields. These items may
then be linked together by including appropriate references in the XML schema
instances. Furthermore, an XML model inherently subdivides each object type into its
elements, which are analogous to frame slots (Krishnamoorthy, Rajeev, 1996). These
slots may be independently filled in by different stakeholders; for instance when
defining a new electronic service, the domain experts may develop the associated
knowledge units, the managers may define the statistics needed for the evaluation of

the service and the domain experts, jointly with the IT staff, can define the validation
checks. Concurrent updates to the same object should however be protected using
appropriate concurrency control schemes such as (Hadzilacos, Hadzilacos, 1991;
Malta, Martinez, 1993).
Having a structured representation of the electronic service model, performing
completeness checks is quite straightforward, provided that elements have been
appropriately characterised as compulsory or optional. Note that this can not always
be derived from the XML schema by exploiting the minOccurs and maxOccurs tags,
since these have been chosen so as to facilitate the development process. For example,
the includedFormSets element in the electronic service is tagged with minOccurs set
to zero, while a “complete” electronic service definition should have at least one form
set. If, however, the minOccurs tag for the aforementioned element was set to one, no
electronic service description could be created until one form set for it would be
ready, forcing for an “unnatural” development path. Moreover, the elements for an
electronic service that are considered as compulsory may differ from one organisation
to another: for example, some organisation may require that every element be linked
to the related legislation, designating thus KUs as mandatory, while this requirement
may not hold for another organisation. The development of a tool that traverses the
electronic service model and finds elements that are required but not yet filled in is
however an easy task. Once the missing elements have been identified, notifications
to the respective stakeholders may me sent, to inform them about the pending tasks.
When all required elements of an electronic service have been provided by the
respective stakeholders, it is possible to exploit the information gathered in the model
to automatically generate executable service images. Service generation can be
performed through the following procedure:

1. for each form object that the service contains, a separate file is generated
incorporating:

a. the elements that belong to the form.
b. any validation checks that need to be conducted for the elements

belonging to the form.
c. navigational controls, allowing the user to move to the previous/next

form of the service. In the last form, the “next” navigation control is
replaced with a “finish” control, which invokes a separate operation
arranging for saving the values provided by the service user to a
database.

The generated file contains code suitable for the execution environment (JSP
files, PHP scripts etc). Besides the automatically generated code that handles
interception and validation of values provided by the user, this file contains
the visual part of the form, extracted from the description of the respective
"Form" object in the XML repository. Knowledge units that are linked with
the form, or form elements, and are tagged as "help for end users" are made
accessible through appropriate hyperlinks on the generated form.

2. for each input element within the form, a respective control is generated and
incorporated. The generated control couples semantic information from the
element description (e.g. maximum length, description, data type etc) with
visual information for the same input element, extracted from the form layout
(e.g. font family, size and colour).

3. for each validation check that has been defined, the appropriate code is either
generated (if the validation check is modelled after the prototypes described
above) or simply extracted, if the validation check has been specified in the

execution environment's language. Generating code for the validation check
prototypes is straightforward, since the semantics expressed are simple; for
example, a validation check L1 ≤ A ≤ L2 with a severity characterisation set to
"error" and an error message set to "Error Message" is translated to the code
if ((A < L1) || (A > L2))
 errorMessage("Error message");
where errorMessage is a library procedure suitable for the execution
environment that arranges for emitting the message to the user and inhibiting
further user operations with the service, until the error is corrected. The code
conducting the validation check, generated or extracted, is bundled in the file
pertaining to the form that the input element appears in. If the validation check
includes more than one element appearing on different forms, then the code is
bundled in the file associated with the "finish" control of the last form, since at
this stage all necessary values will be available.

4. storing of values entered by the user into a database is handled by code
bundled in the file associated with the "finish" control of the last form. This
code can be automatically generated when the executable image of the service
is created, since all input elements of the service are known, together with any
related details (e.g. data type and maximum length for each input element).
For mapping to relational databases, the procedure starts off with an empty
table schema and for each input element an extra field is added to the table. If
fields with multiple occurrences are used (see Figure 1), then a new table is
introduced for each such group of fields. Database restrictions regarding
maximum fields in a row or maximum row size in bytes (e.g. Microsoft
Corporation, 2001) have to be addressed in this mapping by dividing the
single table schema into smaller table schemata meeting the restrictions.
Storing user documents to object databases or XML databases is more
straightforward, since multiple occurrences are allowed (collections in object
databases and elements with MaxOccurs greater than one in XML databases).

Once the executable service image has been put together, it can be deployed to the
execution environment. The deployment technique depends on the execution
environment; e.g. in a PHP-enabled server simple file copying to the web server's
document area usually suffices, whilefor deploying a service through the Tomcat JSP
container, the Tomcat deployer (Apache Group, 2003) has to be used.

5 XML model evaluation
The XML model has been developed in the context of the SmartGov IST project
(Georgiadis et al. 2002; SmartGov Consortium, 2004) and has been used for the
development of a number of electronic services for the public sector. Electronic
service stakeholders were able to create and manage the elements of the electronic
services through a web-based front-end, while an engine for automatic e-service
generation was also built, creating executable service images for the Tomcat JSP
container. The XML documents describing the elements of the electronic services
were stored in an XML repository.
Although electronic service stakeholders did not directly work with the XML
documents, but accessed the content through the web-based development
environment, the evaluation conducted through questionnaires completed by
electronic service stakeholders after a training period contained items that would help
assessing whether the XML model has met the design goals described in sections 1
and 4. Eighteen questionnaires were gathered and processed; the stakeholder sample

was a mixture of managers (2), domain experts (7), IT staff (5) and help-desk workers
involved in electronic service delivery (4). The degree of computer literacy within the
user group ranged from expert (6) to naïve (4), with the remaining 8 falling between
these two extremes. An excerpt of the questionnaire is shown in Figure 4. Figure 5
summarises the results from questionnaire processing, including only the questions
that are directly or indirectly relevant to the XML model. In all questions the rating 1
corresponds to “Strongly disagree” while the rating 9 corresponds to “Strongly
agree”.

1. I could understand all the base concepts used by the system

Strongly
disagree

1 2 3 4 5 6 7 8 9 Strongly
agree

 N/A

2. All the key concepts I needed to model an electronic service were present

Strongly
disagree

1 2 3 4 5 6 7 8 9 Strongly
agree

 N/A

3. Each concept was described in the right level of detail

Strongly
disagree

1 2 3 4 5 6 7 8 9 Strongly
agree

 N/A

4. Starting from a specific element, I could locate all related information

Strongly
disagree

1 2 3 4 5 6 7 8 9 Strongly
agree

 N/A

Figure 4 – Excerpt from the evaluation questionnaire

Question Mean Std. dev
I could understand all the concepts used by the system 7,8 0,91
All the key concepts I needed to model an electronic service were
present

7,5 0,67

When I needed to create a new item, I always knew which concept to
use

8,3 0,47

Each concept was described in the right level of detail 7,2 1,02
Elements were missing from some concepts 2,8 0,98
I shouldn’t be shown some elements that are not related to my work 6,7 0,94
Starting from a specific element, I could locate all related information 7,6 0,72
I could always link two objects that I considered to be related 7,9 0,60
I could easily locate elements that were missing from a service
description

6,4 0,85

I could easily create validation checks 7,3 0,95
I would like the validation checks language to be more expressive 3,9 0,78
I could easily incorporate into the system information from other sources
(word processor files, databases etc)

7,2 1,28

Figure 5 – Results from questionnaire processing

The evaluation results showed that users could easily understand all the concepts
presented to them by the front-end, which is attributed to the high level of abstraction
used in concept modelling and the small number of base concepts used, which
enabled the stakeholders to quickly obtain a holistic view of the platform scope and
capabilities. Users also noted that no key elements were missing from the model,
which indicates that the minimality goal has been attained without sacrificing
completeness and expressiveness. Some users pointed out few useful attributes that
were initially missing from the model (e.g. the preferred display size of an input
element), which were subsequently added to it by including the appropriate element
tags in the electronic document. When the model describing an element type was

extended, either the minOccurs=”0” attribute was used for the new element to ensure
conformance of the existing XML documents describing already created elements of
this type, or an upgrade script was run which extracted documents from the
repository, added the required element with a default value and stored back the
updated version. The latter technique was used when the new elements were
considered to be mandatory and thus the minOccurs=”0” attribute could not be used.
Linking between elements was also considered adequate, since users stated that they
could always easily locate information related to the items they examined. Although
no separate tool for completeness check was implemented, users found adequate the
feature of the e-service generation engine to generate error messages for missing
elements, stating however that they would prefer a specific tool that would also
pinpoint desired elements that were missing (the e-service generation engine reported
only the missing compulsory elements) and would actively notify the stakeholders
responsible for providing these elements. The separation of responsibilities was also
well rated, with the comment however that it would be preferable for the front-end to
be more “personalised”, in the sense that information not directly related to the
current user would preferably be hidden, rather than be displayed and having to be
ignored.
The XML model has also enabled the development of a number of peripheral tools
that enhanced the overall platform functionality. Firstly, an XML document import
and export facility was developed, which facilitated document exchange with other
information systems. This feature was mainly used for knowledge units, where
documents were extracted from legal databases, appropriately formatted and then
imported into the XML repository. Linking of such imported documents with other
items (other knowledge units, forms or form fields) was performed through the front
end, after the import phase. Knowledge units containing instructions and examples
were also exported from the repository and imported into word processor files to
formulate documents with instructions to end-users.
Another tool that was developed automatically generated HTML pages for the forms
modelled within the repository. This was possible since all information regarding
form fields and their descriptions and semantics were present in the XML repository.
The layout of these pages was admittedly basic, they could serve however as a
template to be elaborated on using professional HTML page editing tools, such as
DreamWeaver™ or GoLive™. For DreamWeaver™ in particular, an extra tool was
developed which enriched the built-in tag set with tags corresponding to the items
modelled in the XML repository. These tags could then be used by web page
designers to place e-service elements on the HTML page (field descriptions, help
texts etc). This tool effectively extracted certain elements of the XML documents
within the repository and reformatted them into new XML documents, as required by
the DreamWeaver™ extension API (Macromedia Inc., 2002).

6 Conclusions
In this paper we have presented the key design aspects of an XML model for
electronic services. The XML model has been used for the development of electronic
services, in conjunction with a web-based front end and an engine for automatic
generation of executable electronic service images. The XML model has also been
evaluated, both in terms of (indirect) user satisfaction and in terms of ability to
interface with other systems and develop value-added tools. Future work will focus on
the incorporation of workflow aspects in the XML model, to handle the intra-
organisation workflow of documents submitted through the electronic services, and

the reverse engineering of existing electronic services into the XML model, to cater
for the consolidation of all knowledge related to electronic services within the
organisation into a single, high-level, reusable repository.

7 References
Apache Group, 2003. The Tomcat 5 Servlet/JSP container: Deployer How To.
Available at http://jakarta.apache.org/tomcat/tomcat-5.0-doc/depoyer-howto.html
Apache Group, 2004. Jakarta Project. Accessible at http://jakarta.apache.org/
Bailey, J., Poulovassilis, A., Wood, P.T., 2002. An Event-Condition-Action Language
for XML. Proceedings of the WWW 2002 Conference, Hawaii, May 2002, pp 486-
495
Bergamaschi, S., Sartori, C. On taxonomic reasoning in conceptual design. ACM
Transactions on Database Systems, Vol. 17, Issue 3, 1992, pp. 385 – 422.
BRML committee, 2003. Business Rules Markup Language (BRML). Accessible at
http://xml.coverpages.org/brml.html
Czarnecki, K., Eisenecker, U., 2000. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, 2000, ISBN: 0201309777
ebXML committee, 2003. ebXML technical specifications. Accessible at
http://www.ebxml.org/specs/
European Commission, 1999. Public Sector Information: A Key Resource for Europe,
Green paper on Public Sector Information in the Information Society.
http://europa.eu.int/ISPO/docs/policy/docs/COM(98)585/
European Commission, 2004. eEurope 2005 Action Plan.
http://europa.eu.int/information_society/eeurope/index_en.htm
Georgiadis, P., Lepouras, G., Vassilakis, C., Boukis, G., Tambouris, T., Gorilas, S.,
Davenport, E., Macintosh, A., Fraser J., Lochhead, D., 2002. A Governmental
Knowledge-based Platform for Public Sector Online Services. Proceedings of the 1st
International Conference on Electronic Government-EGOV 2002, pp. 362-369.
Hadzilacos, T., Hadzilacos, V., 1991. Transaction Synchronization in Object Bases.
Journal of Computer and System Sciences, 43(1):pp. 2-24, 1991.
Hewitt, E. 2001. Core ColdFusion 5. Prentice Hall, 2001, ISBN: 0130660612
Italian Ministry of Innovations and Technology, 2004. E-Government for
development.
http://www.innovazione.gov.it/ita/egov_sviluppo/introduzione/egov1.shtml
Juna Project, 2001. Development Project for e-Government. Accessible at
http://www.intermin.fi/intermin/images.nsf/files/E54458C833DF46B4C2256BCF002
59A99/$file/XML_juna.pdf
Krishnamoorthy, C.S., Rajeev, S., 1996. Artificial Intelligence and Expert Systems for
Engineers. CRC Press, 1996, ISBN: 0849391253
Lerdorf, R., Tatroe, K. 2002. Programming PHP. O'Reilly & Associates, 2002, ISBN:
1565926102
Macromedia Inc., 2002. Extending Dreamweaver MX. June 2002
Malta, C., Martinez, J., 1993. Automating Fine Concurrency Control in Object-
Oriented Databases. Proceedings of the International Conference on Data
Engineering, pp. 253-260, 1993.
Microsoft Corporation, 2001. Frequently asked questions - SQL Server 2000.
Available at http://support.microsoft.com:80/support/kb/articles/Q260/4/18.asp
Piccinelli, G., Emmerich, W., Williams, S., Stearns, M.. A Model-Driven Architecture
for Electronic Service Management Systems. Proc. of the 1st Int. Conference on
Service-Oriented Computing, Trento, Italy, LNCS 2910, pp. 241-255, 2003.

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/depoyer-howto.html
http://jakarta.apache.org/
http://xml.coverpages.org/brml.html
http://www.ebxml.org/specs/
http://europa.eu.int/ISPO/docs/policy/docs/COM
http://europa.eu.int/information_society/eeurope/index_en.htm
http://www.innovazione.gov.it/ita/egov_sviluppo/introduzione/egov1.shtml
http://www.intermin.fi/intermin/images.nsf/files/E54458C833DF46B4C2256BCF002
http://support.microsoft.com:80/support/kb/articles/Q260/4/18.asp

Sims, J., Tikekar, R. An XML model for small business e-commerce. Journal of
Computing Sciences in Colleges, Volume 16, Issue 2 (January 2001), pp. 21-28
SmartGov Consortium, 2003. Deliverable D51-61: Low-level Specifications of
SmartGov Services and Applications and the Knowledge-Based Core Platform.
Available through http://www.smartgov-project.org/
SmartGov Consortium, 2004. SmartGov web site”, http://www.smartgov-project.org
Top of The Web, 2003. Survey on quality and usage of public e-services.
http://www.topoftheweb.net/docs/Final_report_2003_quality_and_usage.pdf
UK GovTalk, 2003. XML Schema Library. Accessible at
http://www.govtalk.gov.uk/schemasstandards/schemalibrary.asp
UK online, 2004a. E-Government Interoperability Framework.
http://www.govtalk.gov.uk/schemasstandards/egif.asp
UK online, 2004b. The e-Government Metadata Standard.
http://www.govtalk.gov.uk/schemasstandards/metadata.asp
US Government, 2002. The E-Government Act of 2002.
http://www.whitehouse.gov/omb/egov/pres_state2.htm
Vassilakis, C., Laskaridis, G., Lepouras, G., Rouvas, S., Georgiadis, P., 2003. A
framework for managing the lifecycle of transactional e-government services.
Telematics and Informatics Vol. 20, Issue: 4, pp. 315-329, Elsevier Publications,
November, 2003
Weske, M., Schneider, B., 2002. An XML-Centred System Architecture For Flexible
Electronic Services. International Journal of Information Technology & Decision
Making, Vol. 1, No. 3, 2002 pp.525-540
Zuffoletto, J. 2002. BEA WebLogic Server Bible. Hungry Minds, Inc., New York,
2002, ISBN: 0−7645−4854−9

http://www.smartgov-project.org/
http://www.smartgov-project.org
http://www.topoftheweb.net/docs/Final_report_2003_quality_and_usage.pdf
http://www.govtalk.gov.uk/schemasstandards/schemalibrary.asp
http://www.govtalk.gov.uk/schemasstandards/egif.asp
http://www.govtalk.gov.uk/schemasstandards/metadata.asp
http://www.whitehouse.gov/omb/egov/pres_state2.htm

