

Combining Quality of Service-based and Collaborative
filtering-based techniques for BPEL scenario execution

adaptation

Technical Report TR-14002
Dionisis Margaris, Costas Vassilakis, Panagiotis Georgiadis
margaris@di.uoa.gr, costas@uop.gr, p.georgiadis@di.uoa.gr

May, 2014
Tripoli, Greece

University of Peloponnese
Department of Informatics and Telecommunications
Software and Database Systems Laboratory

1. Introduction
In this technical report, we present an approach for combining Quality of Service

(QoS)-based criteria and collaborating filtering (CF)-based techniques for performing
BPEL scenario execution adaptation. We consider horizontal adaptation of BPEL
scenario execution, i.e. the adaptation leaves the composition logic intact and focuses
on selecting the most appropriate service to realize each of the functionalities invoked
in the context of the BPEL scenario. The algorithms are presented in detail and a
respective example on the algorithm operation is given.

The rest of this report is organized as follows: in section 2, we present the underlying
foundations regarding QoS and CF. In section 3, we present the algorithms used for
performing the adaptation, while section 4 gives a detailed example. Finally, section 5
concludes the report.

2. QoS concepts and collaborative filtering foundations
In the following subsections we summarize the concepts and underpinnings from the

areas of QoS and collaborative filtering, which are used in our work.

2.1 QoS concepts
For conciseness purposes, in this paper we will consider only the attributes

responseTime (rt), cost (c) and availability (av), adopting their definitions from [1].
This does not lead to loss of generality, since the algorithms can be straightforwardly
extended to accommodate more attributes.

The QoS specifications for a service within the BPEL scenario may include an upper
bound and a lower bound for each QoS attribute, i.e. for each service sj included in a
BPEL scenario, the designer formulates two vectors MINj=(minrt,j, minc,j, minav,j) and
MAXj=(maxrt,j, maxc,j, maxav,j). Additionally the designer formulates a weight vector
W=(rtw, cw, avw), indicating how important each QoS attribute is considered by the
designer in the context of the particular operation invocation. The values of the QoS
attributes are assumed to be expressed in a “larger values are better” setup, e.g. a service
having cost = 6 means that that it is cheaper that a service having cost = 4.

In order to compute the QoS attribute values of a service S composed from
constituent services s1, …, sn having QoS attributes equal to (rt1, c1, av1), …, (rtn, cn,
avn), respectively, the formulas given in Table 1 [2] can be used.

response time cost availability




n

i
irt

1

 


n

i
ic

1



n

i
iav

1

Table 1. QoS of composite services

Most works dealing with QoS-based BPEL scenario execution adaptation, consider

given QoS attribute values for each service, which can be for instance declared by the
service provider within an SLA. However, in the real world, QoS metrics such as
response time and availability may vary, due to server or network conditions (failures,
overloads, bottlenecks etc). To tackle this issue, in this paper, we employ prediction
models for QoS attribute values, in order to use in the recommentation process values
that are closer to the actual ones, improving thus the accuracy of the adaptation. In
particular, we adopt [3] and [4] for predicting the service response time and service
availability, respectively. Both these algorithms predict future performance of services
by examining past measurements; the platform proposed in this work collects these
measurements when invoking services in the context of BPEL scenario executions and
makes them available to the modules predicting the future QoS values.

2.2 Subsumption relationship representation
In order to adapt the BPEL scenario execution, the adaptation engine needs to be able

to find which services offer the same functionality, and are thus candidate for
invocation when this particular functionality is needed. In this work, we represent this
information using subsumption relationships [5] which, for any pair of services S1 and
S2 defined as follows: (i) S1 exact S2, iff S1 provides the same functionality with S2 (ii)
S1 plugin S2, iff S1 provides more specific functionality than S2; in this case S1 could be
used whenever the functionality of S2 is needed, since it delivers (a specialization of)

the functionality delivered by S2 (iii) S1 subsume S2, iff S2 provides more generic
functionality than S2. In this case S1 cannot unconditionally be used whenever the
functionality of S2 is needed and (iv) S1 fail S2, in all other cases; in this case, S2 cannot
be substituted for S2. Under these definitions, a service A can be unconditionally
substituted by a service B if (A exact B or A plugin B); this setup provides more
flexibility as compared to strict service equivalence (A exact B) regarding the
formulation of the adapted execution plan, and is hence adopted in this paper.

Effectively, subsumption relationships organize services in a tree, where generic
services are located towards the root and more specific services towards the leaves [5].
Tree nodes, besides service identity, can accommodate QoS values for the services they
represent; this information can be stored in repositories such as OPUCE [6]. Figure 1
shows an excerpt of a subsumption relationships tree.

Figure 1. Example subsumption relationships

2.3 Designations on specific service bindings and functionality
omissions

As noted in section 1, users may wish to designate exact services to be invoked for
realizing specific functionalities, while asking for recommendations on other ones. For
instance, in a travel planning scenario the consumer may request that s/he travels by
“Sea Lines”. Further, the consumer may also specify that some functionality optionally
included in the BPEL scenario is not executed; for example, a tourist may not want to
rent a car, while such a provision is present in the scenario. Typically, the BPEL code
will examine input parameters and decide using a conditional execution construct
(<switch>) whether to invoke the functionality or not. Finally, functionalities that are
neither explicitly bound to a specific services, nor are designated as “not to be executed”
are subject to adaptation. We consider that specific bindings and designations for
functionality omissions are explicitly expressed in the request for scenario invocations.

2.4 Usage patterns repository
In order to perform CF-based adaptation, a repository with user ratings for services

is required. In this paper, we adopt the representation used in [7], where the ratings
repository is modelled as a table having a number of columns equal to the
functionalities present in the BPEL scenario, and one row for each BPEL scenario
execution. Cell i,j is filled with value S if during the ith execution of the BPEL scenario,
service S was used to implement functionality j; cell (i, j) may be also blank, if during
the ith execution of the BPEL scenario functionality j was omitted. In order to
accommodate user ratings, we extend this repository by adding one column per
functionality. This column stores an integer value from the domain [1, 10],
corresponding to the rating given by the user that executed the particular scenario
instance. For the cases that the user has not provided a rating, a null value is stored and
the CF-based algorithm uses a default value, as explained in section 4. The BPEL
scenario adaptation unit inserts new records to the usage patterns repository, when the
concrete services that will be invoked in the context of a particular BPEL scenario
execution are decided, while the user evaluation collection module arranges for storing
the user rankings in the relevant columns.

exec Travel R(travel) Hotel R(Hotel) Event R(Event)
1 OlympicAirways 8 YouthHostel 3 ChampionsLeague 7
2 SwissAir 6 Hilton 9 GrandConcert 6
3 HighSpeedVesse

ls
null YouthHostel null

4 LuxuryBuses 4 null EuroleagueFinals 9
5 Lufthansa 7 GrandResort 8 OperaPerformance 6
6 AirFrance null Hilton null
7 LuxuryBuses null YouthHostel null ChampionsLeague null

Table 2. Example usage patterns repository

3. The service recommendation algorithm
As stated in section 1, our approach follows the horizontal adaptation algorithm, i.e. it
leaves the composition logic intact and adapts the execution by selecting which
concrete service implementation will be used in each specific invocation. In order to
perform this task, the algorithm takes into account the following criteria:

 The consumer’s QoS specifications (bounds and weights).
 Designations on which exact services should be invoked, if such bindings are

requested by the consumer (e.g. a user wanting to travel using Air France).
 Designations on which functionalities should not be invoked (e.g. a user

wanting to book a trip without scheduling any event attendance).
 The QoS characteristics of the available service implementations, including

monitored values of the QoS attributes of the services.
 The service subsumption relationships.
 The usage pattern repository, including ratings entered by the users.

The approach proposed in this paper incorporates two different candidate service
ranking algorithms, the first examining the QoS aspects only ([7]) and the second being
based on CF techniques ([8]). The algorithms run in parallel to formulate their
suggestions regarding the services that should be used in the adapted execution, and
subsequently their suggestions are combined, through a metasearch score combination
algorithm with varying weights. An example of the algorithm operation can be found
in section 4.

3.1 The QoS-based adaptation algorithm
The QoS-based adaptation algorithm initially identifies the services which are
candidate to be used for delivering functionalities in the context of the current BPEL
scenario, respecting the QoS-bounds set by the user, and subsequently computes the k-
best service assignments to the functionalities requested for the particular scenario
execution. In more detail, the algorithm proceeds as follows:

1. For each functionality fi for which adaptation has been requested, the algorithm
retrieves from the semantic service repository the concrete services that (a)
deliver this functionality and (b) respect the QoS bounds set by the users. These
are the candidates for implementing functionality fi. Formally, this is expressed
as

C(fi) = {si,j: (si,j exact fi  si,j plugin fi)  QoSmin(req, fi) ≤ QoS(si,j) ≤
QoSmax(req, fi)}

Note that in all steps of this algorithm, the QoS values for response time and
availability considered for each service are those returned by predictor methods
[3] and [4], respectively.

2. Subsequently, the algorithm formulates an integer programming problem to
compute the k-best solutions regarding the assignment of concrete services si,j
to each functionality fi. To express the integer programming optimization
problem in this work we adopt the concrete service utility function used in [9],
which is

ܷ൫ݏ௜,௝൯ ൌ෍
ொ೘ೌೣሺ௜,୮ሻି௤೛൫௦೔,ೕ൯

ொ೘ೌೣᇲሺ௟௣ሻିொ೘೔೙ᇲሺ௣ሻ
∗ ௣ݓ

ଷ

௣ୀଵ
 (1)

where qp(si,j) is the value of the pth QoS attribute of concrete service si,j (the first
QoS attribute being response time, the second cost and the third one
availability), wp being the weight assigned to the pth QoS attribute

ܳ௠௔௫ሺ݅, ሻ݌ ൌ max
௦∈஼ሺ௙೔ሻ

 ሻݏ௣ሺݍ

[i.e. the maximum value of QoS attribute p among possible concrete service
assignments for functionality fi], and ܳ௠௔௫ᇲሺ݌ሻ [resp. ܳ௠௜௡ᇲሺ݌ሻ] being the
	overall maximum (resp. minimum) value of QoS attribute p within the service
repository. In this work, we modify the utility function so as to have an
increasing value with respect to the utility of the service (contrary to the function
in [9], which has a decreasing value). The modified utility function used

hereafter is ܷ൫ݏ௜,௝൯ ൌ෍ ሺ1 െ
ொ೘ೌೣሺ௜,୮ሻି௤೛൫௦೔,ೕ൯

ொ೘ೌೣᇲሺ௟௣ሻିொ೘೔೙ᇲሺ௣ሻ
ሻ ∗ ௣ݓ

ଷ

௣ୀଵ
. Using the utility

function, the computation of the best solution is expressed as the following
integer programming problem: maximise the overall utility value given by

ܱܷ ொܸ௢ௌ ൌ෍ ෍ ܷሺݏ௜,௝ሻ ∗ ௜,௝ݔ

|஼ሺ௙೔ሻ|

௝ୀଵ

ி

௜ୀଵ

where F is the number of functionalities fi requiring adaptation, and each xj,i is
a binary variable taking the value 1 if ij,j is selected for delivering functionality
fi, and 0, otherwise. Since each functionality fi is delivered in the final execution
plan by exactly one concrete service, the maximization of the utility value is
subject to the constraint

෍ ௜,௝ݔ ൌ 1, ∀݅:	1 ൑

|஼൫௙ೕ൯|

௝ୀଵ

݅ ൑ ܨ

This problem is then solved and the k-best solutions are obtained. Note that this
formulation employs the sum function to rate the availability of the composite
service taking into account the availability values of the constituent services,
rather than the product function, as denoted in Table 1. The transformation from
the product function to the sum function is achieved by applying the logarithmic
function to the computation of reliability [10], since logሺ∏ ௜ሻ݈݁ݎ ൌ

௡
௜ୀଵ

∑ logሺ݈݁ݎ௜ሻ
௡
௜ୀଵ . Through this transformation, the problem can be expressed as

an integer programming problem and solved efficiently.
The solutions are saved, together with their overall utility score, for perusal in the
combination step. In order to solve the integer programming problem computing the k-
best solutions, the IBM ILOG CPLEX optimizer was used. In our implementations, we
have set k=20.

3.2 The CF-based algorithm
The CF-based algorithm employed in our proposal is an adaptation of the standard

GroupLens algorithm [11], modified to take into account the semantic distance of the
services realizing the same functionality. For instance, rows 2 and 5 of Table 2 are
considered “semantically close”, since they both list air transport for travel, a first class
hotel for accommodation and classical music events; on the other hand rows 2 and 7 of
the same table are considered “semantically distant”, since all three services correspond
to diverse real world counterparts (air travel vs. bus, 1st class hotel vs. 3rd class, concert
vs. sports). Taking this into account, when a request arrives asking for travel via
AirFrance and accommodation in GrandResort and requesting a recommendation for
event attendance, the ratings in rows 2 and 5 must be taken more strongly into account
than those in row 7, since the former two rows are “closer” to the one under adaptation.

To accommodate this adaptation, we extend the formula of cosine similarity between
two rows Ԧܺ, ሬܻԦ of the usage pattern repository table as follows:

൫ݎ Ԧܺ, ሬܻԦ൯ ൌ
෍ ሺ Ԧܺሾ݇ሿ ∗ ሬܻԦሾ݇ሿ ∗ ݀൫ Ԧܺሾ݇ሿ, ሬܻԦሾ݇ሿ൯ሻ

௡

௞ୀଵ

‖ Ԧܺ‖ ∗ ‖ሬܻԦ‖
																																																						ሺ2ሻ

We can observe in equation (2) that the standard cosine similarity metric has been
extended to accommodate the semantic distance between the services that realize the
same functionality in rows Ԧܺ and ሬܻԦ; this is accomplished by multiplying each term of
the sum in the nominator by a metric of the semantic distance between the two services,
which is denoted as d(s1, s2) and is computed using the formula introduced in [12]:

 d(s1,s2) = C – lw*PathLength – NumberOfDownDirection (3)

where C is a constant set to 8 [12], lw is the level weight for each path in subsumption
tree (cf. Figure 1), PathLength is the number of edges counted from functionality s1 to
functionality s2 and NumberOfDownDirection is the number of edges counted in the
directed path between functionality s1 and s2 and whose direction is towards a lower level
in the subsumption tree. For more details in the computation of the semantic distance,
the interested reader is referred to [12]. We further normalize this similarity metric in
the range [0, 1] by dividing the result computed in the above formula by 8; this way, the
multiplication by the normalized similarity metric in equation (2) reduces the correlation
coefficient between the two rows by a factor proportional to the semantic distance of the
services employed in these rows to realize the same functionality.

For items not explicitly rated, we follow the rationale of [7] according to which usage
of a service is an indication of preference, and we choose a rating equal to the 80% of
the maximum rating. This is inline with the findings of [13], which asserts that
dissatisfied users will provide negative feedback with a very high probability (≥89%).
Rows that have not been rated at all (and therefore have a default value for all ratings)
are the reason behind choosing the cosine similarity against the Pearson similarity, since
the latter disregards rows whose ratings have no variance (i.e. are all equal).

Using the modified cosine similarity, the CF-based algorithm operates as follows:
1. It retrieves from the usage pattern repository all rows that contain a service

implementing the functionality on which a recommendation is requested. For
example, if a recommendation on event attendance is requested, only rows 1, 2,
4, 5 and 7 of table 1 will be retrieved.

2. The rows retrieved from step 1 are filtered to retain only those that fulfil the
QoS criteria requested by the user.

3. The similarities between the request and each row are computed using the
modified cosine similarity metric. The request is represented here as a vector ሬܴԦ,
having a rating equal to 10 for each functionality included in the scenario and a
rating equal to 0 for each functionality designated as not to be executed.

4. For each distinct service implementing the requested functionality that is
included in the remaining rows, we compute its rating prediction using the
standard rating prediction formula

൫݌ ሬܴԦሾ݇ሿ൯ ൌ
∑ ൫ ሬܰሬԦሾ݇ሿ൯ ∗ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

∑ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

[11] (we again do not subtract the mean ܰ	ሬሬሬሬԦ from ܰ	ሬሬሬሬԦሾ݇ሿ, so as not to render
useless the rows having only default values, and correspondingly we do not add
the mean rating of the user for which the prediction is being made).

5. Finally, we retain the 20-best services for each functionality requiring
adaptation, for perusal in the combination step.

After the lists of candidates for each individual service that is subject to adaptation
have been computed, the algorithm selects the top-20 execution plans with respect to
their CF-score. Given an execution plan containing services (s1,i, …, sN,k) with the
similarity scores of the services computed in step 5 being (CFS(s1,i), …, CFS(sN,k)),
then the CF-score of the execution plan is equal to CFS(s1,i)+…+CFS(sN,k). Computing
the top-20 execution plans is modelled as an integer programming optimization
problem, formulated as follows: maximize the overall utility value given by:

ܱܷ ஼ܸி ൌ ሺ෍෍݊݋݅ݐܿ݅݀݁ݎ݌൫ݏ௜,௝൯ ∗ ௜,௝ݔ

௅ሺ௜ሻ

௝ୀଵ

ி

௜ୀଵ

ሻ/ܨ

where F is the number of functionalities functk(request) requiring adaptation, L(i) is the
number of services selected by the CF-based algorithm for functionality i (normally 20,
but it is possible that fewer results are retrieved, depending on the contents of the usage
pattern repository), and each xi,j is a binary variable taking the value 1 if si,j is selected
for delivering functionality functi(request), and the value 0, otherwise. The result is
divided by the number of functionalities F, to normalize it in the range [0,1]. Since each
functionality functi(request) is delivered in the final execution plan by exactly one
concrete service, the maximization of the utility value is subject to the constraint

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑ ܨ

The solutions are saved, together with their overall utility score, for perusal in the
combination step.

The CF module has been implemented using Apache Mahout
(https://mahout.apache.org/), by subclassing the UncenteredCosineSimilarity class and
reimplementing in the subclass the UserSimilarity method, to accommodate the
semantic similarity metric described above. The integer programming problem for
computing the k-best solutions is solved using the IBM ILOG CPLEX optimizer.

3.3 The combination step
The combination step synthesizes the results given by individual algorithms to

produce to a single result. Recall from the previous two subsections that each algorithm
produces a set of candidate execution plans, with each execution plan being tagged with
the relevant normalized score (QoS-score or CF-score). In order to combine the scores,
we use the CombMNZ metasearch algorithm, since it has been found to have the best
performance [14] [the CombMNZ rating of a solution is computed by multiplying the
sum of the individual scores by the number of non-zero scores, i.e. ܼܰܯܾ݉݋ܥ௜ ൌ ݉௜ ∗
∑ ௝ሺ݅ሻݎ
௠೔
௝ୀଵ , where mi is the number of algorithms giving non-zero rating to item i and

rj(i) is the rating given by algorithm j to item i]. After computing the CombMNZ
metasearch for all candidate execution plans, the combination step selects the execution
plan with the highest score, which will be used to drive the adaptation process.

3.4 The execution adaptation architecture
The execution adaptation architecture, illustrated in Fig. 2, follows the middleware-
based approach, with an adaptation layer intercepting web service invocations and
appropriately directing them to the services decided by the adaptation algorithm. As

shown in Figure 2, the BPEL scenario execution initially passes to the adaptation layer
the information regarding service invocations that will be performed, QoS bounds and
weights as well as specific service bindings. When the adaptation layer receives this
information, it applies the adaptation algorithm to formulate the execution plan for the
particular scenario execution (i.e. decide the actual services that will be invoked to
deliver each functionality) and stores the execution plan for later perusal. Subsequently,
when a web service invocation is intercepted by the adaptation layer, the respective
execution plan is retrieved from the execution plan storage, the web service decided to
deliver the specific functionality is extracted and the invocation is routed accordingly
to that service. Note that steps (4)-(8) depicted in Figure 2 are repeated multiple times
within each BPEL scenario execution, once per web service invocation performed.
When the invocation to a service implementation has concluded, the data regarding the
service’s response time and availability are passed to the QoS prediction and update
module, which computes the predicted values for the respective QoS parameters and
updates the corresponding elements in the semantic service repository.
Additionally, the BPEL scenario returns at the end of its execution, along with the
result, an evaluation token, which the consumer may use to enter the ratings for the
services s/he has used in the context of the BPEL scenario execution. The evaluation
token is returned in the response headers, to retain the response payload schema intact.
To accommodate this additional functionality (passing the necessary information to the
adaptation layer and returning the evaluation token), the BPEL scenario is preprocessed
as described in [7] before being deployed to the web services platform, with the
preprocessing step injecting the necessary invocations to the adaptation layer into the
scenario, and the result of the preprocessing step is then deployed and made available
for invocations.

Figure 2. The Execution adaptation architecture

Web Services Platform

WS-BPEL Orchestrator

Consumer

(1)
BPEL scenario

invocation +
QoS bounds + binding

requirements

Adaptation layer

(2) information
about service

invocations, QoS
bounds & weights

and bindings

(9)
Results +
evaluation

token

WS-1 WS-n...WS-2

Web Service Implementations

(5) Invocation (6) Results

(4)
web service call

Web service
invocation redirection

(8) Result

(subsumption
relationships & QoS

attributes)

Semantic
service
repository

Usage pattern
repository (inc.

ratings)

Combination
step

Execution plan formulation

User
feedback
platform

(3) Evaluation
token Execution

plans
QoS

prediction
& update

CF-
based

algorithm

QoS-
based

algorithm

(7)
Update

(10)
Evaluation token +

ratings
(11)

Updates to
usage pattern

repository

4. An example of the algorithm operation
In this section, we give an illustrative example on the operation of the adaptation

algorithm. In this example, we consider the following:
a) The scenario to be adapted is the trip reservation application used in the examples

in section 2. The scenario includes mandatory invocations to a travel reservation
and a hotel reservation service, and an optional invocation to an even attendance
booking service.

b) The subsumption relationships that will be used in this scenario are as depicted
in Figure 3.

Figure 3. Subsumption relationships tree used in the example

c) The QoS values for the services implementing the “Air travel” functionality are
as shown in Table 3. The table lists only the QoS values for the services
implementing the “Air travel” functionality, since these are the only ones
pertinent in this example.

Equivalent WS Cost Response Time Availability
AirFrance 8 10 7
Lufthansa 9 8 7

OlympicAirways 2 5 9
Swissair 7 7 8

Table 3. QoS values for the services implementing the “Air travel”
functionality

d) The contents of the usage pattern repository are as shown in Table 4.
exec Travel R(travel) Hotel R(Hotel) Event R(Event)

1 OlympicAirways 8 Hilton 3 GrandConcert 5
2 Lufthansa 9 YouthHostel 9 EuropaLeague 7
3 HighSpeedVessels YouthHostel
4 HighSpeedVessels 4 ChampionsLeague 9
5 AirFrance 7 GrandResort 8 OperaPerformance 6
6 SwissAir 6 Hilton
7 LuxuryBuses 9 YouthHostel 6 EuroleagueFinals 9
8 Lufthansa 9 YouthHostel 8 EuroleagueFinals

Table 4. Usage pattern repository used in the example

e) The user request to be adapted is:
AirTravel(R), YouthHostel, ChampionsLeague
which effectively reads: I want to stay in YouthHostel and attend the
ChampionsLeague event, and I want a recommendation regarding an AirTravel
service.
The user has set a QoS weight vector equal to
W= (0.4, 0.3, 0.3)
while the MIN and MAX vectors, setting the lower and upper limits respectively
for service QoS attributes, are set as follows:
MINAirTravel=(4, null, 5)
MAXAirTravel=(null, null, null)
i..e. a minimum of 4 and 5 is set for the travel cost and availability respectively,
while no lower limit is set for its response time. Similarly, no upper bounds are
imposed for any service.

f) We assume that the minimum and maximum values for the QoS attributes within
the repository are as follows (these are needed in the utility function U):
MIN=(2, 1, 2)
MAX=(10, 10, 9)

4.1 Applying the QoS-based algorithm
1. First, we retrieve from the service repository (c.f. Table 3) all rows

implementing the “air travel” functionality. All rows of the repository qualify
(since the excerpt of the repository depicted in Table 3 consists exactly of these
rows)

2. Subsequently, the rows not meeting the QoS bounds are filtered out. As a
consequence, row #3, corresponding to the OlympicAirways service, is rejected.
Subsequently, we compute the utility function U for each of the remaining
services. The values for the utility function are as follows (recall that the utility

function is defined as ܷ൫ݏ௜,௝൯ ൌ෍ ൬1 െ
ொ೘ೌೣሺ௜,୮ሻି௤೛൫௦೔,ೕ൯

ொ೘ೌೣᇲሺ௟௣ሻିொ೘೔೙ᇲሺ௣ሻ
൰ ∗ ௣ݓ

ଷ

௣ୀଵ
):

U(AirFrance) = ቀ1 െ ଽି଼

ଵ଴ିଶ
ቁ ∗ 0.4 ൅ ቀ1 െ

ଵ଴ିଵ଴

ଵ଴ିଵ
ቁ ∗ 0.3 ൅ ቀ1 െ

଼ି଻

ଽିଶ
ቁ ∗ 0.3 ൌ 0.913

U(Lufthansa) = ቀ1 െ ଽିଽ

ଵ଴ିଶ
ቁ ∗ 0.4 ൅ ቀ1 െ

ଵ଴ି଼

ଵ଴ିଵ
ቁ ∗ 0.3 ൅ ቀ1 െ

଼ି଻

ଽିଶ
ቁ ∗ 0.3 ൌ 0.888

U(SwissAir) = ቀ1 െ ଽିଽ

ଵ଴ିଶ
ቁ ∗ 0.4 ൅ ቀ1 െ

ଵ଴ି଼

ଵ଴ିଵ
ቁ ∗ 0.3 ൅ ቀ1 െ

଼ି଻

ଽିଶ
ቁ ∗ 0.3 ൌ 0.788

Subsequently, we formulate the integer programming problem to maximize the overall
utility function

ܱܷ ொܸ௢ௌ ൌ෍ ෍ ܷሺݏ௜,௝ሻ ∗ ௜,௝ݔ

|஼ሺ௙೔ሻ|

௝ୀଵ

ி

௜ୀଵ

subject to the constraint

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑ ܨ

Since now F=1 (F is the number of functionalities for which adaptation is requested),
we have that the overall utility function is reduced to

ܱܷ ொܸ௢ௌ ൌ ෍ ܷ൫ݏ஺௜௥்௥௔௩௘௟,௝൯ ∗ ஺௜௥்௥௔௩௘௟,௝ݔ ൌ	

|஼ሺ஺௜௥்௥௔௩௘௟ሻ|

௝ୀଵ

UሺAirFranceሻ ∗ x୅୧୰୊୰ୟ୬ୡୣ ൅ UሺLufthansaሻ ∗ x୐୳୤୲୦ୟ୬ୱୟ ൅ UሺSwissAirሻ ∗ xୗ୵୧ୱୱ୅୧୰
subject to the constraint

x୅୧୰୊୰ୟ୬ୡୣ ൅ x୐୳୤୲୦ୟ୬ୱୟ ൅ xୗ୵୧ୱୱ୅୧୰ ൌ 1
The three possible solutions to this integer programming problem are as shown in Table
5:

Solution QoS-score
xAirFrance=1, xLufthansa=0, xSwissAir=0 0.913
xAirFrance=0, xLufthansa=1, xSwissAir=0 0.888
xAirFrance=0, xLufthansa=0, xSwissAir=1 0.788

Table 5. Solutions proposed by the QoS-based algorithm

We save these solutions for perusal in the combination step.

4.2 Applying the CF-based algorithm
According to the first step of the CF-based algorithm, we will retrieve from the usage

pattern repository (cf. Table 4) only those rows that involve the functionality requested
for adaptation. Since the functionality for which adaptation is requested is AirTravel,
rows 3, 4 and 7 will be eliminated, since they involve other means of transportation (sea
travel for rows 3 and 4 and bus travel for row 7). Therefore, the rows depicted in Table
6 will be retrieved.

1 OlympicAirways 8 Hilton 3 GrandConcert 5
2 Lufthansa 6 YouthHostel 9 EuropaLeague 6
5 AirFrance 7 GrandResort 8 OperaPerformance 6
6 SwissAir 6 Hilton null

8 Lufthansa 9 YouthHostel 8 EuroleagueFinals null

Table 6. Rows of the usage pattern repository delivering the functionality under
adaptation

The second step of the CF-based algorithm eliminates the rows for which the service
delivering the functionality under adaptation does not meet the QoS bounds set by the

client. Row 1 fails to satisfy them so it is eliminated, and the rows retained for further
processing are as shown in Table 7. At this point, we fill the null value of row #6 and
row #8 with the default value (8).

2 Lufthansa 6 YouthHostel 9 EuropaLeague 6
5 AirFrance 7 GrandResort 8 OperaPerformance 6
6 SwissAir 6 Hilton 8
8 Lufthansa 9 YouthHostel 8 EuroleagueFinals 8

Table 7. Rows of table 6 satisfying the QoS bounds

We now compute the similarity of each row to a request vector ሬܴԦ ൌ ሺ10, 10, 10ሻ,
taking into account the semantic distances between the services. The semantic distances
between the services pertinent to this adaptation are computed through the formula

d(s1,s2) = (8 – lw*PathLength – NumberOfDownDirection) / 8

and their values are as follows:

d(AirTravel, Lufthansa) = (8 - 2/3 *1 – 1) / 8 = (19/3) / 8 = 19/24

d(AirTravel, AirFrance) = (8 - 2/3 *1 – 1) / 8 = (19/3) / 8 = 19/24

d(AirTravel, SwissAir) = (8 - 2/3 *1 – 1) / 8 = (19/3) / 8 = 19/24

d(YouthHostel, YouthHostel) = (8 - 1/3 *0 – 0)/ 8 = 8 / 8 = 1

d(YouthHostel, GrandResort) = (8 - 1/3 *4 – 2) / 8 = (14/3) / 8 = 14/24

d(YouthHostel, Hilton) = (8 - 1/3 *4 – 2) / 8 = (14/3) / 8 = 14/24

d(ChampionsLeague, EuropaLeague) = (8 - 1/4 *2 – 1) / 8 = (26/4) / 8 = 26/32

d(ChampionsLeague, EuroleagueFinals) = (8 - 1/4 *4 – 2) / 8 = (5) / 8 = 5/8

d(ChampionsLeague, OperaPerformance) = (8 - 1/4 *6 – 3) / 8 = (14/4) / 8 = 14/32

The third step of the CF-based algorithm is to compute the similarity between the

user request vector ሬܴԦ ൌ ሺ10, 10, 10ሻ and the vectors corresponding to the raters of the
functionality for which adaptation is requested. Recall from section 3 that the similarity
is computed using the cosine similarity metric, using the formula

൫ݎ Ԧܺ, ሬܻԦ൯ ൌ
෍ ሺ Ԧܺሾ݇ሿ ∗ ሬܻԦሾ݇ሿ ∗ ݀൫ Ԧܺሾ݇ሿ, ሬܻԦሾ݇ሿ൯ሻ

௡

௞ୀଵ

‖ Ԧܺ‖ ∗ ‖ሬܻԦ‖

Therefore, the similarity metric r between the rows of Table 7 and the user request
vector ሬܴԦ ൌ ሺ10, 10, 10ሻ are as follows:

൫ݎ ሬܴԦ, ଶሬሬሬሬሬሬሬሬሬሬԦ൯ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ଶሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ଶሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ

൬6 ∗ 10 ∗	 924൰൅ ሺ9 ∗ 10 ∗ 1ሻ ൅ ൬6 ∗ 10 ∗ 2632൰

ට62 ൅ 92 ൅ 62 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.869

൫ݎ ሬܴԦ, ହሬሬሬሬሬሬሬሬሬሬԦ൯ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ହሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ହሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ

൬7 ∗ 10 ∗	 924൰൅ ൬8 ∗ 10 ∗ 1424൰൅ ሺ6 ∗ 10 ∗ 1432ሻ

ට72 ൅ 82 ൅ 62 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.607

൫ݎ ሬܴԦ, ଺ሬሬሬሬሬሬሬሬሬሬԦ൯ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ଺ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ଺ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ

൬6 ∗ 10 ∗	1924൰൅ ൬8 ∗ 10 ∗ 1424൰

ට62 ൅ 82 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.544

൫ݎ ሬܴԦ, ሬሬሬሬሬሬሬሬሬሬԦ൯଼ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿ଼ݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯଼ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ

൬9 ∗ 10 ∗	1924൰൅ ሺ9 ∗ 10 ∗ 1ሻ ൅ ሺ8 ∗ 10 ∗ 58ሻ

ට92 ൅ 82 ൅ 82 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.844

Subsequently, we compute each service’s rating prediction using, as discussed in
section 3, the rating prediction formula

൫݌ ሬܴԦሾ݇ሿ൯ ൌ
∑ ൫ ሬܰሬԦሾ݇ሿ൯ ∗ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

∑ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

And therefore we obtain

p(Lufthansa) = (6*0.869 + 0.844*9)/ (0.869+0.844) = 7.48

p(AirFrance) = 7* 0.607 / 0.607 = 7

p(SwissAir) = 6* 0.544 / 0.544 = 6

These values are then normalized to the range [0,1] by dividing by the maximum

possible value of a rating, in our case 10:

pn(Lufthansa) = (6*0.869 + 0.844*9)/ (0.869+0.844) = 0.748

pn(AirFrance) = 7* 0.607 / 0.607 = 0.7

pn(SwissAir) = 6* 0.544 / 0.544 = 0.6

Since the number of possible solutions is less than 20, all solutions are retained.

Subsequently, similarly to the case of the QoS-based algorithm, we formulate the

integer programming problem, i.e. to maximize the overall utility function

ܱܷ ஼ܸி ൌ ሺ෍෍݊݋݅ݐܿ݅݀݁ݎ݌൫ݏ௜,௝൯ ∗ ௜,௝ݔ

௅ሺ௜ሻ

௝ୀଵ

ሻ/ܨ

ி

௜ୀଵ

subject to the constraint

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑ ܨ

Since the number of functionalities requiring adaptation F is equal to 1, the integer

optimization problem is reduced to

ܱܷ ஼ܸி ൌ෍݊݋݅ݐܿ݅݀݁ݎ݌൫ݏ஺௜௥்௥௔௩௘௟,௝൯ ∗ ஺௜௥்௥௔௩௘௟,௝ݔ

ଷ

௝ୀଵ

ሻ ൌ

predictionሺAirFranceሻ ∗ x୅୧୰୊୰ୟ୬ୡୣ ൅

predictionሺLufthansaሻ ∗ x୐୳୤୲୦ୟ୬ୱୟ ൅

predictionሺSwissAirሻ ∗ xୗ୵୧ୱୱ୅୧୰

subject to the constraint

x୅୧୰୊୰ୟ୬ୡୣ ൅ x୐୳୤୲୦ୟ୬ୱୟ ൅ xୗ୵୧ୱୱ୅୧୰ ൌ 1

The three possible solutions to this problem are as shown in Table 8.

Solution CF-score

xAirFrance=1, xLufthansa=0, xSwissAir=0 0.7

xAirFrance=0, xLufthansa=1, xSwissAir=0 0.748

xAirFrance=0, xLufthansa=0, xSwissAir=1 0.6

Table 8. Solutions proposed by the CF-based algorithm

4.3 Combining the results
Finally, we apply the CombMNZ metasearch algorithm to compute the final score of each

solution. The CombMNZ algorithm adds the individual scores and multiplies the result by the

number of algorithms proposing each solution. In our case, all solutions are proposed by both

the QoS-based algorithm and the CF-based algorithm, hence the results are as follows:

CombMNZAirFrance = (0.913 + 0.7) * 2 = 1.613 * 2 = 3.226

CombMNZLufthansa = (0.888 + 0.748) * 2 = 1.636 * 2 = 3.272

CombMNZSwissAir = (0.788 + 0.6) * 2 = 1.388 * 2 =2.776

We can observe that the CombMNZLufthansa score is the maximum among all scores, hence the

Lufthansa service will be chosen for the particular adaptation, so the user scenario execution

plan becomes «Lufthansa, YouthHostel, ChampionsLeague».

5. Conclusions
In this technical report we have presented an approach to the adaptation of BPEL scenario

execution, combining QoS-based criteria with a CF-based approach. The CF-based approach

allows for considering the ratings of the users for individual services, hence complementing the

objective and measurable QoS-based criteria with user views, reflecting the real-world

experience from using the services. We have also given a running example on the algorithm, to

facilitate the understanding of its operation.

6. References
[1] O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What is a Service?: Towards Accurate Description of Non-

Functional Properties. Distributed and Parallel Databases, vol. 12 (2002)
[2] Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service Composition

based on Genetic Algorithms. In: 2005 Cnference on genetic and evolutionary computation, H-G. Beyer,
U-M. O'Reilly (eds.), 1069-1075 (2005)

[3] Shao, L., Guo, Y., Chen, X., He, Y.: Pattern-Discovery-Based Response Time Prediction. In: Advances
in Automation and Robotics, vol. 2 LNEE, vol. 123, 355-362 (2012)

[4] Duan, Y., Huang, Y.: Research on availability prediction model of web service. In: 2011 International
Conference on Computer Science and Service System, 1590–1594 (2011)

[5] Paolucci, M., Kawamura, T., Payne, T., Sycara, T.,: Semantic Matching of Web Services Capabilities.
In: International Semantic Web Conference, 333-347 (2002)

[6] Yu, J., Sheng, Q., Han, J., Wu, Y., Liu, C.: A semantically enhanced service repository for user-centric
service discovery and management. In: Data & Knowledge Engineering, vol. 72, 202-218 (Feb. 2012)

[7] Margaris, D., Vassilakis, C., Georgiadis, P.: Adapting WS-BPEL scenario execution using collaborative
filtering techniques. In: IEEE 7th International Conference on Research Challenges in Information
Science, R. Wieringa, et al. (eds), Paris, France (2013)

[8] Arpacı, A.E., Bener, A.B.: Agent Based Dynamic Execution of BPEL documents. In: ISCIS 2005, LNCS
3733, P. Yolum, et al. (eds.), 332 – 341 (2005)

[9] Alrifai, M., Risse, T.: Combining Global Optimization with Local Selection for Efficient QoS-aware
Service Composition. In: 18th international conference on World wide web (WWW '09), Th. Karagiannis
and M. Vojnovic (Eds.), 881-890 (2009)

[10] Yu, T., Lin, K.J.: Service selection algorithms for Web services with end-to-end QoS constraints. In:
Information systems and e-business management vol. 3(2), 103-126 (2005)

[11] Saric, A., Hadzikadic, M., Wilson, D: Alternative Formulas for Rating Prediction Using Collaborative
Filtering. In: Proceedings of the 18th International Symposium on Foundations of Intelligent Systems,
301-310 (2009)

[12] Bramantoro, A., Krishnaswamy, S., Indrawan, M.: A semantic distance measure for matching web
services. In: 2005 International Conference on Web Information Systems Engineering,. Ngu, A.H.H et
al. (eds.), 217-226 (2005)

[13] Chelminski, P., Coulter, R.: An examination of consumer advocacy and complaining behavior in the
context of service failure. In: Journal of services marketing, vol. 25(5), 361–370 (2011)

[14] Montague, M., Aslam, J.A.: Relevance score normalization for metasearch. In: CIKM 2001, H. Paques
et al. (eds), 427-433 (2001)

