

TEMPORAL EXTENSION TO ODMG

Anya Sotiropoulou Michael Souillard

Costas Vassilakis

Univ. of Athens
Dept. of Informatics

Panepistimiopolis, TYPA
157 71 Athens, Greece
anya@mm.di.uoa.gr

C.R.I. Univ. Paris I Sorbonne
F-75013 Paris - France

MATRA Systémes & Information
F-27106 Val de Reuil - France

souillar@mcs-vdr.fr

Univ. of Athens
Dept. of Informatics

Panepistimiopolis, TYPA
157 71 Athens, Greece
costas@mm.di.uoa.gr

In the past years a number of temporal extensions to the
different database models have been proposed. Extensions
to the relational model have been following the different
SQL standards, while no attempts have been made to
extend the OO-databases’ standard, defined by ODMG. In
this paper we present a temporal extension to the ODMG
standard, as this has been specified in the TOOBIS project.
A Temporal Object Data Model, a Temporal Object
Definition Language and a Temporal Object Query
Language have been specified and have been proposed as
extensions to the ODM, ODL and OQL of ODMG. This
extension has been implemented over a commercial
OODBMS, reinforcing and validating the effort of
standardisation and portability of this extension.

1. INTRODUCTION
In the past years the management of temporal data has
attracted numerous researchers resulting to a large number
of extensions of the traditional database management
systems to support temporal applications (Klopproge and
Lockeman; 1983, Jones and Mason; 1990, Snodgrass;
1987, Snodgrass and Soo; 1992, Clifford and Tansel; 1985,
Tansel et al.; 1989, Ariav; 1986, Segev and Shoshani;
1987, Rose and Segev; 1993, Wuu and Dayal; 1993,
Souillard and Pollet; 1997, McKensie; 1986, Tansel et al.;
1993).
Regarding extensions of existing standards, as well as
trends for new standards, a first approach has been made in
relational databases through TSQL2 Design Committee
(1995), which is the result of a common work of
researchers involved in temporal data in order to define a
bitemporal extension of SQL92. More recently the
SQL/Temporal part of SQL3 drafts (Snodgrass; 1996,
Snodgrass et al; 1996 (a), Snodgrass et al.; 1996 (b))
presents a possible extension to the emerging SQL
standard, keeping in mind TSQL2. However, insofar no
extension to the ODMG standard (Cattel et al.; 1993) for
object oriented databases has been proposed. In this paper
we propose an approach for incorporating temporal data
characteristics in object-oriented databases, in a compliant
to ODMG way, taking into account the SQL/Temporal
proposal, as well as TSQL2. This proposal is made through
the TOOBIS1 - Temporal Object-Oriented dataBases
within Information Systems - project, which is an Esprit IV
program.
Most of the extensions listed above focus on some specific
points of temporal databases. The TOOBIS extension to

1 TOOBIS partners:01-Pliroforiki, University of Athens, Delta

Dairy S.A. for Greece, and MATRA Systémes & Information, O2
Technology, University of Paris I Sorbonne, GlaxoWellcome for
France.

ODMG aims to supply temporal data management within a
full TOODBMS. It covers the ODM, ODL and OQL parts
of ODMG standard, version 1.2, supporting the two
orthogonal time dimensions, namely valid and transaction
time. This extension is upwards compatible with the
ODMG standard, in the sense that ODMG’s and TOOBIS’
worlds - objects and tools - cohabitate in the same
OODBMS. TODM, TODL and TOQL have been
implemented over O2’s OODBMS (as the implementation
by Steiner and Norie (1997)), to illustrate the feasibility
and portability characteristics of this extension. All the
concepts of temporal databases have been introduced in the
object oriented world, making the necessary changes and
keeping the model compliant to the ODMG standard, while
previous works were based on more or less proprietary and
non-portable models (Rose and Segev; 1993, Wuu and
Dayal; 1993). E.g. temporal properties and persistency are
two orthogonal concepts, whereas the introduction of
temporal features within relationships can not be
performed without changing the ODMG relationships.
Within the TOOBIS project, a Temporal Object Oriented
Methodology - TOOM - (Souveyet et al.; 1997) has also
been defined to facilitate the design of temporal
applications using the TOODBMS. TOOM extends the
basic domains available in Object Oriented Methodologies
to temporal domains, as well as object classes and static
links to time dimensions, and constraints, events and
administration policy allowing to take into account the
time dimension
The remnant of this paper is organised as follows: in
section 2 an example of temporal data is presented and to
be used in the different parts of this document; in sections
3, 4 and 5 the temporal extensions to Object Data Model,
Object Definition Language and Object Query Language
are described, respectively. Finally section 6 presents the
conclusions, the target applications and the future work.

2. PATIENT EXAMPLE
In the Clinical Research domain, patients are examined
according to a given number of criteria and measurements.
These observations are repeated several times during the
treatment period, and give an account of the evolution of
the patient status over the time axis. The data resulting
from these observations are stored into databases, and
checking modules are in charge of detecting incoherence
between the different data. The errors detected can be due
to mistakes during observation, reporting or acquisition
phases. When such errors are detected, a Data Clarification
Form (DCF) is emitted per error, in order to identify the
incoherence and allow for its correction. A DCF is linked
to a patient, and will become obsolete when data will be
corrected into the database. A set of DCFs is associated to

mailto:anya@mm.di.uoa.gr
mailto:souillar@mcs-vdr.fr
mailto:costas@mm.di.uoa.gr

each patient. The database is called ‘clean’ when no more
DCFs are emitted by the checking modules.
This small example is very interesting from a temporal data
point of view, since it deals with both valid and transaction
time dimensions:
• the evolution of the patient’s observations corresponds to

the history of these observations over the valid time axis
(VT), and this history is maintained using instants since
patient observation is discrete via several measurements
over time;

• the state of a DCF is linked to the database time, i.e. the
transaction time axis (TT), as it is created when an error
is detected regarding the data of a patient, and it is
archived when this error is corrected in the database; then
for each patient a history of his DCF is maintained over
the transaction time axis.

The following schema, a global structured view built using
TOOM, models the above patient example.

Figure 1. TOOM Global Static View of Patient example
This example will be used in the rest of the paper to
illustrate the different components of the TOODBMS.

3. TEMPORAL OBJECT DATA MODEL - TODM
TODM is an extension of the Object Data Model - ODM -
on top of which the ODMG-compliant OODBMSs are
built. By extending this model, TODM aims at being
portable on any of these OODBMS.
Before introducing temporal data within object oriented
concepts, the time model used by TODM is described.
Then the structures and interfaces used for dealing with
temporal data will be presented. Finally, the use of TODM
will be illustrated using the patient example.

3.1. TIME MODEL AND MANIPULATION
TODM is based on a classical and almost standard time
model. It is a temporal and linear structure where a total
order is defined using the ‘inferior to’ operator. TODM
handles a discrete view of this model. The time axis can be
divided in a finite number of smaller segments called
granules. The smallest granule is called chronon and its
size is implementation-specific. To manipulate time
quantities the following entities are defined:
• an instant is a time point on the time axis - e.g. “1997-09-

16”;
• a period is a quantity of time between two instants, called

boundaries - e.g. “[1997-09-01, 1997-10-01)”;
• an interval is a duration of time with known length but

without specified boundaries - e.g. “1 month” - which
may appear as a time window along the time axis.

TODM provides full support for the standard Gregorian
calendar with its standard granules - year, month, day,
hour, minute and second - as well as provision for multi-
calendar support. Each time quantity, anchored or not, is

expressed in a given calendar and at a precise granularity.
For the Gregorian calendar, leap years and seconds, and
time zone specifications are supported. For instance “1997-
09-16 15 MET DST” is an instant expressed in the
Gregorian calendar at hour-sized granularity, representing
the sixteenth of September of 1997 at 3:00 p.m. expressed
in the Middle Europe Time time zone using Daylight
Saving Time- GMT2+2.
A set of arithmetical and comparison3 operations, such as
precedes, meets and so on, is provided for instant, period
and interval manipulation. Relative time, as opposed to
absolute dating is also implemented within TODM time
support. A form of late binding is used to represent specific
instants such as Now, Beginning, Forever4, etc.

3.2. TEMPORAL DATA WITHIN OBJECTS
The ODM of ODMG defines the characteristics of objects
and how they can relate to each other. The basic primitive
is the object which has a unique identifier - OID - constant
over time. Its state is defined by the values carried by the
instance properties - attributes and relationships - and its
behaviour is defined by a set of operations. An attribute is
of one type, whereas a relationship is defined between two
types which must have instances referencable by OIDs.
Objects are entities whose values, i.e. states, can evolve
over time. TODM is designed to maintain such evolutions
over the valid and/or transaction time dimensions.
TODM deals with temporal data on both the instance
property level and object level by introducing sub-types of
attribute, relationship and object types. Temporal features
can not be nested. On one hand, an object which varies
over one or both of the time dimensions can evolve as a
whole, i.e. all its instance properties which form its state,
evolve in the same way. In this case temporal properties
are defined at the object level, at which level the state
evolution will also be maintained. On the other hand, an
object can have instance properties which can vary
independently over one or both time dimensions. In this
case, the temporal characteristics are defined on the
specific instance properties and not at the object level. The
next figure formalises the semantics of temporal object and
temporal instance property - temporal attribute and
temporal relationship, using TOOM representation.

Figure 2. Temporal object vs Temporal instance properties
The way to access uniquely an object is always via its
unique OID, regardless of whether the object is snapshot or

2 GMT: Greenwich Meridian Time
3 Comparison operations originally drawn from J.F. AllenΥs work

on the relations between periods, with TSQL2 semantics.
4 Beginning is the smallest instant on the time axis - Forever is the

greatest instant on the time axis.

temporal. However, to access a value of a temporal object,
i.e. one of its states, a timestamp has to be added to this
OID. Depending on the time dimensions handled, this
timestamp will be an instant or a period - cf. Table 1.
Accessing temporal data for temporal instance properties,
is done in a similar way. The value of an attribute or a
relationship is accessed by the selected object and the name
of the instance property. To access a value of a temporal
attribute or temporal relationship, a timestamp must be
added to the (object, instance property name) couple. To
support upward compatibility with snapshot objects, the
result of accessing a temporal entity without any timestamp
argument, is the current value of the entity: the valid and
current in the database value at the access execution time.

3.2.1. RELATIONSHIPS AND TEMPORAL
FEATURES
A relationship, which is always defined between two
instanciable types, can connect either temporal or non
temporal types, since the OID is always used to access any
object. A relationship, whether it has temporal
characteristics or not, can be defined between types which
may or may not have temporal characteristics. However,
some restrictions are imposed for inverse links, due to time
dimensions support. For example a non temporal
relationship between two temporal types, the first one
evolving over valid time and the second one over
transaction time, can not have an inverse link, since the
objects evolve on different time axes with no common
portion. The inverse relationships, when allowed, can be
classified as symmetrical or asymmetrical ones. A
symmetrical relationship is one between two temporal
types evolving over the same time dimension. An
asymmetrical one appears when a temporal relationship
(which can only be defined in a non temporal type) points
towards a temporal type evolving on the same time
dimension. An exhaustive coverage of the allowed inverse
links in temporal relationships is given in (Matra Cap
Systémes; 1997).
The condition for using an object within a snapshot
relationship is that this object exists, i.e. it owns an OID.
For temporal relationships and temporal objects, this
constraint is more complex. For example a relationship
with inverse link maintaining history over valid time,
allows an object also maintaining history over valid time to
be pointed at, only if a value is defined, in this object, for
the valid time timestamp used for this link. More generally,
as introduced before, inverse links are only possible within
symmetrical or asymmetrical relationships, and a
relationship is possible only if the timestamp of the
originating entity intersects at least one of the timestamps
of the target temporal object. The two schemata below,
Figure 3 and Figure 4, illustrate symmetrical vs
asymmetrical relationships.

Figure 3. Symmetrical relationship

Two temporal objects varying over the same time
dimension, TO1 and TO2:
 TO1 = {(s1i,t1j)}1≤i≤n
 TO1 = {(s1i,t1j)}1≤i≤n
a relationship from a state sk of TO1 towards TO2
iff
 (∃j, 1≤j≤m)/t1k ∩ t2j ≠ ∅

Figure 4. Asymmetrical relationship
A snapshot object with a temporal relationship and
a temporal object:
 SOTR = {(ri,ti)}1≤i≤n
 TO = {(sj,tj)}1≤j≤n
a relationship from rk of SOTR towards TO iff
 (∃j, 1≤j≤m)/tk ∩ tj ≠ ∅

In ODMG, relationships are defined between two types.
An 1-1 relationship from an object A to an object B, for
instance, can be represented using a pointer from A to B;
the pointer can be implemented using the object identifier
of B. By introducing temporal objects, which can be seen
as collections of states of objects, TODM also introduces a
new kind of relationship: state relationships. A state
relationship does not point towards an object but towards a
specific state of a temporal object. In this case, the OID of
the target temporal object is not sufficient to model the
state relationship. Instead, a Temporal-OID (TOID) - the
OID of the target temporal object plus the timestamp
associated with one of its states - should be used, which
allows to precisely select the state of the temporal object
involved in the state relationship. Figure 5 illustrates
classical relationships versus state relationships.

Figure 5. Classical Relationships vs State Relationships

3.3. STRUCTURES AND INTERFACES FOR
TEMPORAL DATA
The temporal data supported by TODM can vary over one
or both valid and transaction time dimensions. So three
types of temporal structures are introduced: Historical,
Rollback and Bitemporal entities. The following table
gives, for each one of the temporal entities defined, the
time dimensions over which they evolve and the timestamp
types used to maintain the histories of the evolutions.

Table 1: Timestamp Types used within Temporal
Entities

 Valid Time Transaction
Time

Historical instant: Historical Event
period: Historical State |
 Historical State Overlap5

Rollback period
Bitemporal instant: Bitemporal Event

period: Bitemporal State |
 Bitemporal State Overlap

period

Snapshot
The interfaces of these temporal structures are based on
set/get/delete operations, analogous to set_value and
get_value operations defined in the ODM of ODMG for
attributes.
• For temporal attributes, the set_value and get_value

operations have been overridden to take into account the
temporal features: set_value takes an extra argument for
valid time timestamp, and get_value can have valid time
and/or transaction time timestamp arguments depending
on the time dimensions they evolve over. Note that
transaction time timestamps are not supplied by users,
but by the system upon transaction commit.

• Regarding temporal relationships, the operations defined
in ODM have also been overridden, e.g. the traverse
operation enabling to reach the target objects of the
relationship, now accepts valid time and/or transaction
time timestamp arguments.

• Temporal objects handle object states via set_state and
get_state operations: these operations are analogous to
the set_value and get_value of attributes, but they handle
object states instead of simple attribute values.

• Operations to retrieve the whole histories over one or
both of the time dimensions are also defined for all the
temporal entities, as for example get_history.

The new kind of relationships introduced by TODM, state
relationships, are defined with similar interfaces as
classical relationships in ODMG, adding an extra argument
to the operations in order to precisely point towards the
appropriate state. Temporal state relationships are
introduced in the same way as classical temporal
relationships.
In temporal data structures, we introduce a new feature
emerging from user requirements: the evolution tracking
flag. In the modeled world represented in the database, the
change of a value is due to one of the following reasons:
• the real world evolves, so the value stored in the database

has to evolve too; e.g. the temperature of a patient has
evolved from 38ΌC to 38,5ΌC.

• a mistake has been made in the observation of the real
world, so the stored value has to be corrected to reflect
the exact value; e.g. the value stored for the patient
temperature is 38ΌC for the last hour whereas the real
value is 38,5ΌC for the two last hours.

When managing transaction time evolution, all database
modifications are kept within the database. Deletions are
logical deletions: the values are no more current but are
kept in a previous database state. To be able to distinguish
an evolution from a correction, TODM introduces the
evolution tracking flag. This flag is part of all storage

5 period P1 overlaps period P2, if the result of the intersection

between P1 and P2 is not null.

structures of temporal types supporting transaction time,
i.e. rollback and bitemporal ones. TODM provides
different operations for evolution and correction, setting
the evolution tracking flag of the affected data accordingly.
Of course a selection on this flag value is allowed when
retrieving information stored in the database. The delete
operation available in historical entities, is replaced by a
correct operation for the rollback and bitemporal entities
which performs only logical deletion. To avoid storage
explosion due to logical deletions over transaction time
data, vacuuming operations are also available.
TODM is implemented over the O2 OODBMS in C++.
The different temporal concepts and entities presented have
been implemented as C++ classes offering the storage
structures and the interface operations to manipulate
temporal data. The user-defined time part, dealing with
calendars, granules and time quantities, is implemented as
a C++ library which can be used with or without temporal
data libraries. Some of the C++ classes are introduced in
the next part, illustrating the usage of TODM structures via
the Patient example.

3.4. PATIENT EXAMPLE
The “Patient Example” can be implemented using TODM
structures as shown in Figure 6. The TODM classes are in
italic characters as opposed to Patient example classes.
A Patient class is created as a sub-class of Snapshot_Object
class, which does not have temporal characteristics, but
may contain temporal instance properties. The Patient class
has a char* C++ attribute, a
Snapshot_One_to_One_Relationship relationship towards
the PatientObservations class, and a
Rollback_One_to_Many_Relationship relationship towards
the DataClarificationForm class maintaining the evolution
of this relationship over transaction time axis. Mappings
from TOOM modeling to TODM structures are defined in
the TOOM manual. PatientObservations is a sub-class of
Historical_Event_Object class, which deals with the
evolution of PatientObservations_State, sub-class of
Object_state class, over valid time axis using instants
expressed in the Gregorian calendar at hour granularity.
DataClarificationForm class is a sub-class of
Snapshot_Object class and has some char* C++ attributes
and the inverse relationship of Patient::dcf, i.e. a
Rollback_Many_to_One_Relationship relationship. The
next figure depicts all these classes.
Some operations are available for the classes created for
this example to get and set data. Although operations are
inherited from the super-classes, some of them need to be
overridden. E.g.
Historical_Event_Object::set_state(Object_State, Instant)
is redefined as
PatientObservations::set_state(PatientObservations_State,
Instant) to allow the storage of the correct state values.
This example introduces the different steps to use TODM
structures:
• select the correct classes corresponding to the temporal

requirements of the application
• create the appropriate sub-classes of TODM generic

classes
• redefine some methods to facilitate certain operations,

like type checking.

Figure 6. Patient example within TODM
All these steps are performed via the Temporal Object
Definition Language - TODL - which is described next.
Regarding the selection of temporal data, TODM provides
some basic operations to retrieve data; however, selection
may be performed in a more user-friendly and powerful
way, using the Temporal Object Query Language - TOQL
- described later in this document.

4. TEMPORAL OBJECT DEFINITION
LANGUAGE - TODL
The Temporal Object Definition Language is an extension
of ODMG ODL. The TODL user may define interfaces
which have properties such as keys and extents, instance
properties (attributes and relationships) and operations.
As in TODM, temporal characteristics may be applied
either at instance property or at object level, and are
mapped to the appropriate TODM structures. For instance
an attribute with valid time characteristics is a TODM
historical attribute, while an interface defined to have
transaction time is a TODM rollback object. The user may
also define that the result of an operation and/or some
operation arguments have temporal characteristics. Finally
he may define new calendars.

4.1. DEFINING TEMPORAL
CHARACTERISTICS
To define a temporal object or a temporal instance
property, two new clauses are introduced, namely valid and
transaction. When defining a temporal object, these clauses
should appear immediately after the inheritance
specification list and before the interface properties
(extension and key definitions). In order to define an
instance property with temporal characteristics, these
clauses are placed at the end of the instance property
definition. Their syntax is given in the following lines:
valid [event | state] [overlaps]
[granularity <granularity>]
[calendar <calendar>] transaction
The valid keyword is used to define a historical object, as
this is described in TODM. The event and state keywords
are used to specify the type of valid time timestamps
(instants or periods, default is period). In the case of period
representation the user may also define that the valid time
timestamps may overlap with each other, using the
keyword overlaps. The default is no overlapping. Finally
the granularity and calendar subclauses are used to select
the granularity and calendar at which the valid time
timestamps are to be expressed.

The transaction clause defines a rollback object.
Timestamps of rollback objects are always periods of the
default granularity and calendar. If both valid and
transaction clauses are present, a bitemporal object is
defined.

4.2. USER-DEFINED TIME
The user may define attributes of user-defined time types
like instants, intervals or periods. This approach gives the
user greater flexibility than the predefined ODMG types
for time, as he may select the granularity and/or the
calendar he prefers. Also definition of relative instants and
relative periods is allowed through the relative keyword. In
the following examples we show how the user may define
attributes having user-defined time.
attribute Instant granularity day bdate;
attribute Period granularity semester
 calendar academic attending;

4.3. USER-DEFINED CALENDARS
In TODL the user is allowed to define his own calendars, if
he believes that in such a way his application will be better
served. Calendar definition is made through the calendar
statement, which may be included in a TODL definition’s
file. To define a calendar the user has to define the
different granules, with constant mapping to finer and
coarser ones (based on the chronon), the name and the
origin of the calendar and 7 functions (Matra Cap
Systémes; 1997). The functions must be defined by the
user outside TODL, using a language like C++.

4.4. THE PATIENT EXAMPLE IN TODL
The classes needed for the “Patient Example” can be
declared in TODL as follows:
interface Patient
(extent Patients key idCode)
{
 attribute String idCode;
 relationship PatientObservations obs;
 relationship Set<DataClarificationForm>
 dcf transaction inverse
 DataClarificationForm::ofPatient;
}
interface PatientObservations valid event
 granularity day
{
 attribute float temperature;
 attribute float blood_pressure;
 attribute String breathing;
}
interface DataClarificationForm
{
 attribute String errorType;
 attribute String errorDescription;
 relationship Patient ofPatient
 transaction inverse Patient::dcf;
}
A file containing the above definition will be passed to the
TODL parser, producing a header file containing the C++
definitions of the classes described in Section 3.4., along
with possible redefinitions of some of the methods. The
user must then invoke the o2import command to import the
class definitions in the O2 database system (University of
Athens et al. (a); 1997).

5. TEMPORAL OBJECT QUERY LANGUAGE -
TOQL
TOQL (University of Athens et. al (b); 1997) is an upwards
compatible extension of OQL v.1.2 (ODMG standard
commitee; 1997) providing extensions for management of
temporal data. These extensions adhere to the overal OQL
syntax and allow temporal and non-temporal data to be
treated uniformly, without making the syntax of the
language unnecessarily complex.

5.1. DATA TYPES FOR TIME
Through TOQL the user can manipulate any of the data
types provided for time representation by TODM. For each
of those type, literals may be constructed, using the
notations depicted in Table 2.

Table 2: Literals for time representation
Literal Value

instant '1990' granularity
year calendar Gregorian

An instant for the year 1990 of the Gregorian
(default) calendar

interval '2' granularity year An interval of two years in the default
calendar

period '[Winter 1986,
Spring 1997)' calendar
academic

A period starting at the Winter semester of
the academic year and ending at the Spring
semester of the academic year 1997

A number of functions, predicates and operators are
supplied for data types used for time representation.
Functions include period constructors, intersection and
merge (union) functions for periods and period sets,
extractors of certain parts of instants (e.g, year), etc., as
well as a syntactic construct for casting a datum of the
above mentioned types to different granularities. Temporal
predicates include overlaps, precedes, contains and meets
as defined by the TSQL2 Design Committee. Finally,
operators include standard arithmetic and set theoretic
operators such as adding two intervals, multiplying an
interval by a number, etc. Note, that automatic conversions
are applied to the arguments of the above mentioned
functions, predicates and operators when necessary. These
conversions include granularity conversions (left operand
semantics are adopted) and conversions from instants to
periods and from periods to period sets (type conversions).
For a complete description of the supported operations and
conversion rules, see (University of Athens et al. (b),
1997).

5.2. QUERIES ON TEMPORAL DATA
In order to preserve the compatibility with snapshot
(legacy) applications, pure OQL queries always use the
current value of temporal instance properties, when these
are referenced in the query, while no conversion is
performed for whole objects. Since all interaction with
objects is performed via the operations by retaining their
signatures intact (including the set_value and get_value
operations) the necessary compatibility level6 is provided.
In order to retrieve the complete histories of historical,
rollback and bitemporal data, the modifiers valid,
transaction and bitemporal may be prepended, respectively
to the queries. These modifiers return the histories of their
operands as they are stored in the database, while the

6 Of course, new operations should be added, to provide access to

the temporal dimension(s).

application may use methods provided by the interface of
valid time, transaction time and bitemporal data, in order to
extract specific values or iterate over variants. When
applied to bitemporal data valid and transaction modifiers
convert them to historical or rollback objects, by dropping
non-current and not presently valid variants, respectively.
Temporal objects may also be treated as indexed
collections orthogonally to collections supported by OQL.
Indexing (or subscripting) may be performed using
integers or integer ranges to retrieve variants with specific
ranks7 as well as instants and periods, to select the desired
time window. Subscripting may result to a single variant or
a set of variants, depending on the types of the subscripted
data and the subscript. If a single value is returned then the
result is subject to the modifier weighted (which multiplies
the value of the result by the timestamp’s duration, if such
a multiplication is meaningful) and may be used as
argument to functions valid and transaction (which return
the valid and transaction time timestamps respectively).
Example: In the following examples we present how to
access certain variants of temporal data. In the first query
we access the first variant of the transaction time
relationship dcf of each Patient object, using the rank of
the variant; in the second query, the variant that was
current on Jan. 1, 1996 is accessed, using an instant to
designate the desired variant.
select (transaction p.dcf)[0]
from Patients as p
select (transaction p.dcf)[instant '1996-01-01'
granularity day] from Patients p
When applied to rollback or bitemporal data, the default
behaviour of all subscript operators is to disregard the
variants tagged as deleted and consider only variants
tagged as evolved or current. However, access to the
deleted variants is provided by appending to the subscript
expression one of the keywords evolved, deleted or all. The
evolved keyword is the default.
Subscript expressions apply orthogonally to temporal
instance properties and temporal objects.

5.3. REFERENCING OBJECT VARIANTS
Temporal data are actually collections of values, with each
value having associated with it one or two timestamps,
representing valid and/or transaction time. In the same way
that OQL allows collections to be used for variable
definition and in collection expressions, TOQL allows
temporal instance properties and temporal objects to be
used for the same purpose. When a variable is defined in
terms of a temporal datum, it iterates over the different
variants stored in the temporal datum, and all variants -
regardless of their timestamps- are considered. TOQL
supports all forms of variable declaration defined in OQL
v. 1.2 i.e. in the from clause, in existential and in universal
quantification.
Temporal data may be used in any place a collection is
allowed in a membership testing query, in which case each
variant of the temporal datum is tested for equality against
to the left side of the query, and if such a variant exists the
expression evaluates to true, otherwise to false. Finally,
temporal data may be used as right-hand side queries in
composite predicates e.g. e1 relation some e2, where e2 is an

7 Variants are ordered with respect to their timestamps

expression yielding a temporal object and e1 an expression
which has the snapshot type of e2 and relation is a
relational operator.
Example. The following query selects the Patient objects
which have at least one observation with temperature
greater than 40oC:

select p from Patients p where exists po in
valid state p.obs: po.temperature > 40

5.4. CONVERSION BETWEEN TEMPORAL AND
SNAPSHOT VALUES
Prepending the snapshot modifier to any query returning a
temporal object, results to dropping all timestamps and
returning only plain values.
The valid modifier is used to construct valid time objects
form value/timestamp pairs, giving the ability to select the
granularity, calendar and overlap mode of the result.
The transaction modifier converts a snapshot datum to a
rollback one, containing a single variant whose transaction
timestamp is set to [NOW, UC). No provision is made for
assigning transaction timestamps, so as not to force past or
future values.
Finally, similar to the valid modifier the bitemporal one
converts collections to bitemporal objects with analogous
functionality and syntax.

5.5. TEMPORAL JOINS
TOQL does not perform temporal joins when two pieces of
temporal data appear in the from clause, as TSQL2 Design
Committee proposes (1995); instead, it provides an explicit
operator, tstruct, for temporal joins. Its syntax is similar to
the one of the struct operator:
tstruct (id: query {, id: query })
where each query evaluates to an historical object. The
tstruct operator constructs a list of structures with one field
for each argument of the tstruct operator, with type the non-
temporal part of the argument’s type, and one more field of
timestamp type. Only historical objects may be combined
so as not to construct future or past transaction time
timestamps. Bitemporal and rollback objects should be first
converted to historical ones. In all cases, the result of a
temporal join contains a structure for each set of variants
(one variant from each argument) that have overlapping or
identical timestamps, depending on the types of the
arguments (University of Athens et al. (b); 1997).

5.6. RESTRUCTURING OPERATORS
Restructuring operators facilitate the formulation of
different equivalent representations of temporal data. Two
restructuring operators are provided, with the first one
converting period-timestamped variants to instant-
timestamped ones, while the second restructuring operator
allows for selection of the time axis on which maximal
timestamps will be produced, similarly to the SLP and SLP

BS

operators defined by Soo et al. (1995).

5.7. AGGREGATION
TOQL provides two types of temporal partitioning, in
addition to OQL’s standard grouping mechanism.
The first type allows for splitting of a single temporal
datum into variant subsets, each pertaining to a specific
portion of the time axis. Partitioning may be performed

either on the valid time or on the transaction time axis. The
user specifies the desired time axis and an interval, which
is used as the basic partitioning unit for the chosen time
axis. For example, an interval of 1 year specifies that the
chosen time axis will be partitioned into segments with
duration equal to one calendric year and variants will be
included into some partition, if they contain information
pertaining to the associated segment. The syntax of this
form of aggregation is:
(partition time_axis as interval_query
 [leading interval_query]
 [trailing interval_query] [as calendar])
 Temporal_Object
where time_axis specifies the time dimension on which the
splitting operation will take place. The leading and trailing
subclauses specify an optional extension of the basic
partitioning unit towards the beginning or the end of the
time axis, while the as calendar clause, if present, specifies
that the starting point of the calculation is the start of a
calendric unit.
Each variant subset, produced by the operation, is tagged
with the time axis period it pertains to.
Example. The following query returns the patient
observations for the patient P042, partitioned in one-year
subgroups.
select (partition valid as interval '1'
granularity year) valid state p.obs
from Patients as p where p.idCode = 'P042'
The second type of partitioning allows for combination of
variants from multiple temporal data into groups, with each
group pertaining to a specific portion of either the valid or
the transaction time axis. Groups may be filtered,
depending on whether they satisfy some condition, and
aggregate values may be computed over elements of each
group. This form of partitioning is provided via a special
form of the group by clause, in which the grouping
extension is a time dimension (valid or transaction time),
with an associated basic partitioning unit and, optionally,
unit extensions towards the beginning or the end of the
time axis. Group filtering and aggregate value computation
is performed using the standard OQL mechanisms, i.e. the
having clause and aggregate functions, respectively. The
time dimension designated in the group by clause must
occur in the objects resulting from the select query. The
syntax of this form of partitioning is:
group by partition time_axis interval_query
 [leading interval_query]
 [trailing interval_query] as identifier
where time_axis specifies the time dimension on which the
partitioning takes place and the leading and trailing clauses
have the same semantics as in the first type of partitioning.
Example. The following query returns the observations for
all patients, split in one-year subgroups.
select * from (select obs from Patients)
group by partition valid interval '1'
granularity year

5.8. THE TOQL PROCESSOR
The TOQL processor is being implemented as a software
module functioning on top of the OQL processor of O2.
TOQL queries are intercepted and transformed to OQL
queries, which are submitted to the OQL processor for
evaluation. The results returned by the OQL processor are
forwarded to the user, or the application that has issued the
TOQL query (University of Athens et al. (b); 1997).

Special provision has been included in the TOQL
specifications for queries to be submitted from within C++
programs to the TOODBMS. This includes the definition
of temporal specialisations of ODMG C++ Binding classes
and functions (O2Technology; 1996, University of Athens
et al. (b); 1997).

6. CONCLUSION AND FUTURE WORK
In this paper we presented an extension to the ODMG
proposal for Object Oriented Databases to manage
temporal information. This extension has been proposed
within the TOOBIS Esprit IV project and is implemented
over the O2 OODBMS, in two operating systems platforms,
namely Solaris OS and Windows NT. This extension, build
over the ODMG standard, aims at being valid and portable
on any ODMG compliant OODBMS.
In the TOOBIS program, two pilot applications are built:
they are two applications that we can classify as data
intensive applications. The first one is dedicated to the
management of data coming from Clinical Research and
can be sub-classified as managing and auditing oriented
application. The second pilot deals with optimization of
production and transport of fresh products and can be sub-
classified as time-dependent and audit-oriented application.
In fact TOOBIS TOODBMS could target any temporal
data application such as medical information systems,
civilian crisis, banking systems or in the military context
the Command Communication and Control Information -
C3I - systems, and so on.
One of the future tasks is porting the proposed temporal
extension to another OODBMS to prove the standard
property of this extension, and of course to industrialize it
in a more trading-oriented goal. A more user friendly
interface is under design, as well as an extension to cover
other OO-languages (e.g. Java). Regarding temporal
features, we plan to extend the temporal management to
temporal data schemas.

7. BIBLIOGRAPHY
• Ariav, G. “A temporally oriented data model”. ACM

Trans. on Database Systems, Vol11, No 4, 1986
• Catell, R.G.G, et al. “ODMG-93”. International Thomson

Publishing.
• Clifford, J., Tansel, A.U. “On an algebra for historical

relational databases : two views”. Proc. Int. ACM
SIGMOD Conf., 1985.

• Jones, S., Mason, P.J. “Handling the time dimension in a
database”. Proc. Int. Conf. on "Databases", The BCS,
Univ. of Aberdeen, 1980.

• Klopproge, M.R., Lockeman, P.C. “Modelling
information preserving information databases :
consequences of the concept of time”. Proc. 9th Int.
Conf. on VLDB, Florence, Italy, 1983.

• Matra Cap Syst•mes, “TODM Specification and Design
- long version”, Deliverable T31TR.1 of TOOBIS Esprit
IV project8, 1997

• McKensie, E., “Bibliography: Temporal Databases”.
ACM SIGMOD Record, Vol. 15 No. 4, 1986

8 All TOOBIS Deliverables are available at

http:://www.di.uoa.gr/~toobis/Deliverables.html

• O2 Technology, “ODMG C++ Binding Guide” (for
release 4.6), 1996.

• The Object Database Standard: “OQL v.1.2” available
from http://www.odmg.com/, 1997

• Rose, E., Segev, A. “A Temporal Object Oriented Query
Language” Lectures Notes in Computer Science #823,
1993

• Segev, A., Shoshani, A., “Logical Modelling of Temporal
Databases”. Proc. of ACM SIGMMOD International
Conf. on the Management of Data, 1987.

• Snodgrass, R.T., “The temporal query language TQuel”.
ACM TODS, Vol12, No 2, 1987.

• Snodgrass, R.T., Soo, M.D., “Multiple Calendar Support
for Conventional Database Management Systems”. Dept.
of Computer Science, University of Arizona, TR92-07,
1992

• Snodgrass, R.T. “A Road Map of Additions to
SQL/Temporal”. ISO ANSI X3H2-96-013, 1996.

• Snodgrass, R.T., et al. “Adding Valid Time to
SQL/Temporal”. ISO/IEC JTC1/SC21/WG3 DBL MCI-
142, ANSI X3H2-96-151r1, 1996 (a).

• Snodgrass, R.T., et al. “Adding Transaction Time to
SQL/Temporal”. ISO/IEC JTC1/SC21/WG3 DBL MCI-
143, ANSI X3H2-96-152r, 1996 (b).

• Soo, M.D., et al., “An Algebra for TSQL2” in TSQL2
Language Design Committee (1995) chapter 27.

• Souillard, M., Pollet, Y. “TOOBIS: une approche pour la
Gestion de Données Evolutives et Temporelles dans la
Recherche Clinique”. Interfaces 1997,
Montpellier/France.

• Souveyet, C. Deneckere, R., Rolland, C. “TOOM”
TOOBIS Deliverable T23D1.1., 1997.

• Steiner, A., Norrie, M.C., “A Temporal Extension to a
Generic Object Data Model”, Proc. of 9th CAiSE,
TimeCenter Technical Report #15, 1997.

• Tansel, A.U. et al. “Time-by-example query language for
historical databases”. IEEE Trans. on Soft. Engineering,
Vol15, No 4, 1989.

• Tansel, A.U., et al. “Temporal Databases: Theory, Design
and Implementation”. The Benjamin/Cummings, 1993.

• TSQL2 Language Design Committee. “TSQL2” edited
by R.T.Snodgrass. Kluwer Publishers. Sept. 1995.

• University of Athens, 01-Pliroforiki S.A., O2 Technology,
“TODL Specification and Design”, Deliverable
T32TR.1 of TOOBIS Esprit IV project (a), 1997.

• University of Athens, 01-Pliroforiki S.A., O2 Technology,
“TOQL Specification and Design”, Deliverable T33TR.1
of TOOBIS Esprit IV project (b), 1997.

• Wuu, G.T.J., Dayal, U., “A Uniform Model for Temporal
and Versioned Object-Oriented Databases” in Tansel,
A.U. et al. (1993) chap. 10.

Acknowlegments
The authors would like to acknowledge Dr. Carine
Souveyet and Rebecca Deneckere, in the University of
Sorbonne, as well as Dr. Yann Pollet in Matra Systémes et
Informations for their help and constructive comments.
Anya Sotiropoulou’s work was partially funded by a
scholarship from the Greek National Scholarships’ Fund.

http://www.di.uoa.gr/~toobis/Deliverables.html
http://www.odmg.com/,

