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In the past years a number of temporal extensions to the 
different database models have been proposed. Extensions 
to the relational model have been following the different 
SQL standards, while no attempts have been made to 
extend the OO-databases’ standard, defined by ODMG. In 
this paper we present a temporal extension to the ODMG 
standard, as this has been specified in the TOOBIS project. 
A Temporal Object Data Model, a Temporal Object 
Definition Language and a Temporal Object Query 
Language have been specified and have been proposed as 
extensions to the ODM, ODL and OQL of ODMG. This 
extension has been implemented over a commercial 
OODBMS, reinforcing and validating the effort of 
standardisation and portability of this extension. 

1. INTRODUCTION 
In the past years the management of temporal data has 
attracted numerous researchers resulting to a large number 
of extensions of the traditional database management 
systems to support temporal applications (Klopproge and 
Lockeman; 1983, Jones and Mason; 1990, Snodgrass; 
1987, Snodgrass and Soo; 1992, Clifford and Tansel; 1985, 
Tansel et al.; 1989, Ariav; 1986,  Segev and Shoshani; 
1987, Rose and Segev; 1993, Wuu and Dayal; 1993, 
Souillard and Pollet; 1997, McKensie; 1986, Tansel et al.; 
1993).  
Regarding extensions of existing standards, as well as 
trends for new standards, a first approach has been made in 
relational databases through TSQL2 Design Committee 
(1995), which is the result of a common work of 
researchers involved in temporal data in order to define a 
bitemporal extension of SQL92. More recently the 
SQL/Temporal part of SQL3 drafts (Snodgrass; 1996, 
Snodgrass et al;  1996 (a), Snodgrass et al.; 1996 (b)) 
presents a possible extension to the emerging SQL 
standard, keeping in mind TSQL2. However, insofar no 
extension to the ODMG standard (Cattel et al.; 1993) for 
object oriented databases has been proposed. In this paper 
we propose an approach for incorporating temporal data 
characteristics in object-oriented databases, in a compliant 
to ODMG way, taking into account the SQL/Temporal 
proposal, as well as TSQL2. This proposal is made through 
the TOOBIS1 - Temporal Object-Oriented dataBases 
within Information Systems - project, which is an Esprit IV 
program. 
Most of the extensions listed above focus on some specific 
points of temporal databases. The TOOBIS extension to 

                                                        
1 TOOBIS partners:01-Pliroforiki, University of Athens, Delta 

Dairy S.A. for Greece, and MATRA Systémes & Information, O2 
Technology, University of Paris I Sorbonne, GlaxoWellcome for 
France. 

ODMG aims to supply temporal data management within a 
full TOODBMS. It covers the ODM, ODL and OQL parts 
of ODMG standard, version 1.2, supporting the two 
orthogonal time dimensions, namely valid and transaction 
time. This extension is upwards compatible with the 
ODMG standard, in the sense that ODMG’s and TOOBIS’ 
worlds - objects and tools - cohabitate in the same 
OODBMS. TODM, TODL and TOQL have been 
implemented over O2’s OODBMS (as the implementation 
by Steiner and Norie (1997)), to illustrate the feasibility 
and portability characteristics of this extension. All the 
concepts of temporal databases have been introduced in the 
object oriented world, making the necessary changes and 
keeping the model compliant to the ODMG standard, while 
previous works were based on more or less proprietary and 
non-portable models (Rose and Segev; 1993, Wuu and 
Dayal; 1993). E.g. temporal properties and persistency are 
two orthogonal concepts, whereas the introduction of 
temporal features within relationships can not be 
performed without changing the ODMG relationships.  
Within the TOOBIS project, a Temporal Object Oriented 
Methodology - TOOM - (Souveyet et al.; 1997)  has also 
been defined to facilitate the design of temporal 
applications using the TOODBMS. TOOM extends the 
basic domains available in Object Oriented Methodologies 
to temporal domains, as well as object classes and static 
links to time dimensions, and constraints, events and 
administration policy allowing to take into account the 
time dimension 
The remnant of this paper is organised as follows: in 
section 2 an example of temporal data is presented and to 
be used in the different parts of this document; in sections 
3,  4 and 5 the temporal extensions to Object Data Model, 
Object Definition Language and Object Query Language 
are described, respectively. Finally section 6 presents the 
conclusions, the target applications and the future work.  

2. PATIENT EXAMPLE 
In the Clinical Research domain, patients are examined 
according to a given number of criteria and measurements. 
These observations are repeated several times during the 
treatment period, and give an account of the evolution of 
the patient status over the time axis. The data resulting 
from these observations are stored into databases, and 
checking modules are in charge of detecting incoherence 
between the different data. The errors detected can be due 
to mistakes during observation, reporting or acquisition 
phases. When such errors are detected, a Data Clarification 
Form (DCF) is emitted per error, in order to identify the 
incoherence and allow for its correction. A DCF is linked 
to a patient, and will become obsolete when data will be 
corrected into the database. A set of DCFs is associated to 
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each patient. The database is called ‘clean’ when no more 
DCFs are emitted by the checking modules. 
This small example is very interesting from a temporal data 
point of view, since it deals with both valid and transaction 
time dimensions: 
• the evolution of the patient’s observations corresponds to 

the history of these observations over the valid time axis 
(VT), and this history is maintained using instants since 
patient observation is discrete via several measurements 
over time; 

• the state of a DCF is linked to the database time, i.e. the 
transaction time axis (TT), as it is created when an error 
is detected regarding the data of a patient, and it is 
archived when this error is corrected in the database; then 
for each patient a history of his DCF is maintained over 
the transaction time axis. 

The following schema, a global structured view built using 
TOOM, models the above patient example. 

Figure 1.  TOOM Global Static View of Patient example 
This example will be used in the rest of the paper to 
illustrate the different components of the TOODBMS. 

3. TEMPORAL OBJECT DATA MODEL - TODM 
TODM is an extension of the Object Data Model - ODM - 
on top of which the ODMG-compliant OODBMSs are 
built. By extending this model, TODM aims at being 
portable on any of these OODBMS. 
Before introducing temporal data within object oriented 
concepts, the time model used by TODM is described. 
Then the structures and interfaces used for dealing with 
temporal data will be presented. Finally, the use of TODM 
will be illustrated using the patient example. 

3.1. TIME MODEL AND MANIPULATION 
TODM is based on a classical and almost standard time 
model. It is a temporal and linear structure where a total 
order is defined using the ‘inferior to’ operator. TODM 
handles a discrete view of this model. The time axis can be 
divided in a finite number of smaller segments called 
granules. The smallest granule is called chronon and its 
size is implementation-specific. To manipulate time 
quantities the following entities are defined: 
• an instant is a time point on the time axis - e.g. “1997-09-

16”; 
• a period is a quantity of time between two instants, called 

boundaries - e.g. “[1997-09-01, 1997-10-01)”; 
• an interval is a duration of time with known length but 

without specified boundaries - e.g. “1 month” - which 
may appear as a time window along the time axis. 

TODM provides full support for the standard Gregorian 
calendar with its standard granules - year, month, day, 
hour, minute and second - as well as provision for multi-
calendar support. Each time quantity, anchored or not, is 

expressed in a given calendar and at a precise granularity. 
For the Gregorian calendar, leap years and seconds, and 
time zone specifications are supported. For instance “1997-
09-16 15 MET DST” is an instant expressed in the 
Gregorian calendar at hour-sized granularity, representing 
the sixteenth of September of 1997 at 3:00 p.m. expressed 
in the Middle Europe Time time zone using Daylight 
Saving Time-  GMT2+2. 
A set of arithmetical and comparison3 operations, such as 
precedes, meets and so on, is provided for instant, period 
and interval manipulation. Relative time, as opposed to 
absolute dating is also implemented within TODM time 
support. A form of late binding is used to represent specific 
instants such as Now, Beginning, Forever4, etc. 

3.2. TEMPORAL DATA WITHIN OBJECTS 
The ODM of ODMG defines the characteristics of objects 
and how they can relate to each other. The basic primitive 
is the object which has a unique identifier - OID - constant 
over time. Its state is defined by the values carried by the 
instance properties - attributes and relationships - and its 
behaviour is defined by a set of operations. An attribute is 
of one type, whereas a relationship is defined between two 
types which must have instances referencable by OIDs. 
Objects are entities whose values, i.e. states, can evolve 
over time. TODM is designed to maintain such evolutions 
over the valid and/or transaction time dimensions. 
TODM deals with temporal data on both the instance 
property level and object level by introducing sub-types of 
attribute, relationship and object types. Temporal features 
can not be nested. On one hand, an object which varies 
over one or both of the time dimensions can evolve as a 
whole, i.e. all its instance properties which form its state, 
evolve in the same way. In this case temporal properties 
are defined at the object level, at which level the state 
evolution will also be maintained. On the other hand, an 
object can have instance properties which can vary 
independently over one or both time dimensions. In this 
case, the temporal characteristics are defined on the 
specific instance properties and not at the object level. The 
next figure formalises the semantics of temporal object and 
temporal instance property - temporal attribute and 
temporal relationship, using TOOM representation.  

Figure 2. Temporal object vs Temporal instance properties 
The way to access uniquely an object is always via its 
unique OID, regardless of whether the object is snapshot or 
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temporal. However, to access a value of a temporal object, 
i.e. one of its states, a timestamp has to be added to this 
OID. Depending on the time dimensions handled, this 
timestamp will be an instant or a period - cf. Table 1. 
Accessing temporal data for temporal instance properties, 
is done in a similar way. The value of an attribute or a 
relationship is accessed by the selected object and the name 
of the instance property. To access a value of a temporal 
attribute or temporal relationship, a timestamp must be 
added to the (object, instance property name) couple. To 
support upward compatibility with snapshot objects, the 
result of accessing a temporal entity without any timestamp 
argument, is the current value of the entity: the valid and 
current in the database value at the access execution time. 

3.2.1. RELATIONSHIPS AND TEMPORAL 
FEATURES 
A relationship, which is always defined between two 
instanciable types, can connect either temporal or non 
temporal types, since the OID is always used to access any 
object. A relationship, whether it has temporal 
characteristics or not, can be defined between types which 
may or may not have temporal characteristics. However, 
some restrictions are imposed for inverse links, due to time 
dimensions support. For example a non temporal 
relationship between two temporal types, the first one 
evolving over valid time and the second one over 
transaction time, can not have an inverse link, since the 
objects evolve on different time axes with no common 
portion. The inverse relationships, when allowed, can be 
classified as symmetrical or asymmetrical ones. A 
symmetrical relationship is one between two temporal 
types evolving over the same time dimension. An 
asymmetrical one appears when a temporal relationship 
(which can only be defined in a non temporal type) points 
towards a temporal type evolving on the same time 
dimension. An exhaustive coverage of the allowed inverse 
links in temporal relationships is given in (Matra Cap 
Systémes; 1997). 
The condition for using an object within a snapshot 
relationship is that this object exists, i.e. it owns an OID. 
For temporal relationships and temporal objects, this 
constraint is more complex. For example a relationship 
with inverse link maintaining history over valid time, 
allows an object also maintaining history over valid time to 
be pointed at, only if a value is defined, in this object, for 
the valid time timestamp used for this link. More generally, 
as introduced before, inverse links are only possible within 
symmetrical or asymmetrical relationships, and a 
relationship is possible only if the timestamp of the 
originating entity intersects at least one of the timestamps 
of the target temporal object. The two schemata below, 
Figure 3 and Figure 4, illustrate symmetrical vs 
asymmetrical relationships. 

Figure 3. Symmetrical relationship 

Two temporal objects varying over the same time 
dimension, TO1 and TO2: 
 TO1 = {(s1i,t1j)}1≤i≤n 
 TO1 = {(s1i,t1j)}1≤i≤n 
a relationship from a state sk of TO1 towards TO2 
iff  
 (∃j, 1≤j≤m)/t1k ∩ t2j ≠ ∅ 

Figure 4. Asymmetrical relationship 
A snapshot object with a temporal relationship and 
a temporal object: 
 SOTR = {(ri,ti)}1≤i≤n 
 TO = {(sj,tj)}1≤j≤n 
a relationship from rk of SOTR towards TO iff 
 (∃j, 1≤j≤m)/tk ∩ tj ≠ ∅ 

 
In ODMG, relationships are defined between two types. 
An 1-1 relationship from an object A to an object B, for 
instance, can be represented using a pointer from A to B; 
the pointer can be implemented using the object identifier 
of B. By introducing temporal objects, which can be seen 
as collections of states of objects, TODM also introduces a 
new kind of relationship: state relationships. A state 
relationship does not point towards an object but towards a 
specific state of a temporal object. In this case, the OID of 
the target temporal object is not sufficient to model the 
state relationship. Instead, a Temporal-OID (TOID) - the 
OID of the target temporal object plus the timestamp 
associated with one of its states - should be used, which 
allows to precisely select the state of the temporal object 
involved in the state relationship. Figure 5 illustrates 
classical relationships versus state relationships.  

Figure 5. Classical Relationships vs State Relationships 

3.3. STRUCTURES AND INTERFACES FOR 
TEMPORAL DATA 
The temporal data supported by TODM can vary over one 
or both valid and transaction time dimensions. So three 
types of temporal structures are introduced: Historical, 
Rollback and Bitemporal entities. The following table 
gives, for each one of the temporal entities defined, the 
time dimensions over which they evolve and the timestamp 
types used to maintain the histories of the evolutions. 



 

 

Table 1: Timestamp Types used within Temporal  
Entities 

 Valid Time Transaction 
Time 

Historical instant: Historical Event 
period: Historical State | 
  Historical State Overlap5 

 

Rollback  period 
Bitemporal instant: Bitemporal Event 

period: Bitemporal State | 
  Bitemporal State Overlap 

period 

Snapshot   
The interfaces of these temporal structures are based on 
set/get/delete operations, analogous to set_value and 
get_value operations defined in the ODM of ODMG for 
attributes.  
• For temporal attributes, the set_value and get_value 

operations have been overridden to take into account the 
temporal features: set_value takes an extra argument for 
valid time timestamp, and get_value can have valid time 
and/or transaction time timestamp arguments depending 
on the time dimensions they evolve over. Note that 
transaction time timestamps are not supplied by users, 
but by the system upon transaction commit. 

• Regarding temporal relationships, the operations defined 
in ODM have also been overridden, e.g. the traverse 
operation enabling to reach the target objects of the 
relationship, now accepts valid time and/or transaction 
time timestamp arguments. 

• Temporal objects handle object states via set_state and 
get_state operations: these operations are analogous to 
the set_value and get_value of attributes, but they handle 
object states instead of simple attribute values.  

• Operations to retrieve the whole histories over one or 
both of the time dimensions are also defined for all the 
temporal entities, as for example get_history. 

The new kind of relationships introduced by TODM, state 
relationships, are defined with similar interfaces as 
classical relationships in ODMG, adding an extra argument 
to the operations in order to precisely point towards the 
appropriate state. Temporal state relationships are 
introduced in the same way as classical temporal 
relationships.  
In temporal data structures, we introduce a new feature 
emerging from user requirements: the evolution tracking 
flag. In the modeled world represented in the database, the 
change of a value is due to one of the following reasons: 
• the real world evolves, so the value stored in the database 

has to evolve too; e.g. the temperature of a patient has 
evolved from 38ΌC to 38,5ΌC. 

• a mistake has been made in the observation of the real 
world, so the stored value has to be corrected to reflect 
the exact value; e.g. the value stored for the patient 
temperature is 38ΌC for the last hour whereas the real 
value is 38,5ΌC for the two last hours. 

When managing transaction time evolution, all database 
modifications are kept within the database. Deletions are 
logical deletions: the values are no more current but are 
kept in a previous database state. To be able to distinguish 
an evolution from a correction, TODM introduces the 
evolution tracking flag. This flag is part of all storage 
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structures of temporal types supporting transaction time, 
i.e. rollback and bitemporal ones. TODM provides 
different operations for evolution and correction, setting 
the evolution tracking flag of the affected data accordingly. 
Of course a selection on this flag value is allowed when 
retrieving information stored in the database. The delete 
operation available in historical entities, is replaced by a 
correct operation for the rollback and bitemporal entities 
which performs only logical deletion. To avoid storage 
explosion due to logical deletions over transaction time 
data, vacuuming operations are also available. 
TODM is implemented over the O2 OODBMS in C++. 
The different temporal concepts and entities presented have 
been implemented as C++ classes offering the storage 
structures and the interface operations to manipulate 
temporal data. The user-defined time part, dealing with 
calendars, granules and time quantities, is implemented as 
a C++ library which can be used with or without temporal 
data libraries. Some of the C++ classes are introduced in 
the next part, illustrating the usage of TODM structures via 
the Patient example. 

3.4. PATIENT EXAMPLE 
The “Patient Example” can be implemented using TODM 
structures as shown in Figure 6. The TODM classes are in 
italic characters as opposed to Patient example classes. 
A Patient class is created as a sub-class of Snapshot_Object 
class, which does not have temporal characteristics, but 
may contain temporal instance properties. The Patient class 
has a char* C++ attribute, a 
Snapshot_One_to_One_Relationship relationship towards 
the PatientObservations class, and a 
Rollback_One_to_Many_Relationship relationship towards 
the DataClarificationForm class maintaining the evolution 
of this relationship over transaction time axis. Mappings 
from TOOM modeling to TODM structures are defined in 
the TOOM manual. PatientObservations is a sub-class of 
Historical_Event_Object class, which deals with the 
evolution of PatientObservations_State, sub-class of 
Object_state class, over valid time axis using instants 
expressed in the Gregorian calendar at hour granularity. 
DataClarificationForm class is a sub-class of 
Snapshot_Object class and has some char* C++ attributes 
and the inverse relationship of Patient::dcf, i.e. a 
Rollback_Many_to_One_Relationship relationship. The 
next figure depicts all these classes. 
Some operations are available for the classes created for 
this example to get and set data. Although operations are 
inherited from the super-classes, some of them need to be 
overridden. E.g. 
Historical_Event_Object::set_state(Object_State, Instant) 
is redefined as 
PatientObservations::set_state(PatientObservations_State, 
Instant) to allow the storage of the correct state values. 
This example introduces the different steps to use TODM 
structures: 
• select the correct classes corresponding to the temporal 

requirements of the application 
• create the appropriate sub-classes of TODM generic 

classes 
• redefine some methods to facilitate certain operations, 

like type checking. 



 

 

Figure 6. Patient example within TODM 
All these steps are performed via the Temporal Object 
Definition Language - TODL - which is described next. 
Regarding the selection of temporal data, TODM provides 
some basic operations to retrieve data; however, selection 
may be performed in a more user-friendly and powerful 
way, using the Temporal Object Query Language - TOQL 
- described later in this document. 

4. TEMPORAL OBJECT DEFINITION 
LANGUAGE - TODL 
The Temporal Object Definition Language is an extension 
of ODMG ODL. The TODL user may define interfaces 
which have properties such as keys and extents, instance 
properties (attributes and relationships) and operations.  
As in TODM, temporal characteristics may be applied 
either at instance property or at object level, and are 
mapped to the appropriate TODM structures. For instance 
an attribute with valid time characteristics is a TODM 
historical attribute, while an interface defined to have 
transaction time is a TODM rollback object. The user may 
also define that the result of an operation and/or some 
operation arguments have temporal characteristics. Finally 
he may define new calendars. 

4.1. DEFINING TEMPORAL 
CHARACTERISTICS 
To define a temporal object or a temporal instance 
property, two new clauses are introduced, namely valid and 
transaction. When defining a temporal object, these clauses 
should appear immediately after the inheritance 
specification list and before the interface properties 
(extension and key definitions). In order to define an 
instance property with temporal characteristics, these 
clauses are placed at the end of the instance property 
definition. Their syntax is given in the following lines: 
valid [event | state] [overlaps] 
[granularity <granularity>]  
[calendar <calendar>] transaction 
The valid keyword is used to define a historical object, as 
this is described in TODM. The event and state keywords 
are used to specify the type of valid time timestamps 
(instants or periods, default is period). In the case of period 
representation the user may also define that the valid time 
timestamps may overlap with each other, using the 
keyword overlaps. The default is no overlapping. Finally 
the granularity and calendar subclauses are used to select 
the granularity and calendar at which the valid time 
timestamps are to be expressed.  

The transaction clause defines a rollback object. 
Timestamps of rollback objects are always periods of the 
default granularity and calendar. If both valid and 
transaction clauses are present, a bitemporal object is 
defined. 

4.2. USER-DEFINED TIME 
The user may define attributes of user-defined time types 
like instants, intervals or periods. This approach gives the 
user greater flexibility than the predefined ODMG types 
for time, as he may select the granularity and/or the 
calendar he prefers. Also definition of relative instants and 
relative periods is allowed through the relative keyword. In 
the following examples we show how the user may define 
attributes having user-defined time. 
attribute Instant granularity day bdate; 
attribute Period granularity semester  
 calendar academic attending; 

4.3. USER-DEFINED CALENDARS 
In TODL the user is allowed to define his own calendars, if 
he believes that in such a way his application will be better 
served. Calendar definition is made through the calendar 
statement, which may be included in a TODL definition’s 
file. To define a calendar the user has to define the 
different granules, with constant mapping to finer and 
coarser ones (based on the chronon), the name and the 
origin of the calendar and 7 functions (Matra Cap 
Systémes; 1997). The functions must be defined by the 
user outside TODL, using a language like C++. 

4.4. THE PATIENT EXAMPLE IN TODL 
The classes needed for the “Patient Example” can be 
declared in TODL as follows: 
interface Patient 
(extent Patients key idCode) 
{ 
 attribute String idCode; 
 relationship PatientObservations obs; 
 relationship Set<DataClarificationForm>  
  dcf transaction inverse  
   DataClarificationForm::ofPatient; 
} 
interface PatientObservations valid event  
 granularity day 
{ 
 attribute float temperature; 
 attribute float blood_pressure; 
 attribute String breathing; 
} 
interface DataClarificationForm 
{ 
 attribute String errorType; 
 attribute String errorDescription; 
 relationship Patient ofPatient  
  transaction inverse Patient::dcf; 
} 
A file containing the above definition will be passed to the 
TODL parser, producing a header file containing the C++ 
definitions of the classes described in Section 3.4., along 
with possible redefinitions of some of the methods. The 
user must then invoke the o2import command to import the 
class definitions in the O2 database system (University of 
Athens et al. (a); 1997). 



 

 

5. TEMPORAL OBJECT QUERY LANGUAGE - 
TOQL 
TOQL (University of Athens et. al (b); 1997) is an upwards 
compatible extension of OQL v.1.2 (ODMG standard 
commitee; 1997) providing extensions for management of 
temporal data. These extensions adhere to the overal OQL 
syntax and allow temporal and non-temporal data to be 
treated uniformly, without making the syntax of the 
language unnecessarily complex.  

5.1. DATA TYPES FOR TIME 
Through TOQL the user can manipulate any of the data 
types provided for time representation by TODM. For each 
of those type, literals may be constructed, using the 
notations depicted in Table 2. 

Table 2:  Literals for time representation 
Literal Value 

instant '1990' granularity 
year calendar Gregorian 

An instant for the year 1990 of the Gregorian 
(default) calendar 

interval '2' granularity year An interval of two years in the default 
calendar 

period '[Winter 1986, 
Spring 1997)' calendar 
academic 

A period starting at the Winter semester of 
the academic year and ending at the Spring 
semester of the academic year 1997 

A number of functions, predicates and operators are 
supplied for data types used for time representation. 
Functions include period constructors, intersection and 
merge (union) functions for periods and period sets, 
extractors of certain parts of instants (e.g, year), etc., as 
well as a syntactic construct for casting a datum of the 
above mentioned types to different granularities. Temporal 
predicates include overlaps, precedes, contains and meets 
as defined by the TSQL2 Design Committee. Finally, 
operators include standard arithmetic and set theoretic 
operators such as adding two intervals, multiplying an 
interval by a number, etc. Note, that automatic conversions 
are applied to the arguments of the above mentioned 
functions, predicates and operators when necessary. These 
conversions include granularity conversions (left operand 
semantics are adopted) and conversions from instants to 
periods and from periods to period sets (type conversions). 
For a complete description of the supported operations and 
conversion rules, see (University of Athens et al. (b), 
1997). 

5.2. QUERIES ON TEMPORAL DATA 
In order to preserve the compatibility with snapshot 
(legacy) applications, pure OQL queries always use the 
current value of temporal instance properties, when these 
are referenced in the query, while no conversion is 
performed for whole objects. Since all interaction with 
objects is performed via the operations by retaining their 
signatures intact (including the set_value and get_value 
operations) the necessary compatibility level6 is provided. 
In order to retrieve the complete histories of historical, 
rollback and bitemporal data, the modifiers valid, 
transaction and bitemporal may be prepended, respectively 
to the queries. These modifiers return the histories of their 
operands as they are stored in the database, while the 
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application may use methods provided by the interface of 
valid time, transaction time and bitemporal data, in order to 
extract specific values or iterate over variants. When 
applied to bitemporal data valid and transaction modifiers 
convert them to historical or rollback objects, by dropping 
non-current and not presently valid variants, respectively. 
Temporal objects may also be treated as indexed 
collections orthogonally to collections supported by OQL. 
Indexing (or subscripting) may be performed using 
integers or integer ranges to retrieve variants with specific 
ranks7 as well as instants and periods, to select the desired 
time window. Subscripting may result to a single variant or 
a set of variants, depending on the types of the subscripted 
data and the subscript. If a single value is returned then the 
result is subject to the modifier weighted (which multiplies 
the value of the result by the timestamp’s duration, if such 
a multiplication is meaningful) and may be used as 
argument to functions valid and transaction (which return 
the valid and transaction time timestamps respectively). 
Example: In the following examples we present how to 
access certain variants of temporal data. In the first query 
we access the first variant of the transaction time 
relationship dcf of each Patient object, using the rank of 
the variant; in the second query, the variant that was 
current on Jan. 1, 1996 is accessed, using an instant to 
designate the desired variant. 
select (transaction p.dcf)[0]  
from Patients as p 
select (transaction p.dcf)[instant '1996-01-01' 
granularity day] from Patients p 
When applied to rollback or bitemporal data, the default 
behaviour of all subscript operators is to disregard the 
variants tagged as deleted and consider only variants 
tagged as evolved or current. However, access to the 
deleted variants is provided by appending to the subscript 
expression one of the keywords evolved, deleted or all. The 
evolved keyword is the default.  
Subscript expressions apply orthogonally to temporal 
instance properties and temporal objects. 

5.3. REFERENCING OBJECT VARIANTS 
Temporal data are actually collections of values, with each 
value having associated with it one or two timestamps, 
representing valid and/or transaction time. In the same way 
that OQL allows collections to be used for variable 
definition and in collection expressions, TOQL allows 
temporal instance properties and temporal objects to be 
used for the same purpose. When a variable is defined in 
terms of a temporal datum, it iterates over the different 
variants stored in the temporal datum, and all variants -
regardless of their timestamps- are considered. TOQL 
supports all forms of variable declaration defined in OQL 
v. 1.2 i.e. in the from clause, in existential and in universal 
quantification. 
Temporal data may be used in any place a collection is 
allowed in a membership testing query, in which case each 
variant of the temporal datum is tested for equality against 
to the left side of the query, and if such a variant exists the 
expression evaluates to true, otherwise to false. Finally, 
temporal data may be used as right-hand side queries in 
composite predicates e.g. e1 relation some e2, where e2 is an 
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expression yielding a temporal object and e1 an expression 
which has the snapshot type of e2 and relation is a 
relational operator. 
Example. The following query selects the Patient objects 
which have at least one observation with temperature 
greater than 40oC: 

select p from Patients p where exists po  in 
valid state p.obs: po.temperature > 40 

5.4. CONVERSION BETWEEN TEMPORAL AND 
SNAPSHOT VALUES 
Prepending the snapshot modifier to any query returning a 
temporal object, results to dropping all timestamps and 
returning only plain values. 
The valid modifier is used to construct valid time objects 
form value/timestamp pairs, giving the ability to select the 
granularity, calendar and overlap mode of the result. 
The transaction modifier converts a snapshot datum to a 
rollback one, containing a single variant whose transaction 
timestamp is set to [NOW, UC). No provision is made for 
assigning transaction timestamps, so as not to force past or 
future values.  
Finally, similar to the valid modifier the bitemporal one 
converts collections to bitemporal objects with analogous 
functionality and syntax. 

5.5. TEMPORAL JOINS 
TOQL does not perform temporal joins when two pieces of 
temporal data appear in the from clause, as TSQL2 Design 
Committee proposes (1995); instead, it provides an explicit 
operator, tstruct, for temporal joins. Its syntax is similar to 
the one of the struct operator: 
tstruct (id: query {, id: query }) 
where each query evaluates to an historical object. The 
tstruct operator constructs a list of structures with one field 
for each argument of the tstruct operator, with type the non-
temporal part of the argument’s type, and one more field of 
timestamp type. Only historical objects may be combined 
so as not to construct future or past transaction time 
timestamps. Bitemporal and rollback objects should be first 
converted to historical ones. In all cases, the result of a 
temporal join contains a structure for each set of variants 
(one variant from each argument) that have overlapping or 
identical timestamps, depending on the types of the 
arguments (University of Athens et al. (b); 1997). 

5.6. RESTRUCTURING OPERATORS 
Restructuring operators facilitate the formulation of 
different equivalent representations of temporal data. Two 
restructuring operators are provided, with the first one 
converting period-timestamped variants to instant-
timestamped ones, while the second restructuring operator 
allows for selection of the time axis on which maximal 
timestamps will be produced, similarly to the SLP and SLP

BS 

operators defined by Soo et al. (1995). 

5.7. AGGREGATION 
TOQL provides two types of temporal partitioning, in 
addition to OQL’s standard grouping mechanism.  
The first type allows for splitting of a single temporal 
datum into variant subsets, each pertaining to a specific 
portion of the time axis. Partitioning may be performed 

either on the valid time or on the transaction time axis. The 
user specifies the desired time axis and an interval, which 
is used as the basic partitioning unit for the chosen time 
axis. For example, an interval of 1 year specifies that the 
chosen time axis will be partitioned into segments with 
duration equal to one calendric year and variants will be 
included into some partition, if they contain information 
pertaining to the associated segment. The syntax of this 
form of aggregation is: 
(partition time_axis as interval_query  
 [leading interval_query]  
 [trailing interval_query] [as calendar]) 
 Temporal_Object 
where time_axis specifies the time dimension on which the 
splitting operation will take place. The leading and trailing 
subclauses specify an optional extension of the basic 
partitioning unit towards the beginning or the end of the 
time axis, while the as calendar clause, if present, specifies 
that the starting point of the calculation is the start of a 
calendric unit. 
Each variant subset, produced by the operation, is tagged 
with the time axis period it pertains to. 
Example. The following query returns the patient 
observations for the patient P042, partitioned in one-year 
subgroups. 
select (partition valid as interval '1' 
granularity year) valid state p.obs 
from Patients as p where p.idCode = 'P042' 
The second type of partitioning allows for combination of 
variants from multiple temporal data into groups, with each 
group pertaining to a specific portion of either the valid or 
the transaction time axis. Groups may be filtered, 
depending on whether they satisfy some condition, and 
aggregate values may be computed over elements of each 
group. This form of partitioning is provided via a special 
form of the group by clause, in which the grouping 
extension is a time dimension (valid or transaction time), 
with an associated basic partitioning unit and, optionally, 
unit extensions towards the beginning or the end of the 
time axis. Group filtering and aggregate value computation 
is performed using the standard OQL mechanisms, i.e. the 
having clause and aggregate functions, respectively. The 
time dimension designated in the group by clause must 
occur in the objects resulting from the select query. The 
syntax of this form of partitioning is: 
group by partition time_axis interval_query  
 [leading interval_query]  
 [trailing interval_query] as identifier 
where time_axis specifies the time dimension on which the 
partitioning takes place and the leading and trailing clauses 
have the same semantics as in the first type of partitioning. 
Example. The following query returns the observations for 
all patients, split in one-year subgroups. 
select * from (select obs from Patients) 
group by partition valid interval '1' 
granularity year 

5.8. THE TOQL PROCESSOR 
The TOQL processor is being implemented as a software 
module functioning on top of the OQL processor of O2. 
TOQL queries are intercepted and transformed to OQL 
queries, which are submitted to the OQL processor for 
evaluation. The results returned by the OQL processor are 
forwarded to the user, or the application that has issued the 
TOQL query (University of Athens et al. (b); 1997). 



 

 

Special provision has been included in the TOQL 
specifications for queries to be submitted from within C++ 
programs to the TOODBMS. This includes the definition 
of temporal specialisations of ODMG C++ Binding classes 
and functions (O2Technology; 1996, University of Athens 
et al. (b); 1997). 

6. CONCLUSION AND FUTURE WORK 
In this paper we presented an extension to the ODMG 
proposal for Object Oriented Databases to manage 
temporal information. This extension has been proposed 
within the TOOBIS Esprit IV project and is implemented 
over the O2 OODBMS, in two operating systems platforms, 
namely Solaris OS and Windows NT. This extension, build 
over the ODMG standard, aims at being valid and portable 
on any ODMG compliant OODBMS.  
In the TOOBIS program, two pilot applications are built: 
they are two applications that we can classify as data 
intensive applications. The first one is dedicated to the 
management of data coming from Clinical Research and 
can be sub-classified as managing and auditing oriented 
application. The second pilot deals with optimization of 
production and transport of fresh products and can be sub-
classified as time-dependent and audit-oriented application. 
In fact TOOBIS TOODBMS could target any temporal 
data application such as medical information systems, 
civilian crisis, banking systems or in the military context 
the Command Communication and Control Information - 
C3I - systems, and so on. 
One of the future tasks is porting the proposed temporal 
extension to another OODBMS to prove the standard 
property of this extension, and of course to industrialize it 
in a more trading-oriented goal. A more user friendly 
interface is under design, as well as an extension to cover 
other OO-languages (e.g. Java). Regarding temporal 
features, we plan to extend the temporal management to 
temporal data schemas.  
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