
 

 

 

 

 

 

wt-Protégé – An Extension for Protégé Supporting Temporal 
and Weighted Data 

Technical Report TR-SSDBL-07-001 

Costas Vassilakis, George Lepouras, Akrivi Katifori 

costas@uop.gr, gl@uop.gr, katifori@uop.gr 

 

 

 

 

 

 

September, 2007 

Tripoli, Greece 

 

University of Peloponnese 

Department of Computer Science and Technology 

Software and Database Systems Laboratory 

mailto:costas@uop.gr
mailto:gl@uop.gr
mailto:katifori@uop.gr


Table of Contents 
Table of Contents _____________________________________________________2 

1. Introduction _____________________________________________________3 

2. Downloading and Installing ________________________________________4 
3. Available extensions_______________________________________________5 

3.1 The “Date” Data type ______________________________________________5 
3.2 The “Period” Data type_____________________________________________5 
3.3 The “t-String” Data Type ___________________________________________6 
3.4 The “t-Boolean”, “t-Instance”, “t-Integer” and “t-Float” Data types _______7 
3.5 The “w-String” Data Type __________________________________________7 
3.6 The “w-Boolean”, “w-Instance”, “w-Integer” and “w-Float” Data types ____8 

4. Notes and known issues ____________________________________________9 
 



1. Introduction 
In the past few years, ontologies have emerged as a valuable tool for representing the 
semantic context of a domain; ontologies provide the required formalism for 
computers to perform automated reasoning and the high level semantics for humans to 
work with. A number of tools have emerged that facilitate the creation, maintenance, 
usage and visualization of ontologies, such as Protégé, KAON, etc. Insofar, however, 
ontology tools are targeted to maintaining ontology snapshots, i.e. the most recent 
version of ontologies; past values of properties or relationships are not maintained, 
neither the period that the values/relationships were in effect can be stored. Some 
tools encompass ontology versions, which though cannot be effectively used for 
maintaining entity evolution since, generally, the number of changes in properties 
and/or relationships is too high, resulting in an excessive and unmanageable number 
of version. Moreover, facilities for entering weighted information are very useful for a 
class of environments and applications, such as uncertain and fuzzy data management. 
Current provisions for entering such data suffer from the same drawbacks listed for 
historical data above. 

This work is an extension of the Protégé tool to accommodate the modeling and 
presentation of  

• entity history, i.e. past values of properties and/relationships; each such value 
is timestamped with the period that it was (or will be) valid in the real world. 

• weighted data, i.e. data where each value is associated with a real number, its 
weight. This can serve as a degree of confidence for fuzzy data or for any 
other application-defined purpose. 

To this end, the presented extension provides: 

1. integrated support for data types expressing time quantities – more specifically 
dates (individual points in time) and periods (anchored segments of the time 
axis). 

2. data types for storing histories of properties of different types (strings, 
integers, floats, booleans and instances [i.e. relationships]). 

3. data types for storing weighted properties of different types (strings, integers, 
floats, booleans and instances [i.e. relationships]). 

The extension can be used in contexts that the modeling of entities’ history is 
important, such as historical archives, museums, etc as well as in contexts where 
storing value weights is important. 



2. Downloading and Installing 
For installing the extension you need to perform the following steps: 

1. Download Protégé Version 3.1.1 from the Protégé site 
(http://protege.stanford.edu) 

2. Install the Protégé software following the instructions provided by the Protégé 
team 

3. Download the wt-protege.zip file; this is the compiled, ready-to-run version of 
the extension. URL http://sdbs.cst.uop.gr/files/wt-protege.zip 

4. Unzip the downloaded wt-protege.zip file in the Protégé installation directory 
replacing the protege.jar and protege_text.properties files therein (in 
Windows-based systems, the default location is C:\Program 
Files\Protege_3.1). 

You may now run Protégé as usual, and the extended version will be loaded. 

 

http://protege.stanford.edu)
http://sdbs.cst.uop.gr/files/wt-protege.zip


3. Available extensions 
The extended version of Protégé encompasses support for: 

1. data types expressing time quantities – more specifically dates (individual 
points in time) and periods (anchored segments of the time axis). 

2. data types for storing histories of properties of different types (strings, 
integers, floats, booleans and instances [i.e. relationships]). 

3. data types for storing weighted properties of different types (strings, integers, 
floats, booleans and instances [i.e. relationships]). 

These extensions are presented in the following paragraphs. 

3.1 The “Date” Data type 
The “Date” data type provides support for expressing individual points in time. The 
precision with which the time point may be specified varies from year-level to the 
level of a second. Dates are given and displayed in the ISO-standard format, i.e. 
YYYY-MM-DD hh:mm:ss (YYYY = year in the range 0000-9999, MM = arithmetic 
month of the Gregorian calendar in the range 1-12, DD = day within the month in the 
range 1-31, hh = hour in the range 0-23, mm = minute in the range 0-59 and ss = 
second in the range 0-59). The following examples illustrate acceptable values for a 
date slot: 

• 2006 

• 2006-03 

• 2006-03-25 

• 2006-03-25 10 

• 2006-03-25 10:58 

• 2006-03-25 10:58:43 

The precision used to denote the time quantity will be termed as granularity in this 
document. Note that the year is mandatory. Two more values are acceptable as dates, 
more specifically the strings unknown and now. The unknown value can be used to 
signify that the date is not known, while the now value should be interpreted as 
always being equal to the current “wall clock” indication. 

3.2  The “Period” Data type 
The “Period” data type provides support for expressing anchored segments of the time 
axis, i.e. time intervals with a specific beginning and a specific end. A period is 
entered as a pair of dates, enclosed in square brackets ([]) and separated with a 
comma. The dates may be expressed in different granularities, but it is required that 
the starting date should be less or equal to the end date. The following examples 
illustrate acceptable values for a period slot: 



• [2002, 2006] 

• [2002-01, 2002-01] 

• [2002-01-18 10:32:11, 2006-03-25 10:58:43] 

• [2002-01-18 10:32:11, 2006-03] 

Contrary, the following examples illustrate unacceptable values for a period slot: 

• [2006-03-25, 2002-01-18] (ending date is before the starting date) 

• [2006, 2006-10-01] (starting date represents the whole of the year 2006, which 
includes dates that are after the ending date). 

Semantically, a period is considered to include both the starting and the ending time 
point, e.g. the period [2002-01, 2002-02-12] is considered to include the whole of 
January 2002 and the twelve first dates of February. This is particularly important for 
the notion of overlapping periods used in the context of non-multiple temporal types 
(discussed in the next paragraphs). According to the adopted semantics, periods 
[2002-01, 2002-02-12] and [2002-02-12, 2002-03] do overlap (since they both include 
February 12, 2002), while periods [2002-01, 2002-02-12] and [2002-02-13, 2002-03] 
do not overlap. 

The special date values unknown and now may be used for the starting or the ending 
date of a period (or both). In such a case, no check is performed that the starting date 
should be before the ending date. 

3.3 The “t-String” Data Type 
The “t-String” data type allows for entering string-typed values that retain their 
evolution through time. For example, consider the case that we want to retain history 
of the addresses at which some organization is installed; for this purpose we would 
use a t-String typed slot named “Address”. In the instance editing window, the slot 
would be rendered as standard Protégé list box, and we would use the “Add Value” 
button to enter the proper values for the organization whereabouts, each one tagged 
with a period expressing when the organization was installed at the specific location, 
e.g.: 

[2000-01-30, 2004-12-06] Somewhere, Someplace 23, 12345, Neverland 
[2004-12-07, 2006-03-08] Elsewhere, Otherplace 42, 34567, Neverland 
[2006-04, now] Anywhere, Anyplace 4, 67890, Neverland 

Note that it is allowed to use mixed granularities across periods timestamping 
different values (i.e. the first two rows use day-level granularity, while the third one 
employs month-level); the use of “now” and “unknown” is also permitted. 

The semantics for the “multiple” check box in the slot property window are modified 
for the t-String data type as follows: 

1. if the “multiple” check box is not checked, then it is not allowed for any two 
list entries to have overlapping timestamps i.e. not multiple means that for any 



given point in time, at most one value is allowed. If entries with overlapping 
timestamps are detected in the list, the slot value is considered erroneous and 
the list is highlighted with a red border, while the tooltip text is set to indicate 
the offending periods. 

2. if the “multiple” check box is checked, then the timestamp overlap check is 
not performed, effectively allowing any number of list entries to have 
overlapping timestamps. This may be used to model cases that multiple values 
for a single point in time are allowed in the real world, such as organizations 
with multiple installations (e.g. headquarters, agencies, warehouses etc), lists 
of professors serving in a University department and so forth. 

Under these definitions, the value list depicted in the following table is not valid for a 
t-String slot characterized as “non-multiple” because the second and third rows have 
overlapping timestamps; the same value list is valid for a t-String slot characterized as 
“multiple”. 

[2000-01-30, 2004-12-06] Somewhere, Someplace 23, 12345, Neverland 
[2004-12-07, 2006-03-08] Elsewhere, Otherplace 42, 34567, Neverland 
[2005-11, 2006-04-18 10:11] Wherever, Everyplace 88, 98765, Neverland 
[2006-04, now] Anywhere, Anyplace 4, 67890, Neverland 

No overlap check is performed for timestamps using the “now” and “unknown” date 
representations at either end. 

3.4 The “t-Boolean”, “t-Instance”, “t-Integer” and “t-Float” 
Data types 
These data types are similar regarding the semantics and operation with the t-String 
data type, differing only in the type of the data that may be entered. Booleans, in 
particular, can be entered as “true” or “false”, while instances can be picked from the 
standard Protégé “Select Instance” window. 

3.5 The “w-String” Data Type 
The “w-String” data type allows for entering string-typed values that are associated 
with a weight. For example, consider the case that we want to model the fact that an 
artifact is of the Protocycladic era with a confidence of 0.8 and of the Mesocycladic 
era with a confidence of 0.2. For this case we would use a weighted string slot, named 
era, checking the “multiple” option in the slot properties window. Subsequently, in 
the instance editing window, the slot would be rendered as standard Protégé list box, 
and we would use the “Add Value” button to enter the proper values for the artefact’s 
era, each one tagged with a real number representing our degree of belief that the 
artifact belongs to the specific era, e.g.: 

Weight Value 
20 Mesocycladic 
80 Protocycladic 

Note that no norm is imposed on the weight value, and the values 0.80 and 0.20 could 
be used as well. The weighted string list box provides an additional button to perform 
weight normalization, i.e. translate all weights to the range [0, 1]. During this process, 



list rows equal values are also merged into a single row – for example, if the list 
contents were 

Weight Value 
10 Protocycladic 
20 Mesocycladic 
70 Protocycladic 

before the normalization (note that the 1st and 3rd row have equal values), then after 
the normalization the list contents will become: 

Weight Value 
0.2 Mesocycladic 
0.8 Protocycladic 

In the “multiple” check box is not selected, then a weighted string slot is rendered as 
two labeled input areas, where the user may enter the weight and the value of the 
weighted string, respectively. 

In all cases, it is not allowed to enter a value without entering a weight. Weights are 
non-negative real numbers. The value of 0 is allowed to be used as a weight, and can 
be used as a placeholder for “unknown weights”. 

3.6 The “w-Boolean”, “w-Instance”, “w-Integer” and “w-
Float” Data types 
These data types are similar regarding the semantics and operation with the w-String 
data type, differing only in the type of the data that may be entered. Booleans, in 
particular, can be entered as “true” or “false”, while instances can be picked from the 
standard Protégé “Select Instance” window. 

 



4. Notes and known issues 
1. Ontologies using any of the extensions can be opened only by installations that use 

the wt-Protégé enhancements. Thus, if you send such an ontology to another user 
or transfer it to another computer, make sure that the extended software is also 
available, or it will not be possible to load the ontology in Protégé. 

2. The window allowing for creating, viewing and modifying timestamped and 
weighted instances does not use the standard Protégé instance handling widget. 

3. The current support for the “now” date is quite limited; better support for 
displaying these dates and for performing validation checks should be provided. 

4. February 29 is accepted for any year, not just leap ones. 

5. Source code implementing the extensions is in need of some cleanup, 
documentation and beautification. 

Please report bugs and suggestions to tprotege@uop.gr 

mailto:tprotege@uop.gr

