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1. Introduction 
In this technical report, we present an approach for combining Quality of Service 

(QoS)-based criteria and collaborating filtering (CF)-based techniques for performing 
BPEL scenario execution adaptation. We consider horizontal adaptation of BPEL 
scenario execution, i.e. the adaptation leaves the composition logic intact and focuses 
on selecting the most appropriate service to realize each of the functionalities invoked 
in the context of the BPEL scenario. The algorithms are presented in detail and a 
respective example on the algorithm operation is given. 

The rest of this report is organized as follows: in section 2, we present the underlying 
foundations regarding QoS and CF. In section 3, we present the algorithms used for 
performing the adaptation, while section 4 gives a detailed example. Finally, section 5 
concludes the report.  
  



2. QoS concepts and collaborative filtering foundations 
In the following subsections we summarize the concepts and underpinnings from the 

areas of QoS and collaborative filtering, which are used in our work. 

2.1 QoS concepts 
For conciseness purposes, in this paper we will consider only the attributes 

responseTime (rt), cost (c) and availability (av), adopting their definitions from [1]. 
This does not lead to loss of generality, since the algorithms can be straightforwardly 
extended to accommodate more attributes. 

The QoS specifications for a service within the BPEL scenario may include an upper 
bound and a lower bound for each QoS attribute, i.e. for each service sj included in a 
BPEL scenario, the designer formulates two vectors MINj=(minrt,j, minc,j, minav,j) and 
MAXj=(maxrt,j, maxc,j, maxav,j). Additionally the designer formulates a weight vector 
W=(rtw, cw, avw), indicating how important each QoS attribute is considered by the 
designer in the context of the particular operation invocation. The values of the QoS 
attributes are assumed to be expressed in a “larger values are better” setup, e.g. a service 
having cost = 6 means that that it is cheaper that a service having cost = 4. 

In order to compute the QoS attribute values of a service S composed from 
constituent services s1, …, sn having QoS attributes equal to (rt1, c1, av1), …, (rtn, cn, 
avn), respectively, the formulas given in Table 1 [2] can be used. 
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Table 1. QoS of composite services 

 
Most works dealing with QoS-based BPEL scenario execution adaptation, consider 

given QoS attribute values for each service, which can be for instance declared by the 
service provider within an SLA. However, in the real world, QoS metrics such as 
response time and availability may vary, due to server or network conditions (failures, 
overloads, bottlenecks etc). To tackle this issue, in this paper, we employ prediction 
models for QoS attribute values, in order to use in the recommentation process values 
that are closer to the actual ones, improving thus the accuracy of the adaptation. In 
particular, we adopt [3] and [4] for predicting the service response time and service 
availability, respectively. Both these algorithms predict future performance of services 
by examining past measurements; the platform proposed in this work collects these 
measurements when invoking services in the context of BPEL scenario executions and 
makes them available to the modules predicting the future QoS values. 

2.2 Subsumption relationship representation 
In order to adapt the BPEL scenario execution, the adaptation engine needs to be able 

to find which services offer the same functionality, and are thus candidate for 
invocation when this particular functionality is needed. In this work, we represent this 
information using subsumption relationships [5] which, for any pair of services S1 and 
S2 defined as follows: (i) S1 exact S2, iff S1 provides the same functionality with S2 (ii) 
S1 plugin S2, iff S1 provides more specific functionality than S2; in this case S1 could be 
used whenever the functionality of S2 is needed, since it delivers (a specialization of) 



the functionality delivered by S2 (iii) S1 subsume S2, iff S2 provides more generic 
functionality than S2. In this case S1 cannot unconditionally be used whenever the 
functionality of S2 is needed and (iv) S1 fail S2, in all other cases; in this case, S2 cannot 
be substituted for S2. Under these definitions, a service A can be unconditionally 
substituted by a service B if (A exact B or A plugin B); this setup provides more 
flexibility as compared to strict service equivalence (A exact B) regarding the 
formulation of the adapted execution plan, and is hence adopted in this paper. 

Effectively, subsumption relationships organize services in a tree, where generic 
services are located towards the root and more specific services towards the leaves [5]. 
Tree nodes, besides service identity, can accommodate QoS values for the services they 
represent; this information can be stored in repositories such as OPUCE [6]. Figure 1 
shows an excerpt of a subsumption relationships tree.  

 

Figure 1. Example subsumption relationships 

2.3 Designations on specific service bindings and functionality 
omissions 

As noted in section 1, users may wish to designate exact services to be invoked for 
realizing specific functionalities, while asking for recommendations on other ones. For 
instance, in a travel planning scenario the consumer may request that s/he travels by 
“Sea Lines”. Further, the consumer may also specify that some functionality optionally 
included in the BPEL scenario is not executed; for example, a tourist may not want to 
rent a car, while such a provision is present in the scenario. Typically, the BPEL code 
will examine input parameters and decide using a conditional execution construct 
(<switch>) whether to invoke the functionality or not. Finally, functionalities that are 
neither explicitly bound to a specific services, nor are designated as “not to be executed” 
are subject to adaptation. We consider that specific bindings and designations for 
functionality omissions are explicitly expressed in the request for scenario invocations. 



2.4 Usage patterns repository 
In order to perform CF-based adaptation, a repository with user ratings for services 

is required. In this paper, we adopt the representation used in [7], where the ratings 
repository is modelled as a table having a number of columns equal to the 
functionalities present in the BPEL scenario, and one row for each BPEL scenario 
execution. Cell i,j is filled with value S if during the ith execution of the BPEL scenario, 
service S was used to implement functionality j; cell (i, j) may be also blank, if during 
the ith execution of the BPEL scenario functionality j was omitted. In order to 
accommodate user ratings, we extend this repository by adding one column per 
functionality. This column stores an integer value from the domain [1, 10], 
corresponding to the rating given by the user that executed the particular scenario 
instance. For the cases that the user has not provided a rating, a null value is stored and 
the CF-based algorithm uses a default value, as explained in section 4. The BPEL 
scenario adaptation unit inserts new records to the usage patterns repository, when the 
concrete services that will be invoked in the context of a particular BPEL scenario 
execution are decided, while the user evaluation collection module arranges for storing 
the user rankings in the relevant columns. 

 

# exec Travel R(travel) Hotel R(Hotel) Event R(Event)
1 OlympicAirways 8 YouthHostel 3 ChampionsLeague 7 
2 SwissAir 6 Hilton 9 GrandConcert 6 
3 HighSpeedVesse

ls 
null YouthHostel null   

4 LuxuryBuses 4  null EuroleagueFinals 9 
5 Lufthansa 7 GrandResort 8 OperaPerformance 6 
6 AirFrance null Hilton null   
7 LuxuryBuses null YouthHostel null ChampionsLeague null 

Table 2. Example usage patterns repository 

  



3. The service recommendation algorithm 
As stated in section 1, our approach follows the horizontal adaptation algorithm, i.e. it 
leaves the composition logic intact and adapts the execution by selecting which 
concrete service implementation will be used in each specific invocation. In order to 
perform this task, the algorithm takes into account the following criteria: 

 The consumer’s QoS specifications (bounds and weights). 
 Designations on which exact services should be invoked, if such bindings are 

requested by the consumer (e.g. a user wanting to travel using Air France). 
 Designations on which functionalities should not be invoked (e.g. a user 

wanting to book a trip without scheduling any event attendance). 
 The QoS characteristics of the available service implementations, including 

monitored values of the QoS attributes of the services. 
 The service subsumption relationships. 
 The usage pattern repository, including ratings entered by the users. 

The approach proposed in this paper incorporates two different candidate service 
ranking algorithms, the first examining the QoS aspects only ([7]) and the second being 
based on CF techniques ([8]). The algorithms run in parallel to formulate their 
suggestions regarding the services that should be used in the adapted execution, and 
subsequently their suggestions are combined, through a metasearch score combination 
algorithm with varying weights. An example of the algorithm operation can be found 
in section 4. 

3.1 The QoS-based adaptation algorithm 
The QoS-based adaptation algorithm initially identifies the services which are 
candidate to be used for delivering functionalities in the context of the current BPEL 
scenario, respecting the QoS-bounds set by the user, and subsequently computes the k-
best service assignments to the functionalities requested for the particular scenario 
execution. In more detail, the algorithm proceeds as follows: 

1. For each functionality fi for which adaptation has been requested, the algorithm 
retrieves from the semantic service repository the concrete services that (a) 
deliver this functionality and (b) respect the QoS bounds set by the users. These 
are the candidates for implementing functionality fi. Formally, this is expressed 
as 

C(fi) = {si,j: (si,j exact fi  si,j plugin fi)  QoSmin(req, fi) ≤ QoS(si,j) ≤ 
QoSmax(req, fi)} 

Note that in all steps of this algorithm, the QoS values for response time and 
availability considered for each service are those returned by predictor methods 
[3] and [4], respectively. 

2. Subsequently, the algorithm formulates an integer programming problem to 
compute the k-best solutions regarding the assignment of concrete services si,j 
to each functionality fi. To express the integer programming optimization 
problem in this work we adopt the concrete service utility function used in [9], 
which is 

ܷ൫ݏ௜,௝൯ ൌ෍
ொ೘ೌೣሺ௜,୮ሻି௤೛൫௦೔,ೕ൯

ொ೘ೌೣᇲሺ௟௣ሻିொ೘೔೙ᇲሺ௣ሻ
∗ ௣ݓ

ଷ

௣ୀଵ
 (1) 

where qp(si,j) is the value of the pth QoS attribute of concrete service si,j (the first 
QoS attribute being response time, the second cost and the third one 
availability), wp being the weight assigned to the pth QoS attribute 



ܳ௠௔௫ሺ݅, ሻ݌ ൌ max
௦∈஼ሺ௙೔ሻ

  ሻݏ௣ሺݍ

[i.e. the maximum value of QoS attribute p among possible concrete service 
assignments for functionality fi], and ܳ௠௔௫ᇲሺ݌ሻ [resp. ܳ௠௜௡ᇲሺ݌ሻ] being the 
	overall maximum (resp. minimum) value of QoS attribute p within the service 
repository. In this work, we modify the utility function so as to have an 
increasing value with respect to the utility of the service (contrary to the function 
in [9], which has a decreasing value). The modified utility function used 

hereafter is ܷ൫ݏ௜,௝൯ ൌ෍ ሺ1 െ
ொ೘ೌೣሺ௜,୮ሻି௤೛൫௦೔,ೕ൯

ொ೘ೌೣᇲሺ௟௣ሻିொ೘೔೙ᇲሺ௣ሻ
ሻ ∗ ௣ݓ

ଷ

௣ୀଵ
. Using the utility 

function, the computation of the best solution is expressed as the following 
integer programming problem: maximise the overall utility value given by 

ܱܷ ொܸ௢ௌ ൌ෍ ෍ ܷሺݏ௜,௝ሻ ∗ ௜,௝ݔ

|஼ሺ௙೔ሻ|

௝ୀଵ

ி

௜ୀଵ

 

where F is the number of functionalities fi requiring adaptation, and each xj,i is 
a binary variable taking the value 1 if ij,j is selected for delivering functionality 
fi, and 0, otherwise. Since each functionality fi is delivered in the final execution 
plan by exactly one concrete service, the maximization of the utility value is 
subject to the constraint 

෍ ௜,௝ݔ ൌ 1, ∀݅:	1 ൑

|஼൫௙ೕ൯|

௝ୀଵ

݅ ൑  ܨ

This problem is then solved and the k-best solutions are obtained. Note that this 
formulation employs the sum function to rate the availability of the composite 
service taking into account the availability values of the constituent services, 
rather than the product function, as denoted in Table 1. The transformation from 
the product function to the sum function is achieved by applying the logarithmic 
function to the computation of reliability [10], since logሺ∏ ௜ሻ݈݁ݎ ൌ

௡
௜ୀଵ

∑ logሺ݈݁ݎ௜ሻ
௡
௜ୀଵ . Through this transformation, the problem can be expressed as 

an integer programming problem and solved efficiently.  
The solutions are saved, together with their overall utility score, for perusal in the 
combination step. In order to solve the integer programming problem computing the k-
best solutions, the IBM ILOG CPLEX optimizer was used. In our implementations, we 
have set k=20. 

3.2 The CF-based algorithm 
The CF-based algorithm employed in our proposal is an adaptation of the standard 

GroupLens algorithm [11], modified to take into account the semantic distance of the 
services realizing the same functionality. For instance, rows 2 and 5 of Table 2 are 
considered “semantically close”, since they both list air transport for travel, a first class 
hotel for accommodation and classical music events; on the other hand rows 2 and 7 of 
the same table are considered “semantically distant”, since all three services correspond 
to diverse real world counterparts (air travel vs. bus, 1st class hotel vs. 3rd class, concert 
vs. sports). Taking this into account, when a request arrives asking for travel via 
AirFrance and accommodation in GrandResort and requesting a recommendation for 
event attendance, the ratings in rows 2 and 5 must be taken more strongly into account 
than those in row 7, since the former two rows are “closer” to the one under adaptation. 



To accommodate this adaptation, we extend the formula of cosine similarity between 
two rows Ԧܺ, ሬܻԦ of the usage pattern repository table as follows: 

൫ݎ Ԧܺ, ሬܻԦ൯ ൌ
෍ ሺ Ԧܺሾ݇ሿ ∗ ሬܻԦሾ݇ሿ ∗ ݀൫ Ԧܺሾ݇ሿ, ሬܻԦሾ݇ሿ൯ሻ

௡

௞ୀଵ

‖ Ԧܺ‖ ∗ ‖ሬܻԦ‖
																																																						ሺ2ሻ 

We can observe in equation (2) that the standard cosine similarity metric has been 
extended to accommodate the semantic distance between the services that realize the 
same functionality in rows Ԧܺ and ሬܻԦ; this is accomplished by multiplying each term of 
the sum in the nominator by a metric of the semantic distance between the two services, 
which is denoted as d(s1, s2) and is computed using the formula introduced in [12]: 

 d(s1,s2) = C – lw*PathLength – NumberOfDownDirection (3) 

where C is a constant set to 8 [12], lw is the level weight for each path in subsumption 
tree (cf. Figure 1), PathLength is the number of edges counted from functionality s1 to 
functionality s2 and NumberOfDownDirection is the number of edges counted in the 
directed path between functionality s1 and s2 and whose direction is towards a lower level 
in the subsumption tree. For more details in the computation of the semantic distance, 
the interested reader is referred to [12]. We further normalize this similarity metric in 
the range [0, 1] by dividing the result computed in the above formula by 8; this way, the 
multiplication by the normalized similarity metric in equation (2) reduces the correlation 
coefficient between the two rows by a factor proportional to the semantic distance of the 
services employed in these rows to realize the same functionality. 

For items not explicitly rated, we follow the rationale of [7] according to which usage 
of a service is an indication of preference, and we choose a rating equal to the 80% of 
the maximum rating. This is inline with the findings of [13], which asserts that 
dissatisfied users will provide negative feedback with a very high probability (≥89%). 
Rows that have not been rated at all (and therefore have a default value for all ratings) 
are the reason behind choosing the cosine similarity against the Pearson similarity, since 
the latter disregards rows whose ratings have no variance (i.e. are all equal). 

Using the modified cosine similarity, the CF-based algorithm operates as follows: 
1. It retrieves from the usage pattern repository all rows that contain a service 

implementing the functionality on which a recommendation is requested. For 
example, if a recommendation on event attendance is requested, only rows 1, 2, 
4, 5 and 7 of table 1 will be retrieved. 

2. The rows retrieved from step 1 are filtered to retain only those that fulfil the 
QoS criteria requested by the user. 

3. The similarities between the request and each row are computed using the 
modified cosine similarity metric. The request is represented here as a vector ሬܴԦ, 
having a rating equal to 10 for each functionality included in the scenario and a 
rating equal to 0 for each functionality designated as not to be executed. 

4. For each distinct service implementing the requested functionality that is 
included in the remaining rows, we compute its rating prediction using the 
standard rating prediction formula 

൫݌ ሬܴԦሾ݇ሿ൯ ൌ
∑ ൫ ሬܰሬԦሾ݇ሿ൯ ∗ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

∑ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

 

[11] (we again do not subtract the mean ܰ	ሬሬሬሬԦ from ܰ	ሬሬሬሬԦሾ݇ሿ, so as not to render 
useless the rows having only default values, and correspondingly we do not add 
the mean rating of the user for which the prediction is being made). 



5. Finally, we retain the 20-best services for each functionality requiring 
adaptation, for perusal in the combination step. 

After the lists of candidates for each individual service that is subject to adaptation 
have been computed, the algorithm selects the top-20 execution plans with respect to 
their CF-score. Given an execution plan containing services (s1,i, …, sN,k) with the 
similarity scores of the services computed in step 5 being (CFS(s1,i), …, CFS(sN,k)), 
then the CF-score of the execution plan is equal to CFS(s1,i)+…+CFS(sN,k). Computing 
the top-20 execution plans is modelled as an integer programming optimization 
problem, formulated as follows: maximize the overall utility value given by: 

ܱܷ ஼ܸி ൌ ሺ෍෍݊݋݅ݐܿ݅݀݁ݎ݌൫ݏ௜,௝൯ ∗ ௜,௝ݔ

௅ሺ௜ሻ

௝ୀଵ

ி

௜ୀଵ

ሻ/ܨ 

where F is the number of functionalities functk(request) requiring adaptation, L(i) is the 
number of services selected by the CF-based algorithm for functionality i (normally 20, 
but it is possible that fewer results are retrieved, depending on the contents of the usage 
pattern repository), and each xi,j is a binary variable taking the value 1 if si,j is selected 
for delivering functionality functi(request), and the value 0, otherwise. The result is 
divided by the number of functionalities F, to normalize it in the range [0,1]. Since each 
functionality functi(request) is delivered in the final execution plan by exactly one 
concrete service, the maximization of the utility value is subject to the constraint 

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑  ܨ

The solutions are saved, together with their overall utility score, for perusal in the 
combination step.  

The CF module has been implemented using Apache Mahout 
(https://mahout.apache.org/), by subclassing the UncenteredCosineSimilarity class and 
reimplementing in the subclass the UserSimilarity method, to accommodate the 
semantic similarity metric described above. The integer programming problem for 
computing the k-best solutions is solved using the IBM ILOG CPLEX optimizer. 

3.3 The combination step 
The combination step synthesizes the results given by individual algorithms to 

produce to a single result. Recall from the previous two subsections that each algorithm 
produces a set of candidate execution plans, with each execution plan being tagged with 
the relevant normalized score (QoS-score or CF-score). In order to combine the scores, 
we use the CombMNZ metasearch algorithm, since it has been found to have the best 
performance [14] [the CombMNZ rating of a solution is computed by multiplying the 
sum of the individual scores by the number of non-zero scores, i.e. ܼܰܯܾ݉݋ܥ௜ ൌ ݉௜ ∗
∑ ௝ሺ݅ሻݎ
௠೔
௝ୀଵ , where mi is the number of algorithms giving non-zero rating to item i and 

rj(i) is the rating given by algorithm j to item i]. After computing the CombMNZ 
metasearch for all candidate execution plans, the combination step selects the execution 
plan with the highest score, which will be used to drive the adaptation process. 

3.4 The execution adaptation architecture 
The execution adaptation architecture, illustrated in Fig. 2, follows the middleware-
based approach, with an adaptation layer intercepting web service invocations and 
appropriately directing them to the services decided by the adaptation algorithm. As 



shown in Figure 2, the BPEL scenario execution initially passes to the adaptation layer 
the information regarding service invocations that will be performed, QoS bounds and 
weights as well as specific service bindings. When the adaptation layer receives this 
information, it applies the adaptation algorithm to formulate the execution plan for the 
particular scenario execution (i.e. decide the actual services that will be invoked to 
deliver each functionality) and stores the execution plan for later perusal. Subsequently, 
when a web service invocation is intercepted by the adaptation layer, the respective 
execution plan is retrieved from the execution plan storage, the web service decided to 
deliver the specific functionality is extracted and the invocation is routed accordingly 
to that service. Note that steps (4)-(8) depicted in Figure 2 are repeated multiple times 
within each BPEL scenario execution, once per web service invocation performed. 
When the invocation to a service implementation has concluded, the data regarding the 
service’s response time and availability are passed to the QoS prediction and update 
module, which computes the predicted values for the respective QoS parameters and 
updates the corresponding elements in the semantic service repository. 
Additionally, the BPEL scenario returns at the end of its execution, along with the 
result, an evaluation token, which the consumer may use to enter the ratings for the 
services s/he has used in the context of the BPEL scenario execution. The evaluation 
token is returned in the response headers, to retain the response payload schema intact. 
To accommodate this additional functionality (passing the necessary information to the 
adaptation layer and returning the evaluation token), the BPEL scenario is preprocessed 
as described in [7] before being deployed to the web services platform, with the 
preprocessing step injecting the necessary invocations to the adaptation layer into the 
scenario, and the result of the preprocessing step is then deployed and made available 
for invocations. 

 

Figure 2. The Execution adaptation architecture 
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4. An example of the algorithm operation 
In this section, we give an illustrative example on the operation of the adaptation 

algorithm. In this example, we consider the following: 
a) The scenario to be adapted is the trip reservation application used in the examples 

in section 2. The scenario includes mandatory invocations to a travel reservation 
and a hotel reservation service, and an optional invocation to an even attendance 
booking service. 

b) The subsumption relationships that will be used in this scenario are as depicted 
in Figure 3. 

 
Figure 3. Subsumption relationships tree used in the example 

c) The QoS values for the services implementing the “Air travel” functionality are 
as shown in Table 3. The table lists only the QoS values for the services 
implementing the “Air travel” functionality, since these are the only ones 
pertinent in this example. 



Equivalent WS Cost Response Time Availability 
AirFrance 8 10 7 
Lufthansa 9 8 7 

OlympicAirways 2 5 9 
Swissair 7 7 8 

Table 3. QoS values for the services implementing the “Air travel” 
functionality 

d) The contents of the usage pattern repository are as shown in Table 4. 
# exec Travel R(travel) Hotel R(Hotel) Event R(Event)

1 OlympicAirways 8 Hilton 3 GrandConcert 5 
2 Lufthansa 9 YouthHostel 9 EuropaLeague 7 
3 HighSpeedVessels  YouthHostel    
4 HighSpeedVessels 4   ChampionsLeague 9 
5 AirFrance 7 GrandResort 8 OperaPerformance 6 
6 SwissAir 6 Hilton    
7 LuxuryBuses 9 YouthHostel 6 EuroleagueFinals 9 
8 Lufthansa 9 YouthHostel 8 EuroleagueFinals  

Table 4. Usage pattern repository used in the example 

e) The user request to be adapted is: 
AirTravel(R), YouthHostel, ChampionsLeague 
which effectively reads: I want to stay in YouthHostel and attend the 
ChampionsLeague event, and I want a recommendation regarding an AirTravel 
service. 
The user has set a QoS weight vector equal to 
W= (0.4, 0.3, 0.3) 
while the MIN and MAX vectors, setting the lower and upper limits respectively 
for service QoS attributes, are set as follows: 
MINAirTravel=(4, null, 5) 
MAXAirTravel=(null, null, null) 
i..e. a minimum of 4 and 5 is set for the travel cost and availability respectively, 
while no lower limit is set for its response time. Similarly, no upper bounds are 
imposed for any service. 

f) We assume that the minimum and maximum values for the QoS attributes within 
the repository are as follows (these are needed in the utility function U): 
MIN=(2, 1, 2) 
MAX=(10, 10, 9) 

4.1 Applying the QoS-based algorithm 
1. First, we retrieve from the service repository (c.f. Table 3) all rows 

implementing the “air travel” functionality. All rows of the repository qualify 
(since the excerpt of the repository depicted in Table 3 consists exactly of these 
rows) 

2. Subsequently, the rows not meeting the QoS bounds are filtered out. As a 
consequence, row #3, corresponding to the OlympicAirways service, is rejected. 
Subsequently, we compute the utility function U for each of the remaining 
services. The values for the utility function are as follows (recall that the utility 

function is defined as ܷ൫ݏ௜,௝൯ ൌ෍ ൬1 െ
ொ೘ೌೣሺ௜,୮ሻି௤೛൫௦೔,ೕ൯

ொ೘ೌೣᇲሺ௟௣ሻିொ೘೔೙ᇲሺ௣ሻ
൰ ∗ ௣ݓ

ଷ

௣ୀଵ
): 

U(AirFrance) = ቀ1 െ ଽି଼

ଵ଴ିଶ
ቁ ∗ 0.4 ൅ ቀ1 െ

ଵ଴ିଵ଴

ଵ଴ିଵ
ቁ ∗ 0.3 ൅ ቀ1 െ

଼ି଻

ଽିଶ
ቁ ∗ 0.3 ൌ 0.913 



U(Lufthansa) = ቀ1 െ ଽିଽ

ଵ଴ିଶ
ቁ ∗ 0.4 ൅ ቀ1 െ

ଵ଴ି଼

ଵ଴ିଵ
ቁ ∗ 0.3 ൅ ቀ1 െ

଼ି଻

ଽିଶ
ቁ ∗ 0.3 ൌ 0.888 

U(SwissAir) =  ቀ1 െ ଽିଽ

ଵ଴ିଶ
ቁ ∗ 0.4 ൅ ቀ1 െ

ଵ଴ି଼

ଵ଴ିଵ
ቁ ∗ 0.3 ൅ ቀ1 െ

଼ି଻

ଽିଶ
ቁ ∗ 0.3 ൌ 0.788 

Subsequently, we formulate the integer programming problem to maximize the overall 
utility function  

ܱܷ ொܸ௢ௌ ൌ෍ ෍ ܷሺݏ௜,௝ሻ ∗ ௜,௝ݔ

|஼ሺ௙೔ሻ|

௝ୀଵ

ி

௜ୀଵ

 

subject to the constraint 

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑  ܨ

Since now F=1 (F is the number of functionalities for which adaptation is requested), 
we have that the overall utility function is reduced to 

ܱܷ ொܸ௢ௌ ൌ ෍ ܷ൫ݏ஺௜௥்௥௔௩௘௟,௝൯ ∗ ஺௜௥்௥௔௩௘௟,௝ݔ ൌ	

|஼ሺ஺௜௥்௥௔௩௘௟ሻ|

௝ୀଵ

 

UሺAirFranceሻ ∗ x୅୧୰୊୰ୟ୬ୡୣ ൅ UሺLufthansaሻ ∗ x୐୳୤୲୦ୟ୬ୱୟ ൅ UሺSwissAirሻ ∗ xୗ୵୧ୱୱ୅୧୰ 
subject to the constraint 

x୅୧୰୊୰ୟ୬ୡୣ ൅ x୐୳୤୲୦ୟ୬ୱୟ ൅ xୗ୵୧ୱୱ୅୧୰ ൌ 1 
The three possible solutions to this integer programming problem are as shown in Table 
5: 
 

Solution QoS-score 
xAirFrance=1, xLufthansa=0, xSwissAir=0 0.913 
xAirFrance=0, xLufthansa=1, xSwissAir=0 0.888 
xAirFrance=0, xLufthansa=0, xSwissAir=1 0.788 

Table 5. Solutions proposed by the QoS-based algorithm 

We save these solutions for perusal in the combination step. 

4.2 Applying the CF-based algorithm 
According to the first step of the CF-based algorithm, we will retrieve from the usage 

pattern repository (cf. Table 4) only those rows that involve the functionality requested 
for adaptation. Since the functionality for which adaptation is requested is AirTravel, 
rows 3, 4 and 7 will be eliminated, since they involve other means of transportation (sea 
travel for rows 3 and 4 and bus travel for row 7). Therefore, the rows depicted in Table 
6 will be retrieved. 

 
1 OlympicAirways 8 Hilton 3 GrandConcert 5 
2 Lufthansa 6 YouthHostel 9 EuropaLeague 6 
5 AirFrance 7 GrandResort 8 OperaPerformance 6 
6 SwissAir 6 Hilton null   

8 Lufthansa 9 YouthHostel 8 EuroleagueFinals null 

Table 6. Rows of the usage pattern repository delivering the functionality under 
adaptation 

The second step of the CF-based algorithm eliminates the rows for which the service 
delivering the functionality under adaptation does not meet the QoS bounds set by the 



client. Row 1 fails to satisfy them so it is eliminated, and the rows retained for further 
processing are as shown in Table 7. At this point, we fill the null value of row #6 and 
row #8 with the default value (8). 

 
2 Lufthansa 6 YouthHostel 9 EuropaLeague 6 
5 AirFrance 7 GrandResort 8 OperaPerformance 6 
6 SwissAir 6 Hilton 8   
8 Lufthansa 9 YouthHostel 8 EuroleagueFinals 8 

Table 7. Rows of table 6 satisfying the QoS bounds 

We now compute the similarity of each row to a request vector ሬܴԦ ൌ ሺ10, 10, 10ሻ, 
taking into account the semantic distances between the services. The semantic distances 
between the services pertinent to this adaptation are computed through the formula  

d(s1,s2) = (8 – lw*PathLength – NumberOfDownDirection) / 8 

and their values are as follows: 
 
d(AirTravel, Lufthansa) = (8 - 2/3 *1 – 1) / 8 = (19/3) / 8 = 19/24 

d(AirTravel, AirFrance) = (8 - 2/3 *1 – 1) / 8 = (19/3) / 8 = 19/24 

d(AirTravel, SwissAir)   = (8 - 2/3 *1 – 1) / 8 = (19/3) / 8 = 19/24 

d(YouthHostel, YouthHostel) = (8 - 1/3 *0 – 0)/ 8 = 8 / 8 = 1 

d(YouthHostel, GrandResort) = (8 - 1/3 *4 – 2) / 8 = (14/3) / 8 = 14/24 

d(YouthHostel, Hilton) = (8 - 1/3 *4 – 2) / 8 = (14/3) / 8 = 14/24 

d(ChampionsLeague, EuropaLeague) = (8 - 1/4 *2 – 1) / 8 = (26/4) / 8 = 26/32 

d(ChampionsLeague, EuroleagueFinals) = (8 - 1/4 *4 – 2) / 8 = (5) / 8 = 5/8 

d(ChampionsLeague, OperaPerformance) = (8 - 1/4 *6 – 3) / 8 = (14/4) / 8 = 14/32 

 
The third step of the CF-based algorithm is to compute the similarity between the 

user request vector ሬܴԦ ൌ ሺ10, 10, 10ሻ and the vectors corresponding to the raters of the 
functionality for which adaptation is requested. Recall from section 3 that the similarity 
is computed using the cosine similarity metric, using the formula 

൫ݎ Ԧܺ, ሬܻԦ൯ ൌ
෍ ሺ Ԧܺሾ݇ሿ ∗ ሬܻԦሾ݇ሿ ∗ ݀൫ Ԧܺሾ݇ሿ, ሬܻԦሾ݇ሿ൯ሻ

௡

௞ୀଵ

‖ Ԧܺ‖ ∗ ‖ሬܻԦ‖
 

Therefore, the similarity metric r between the rows of Table 7 and the user request 
vector ሬܴԦ ൌ ሺ10, 10, 10ሻ are as follows: 

൫ݎ ሬܴԦ, ଶሬሬሬሬሬሬሬሬሬሬԦ൯ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ଶሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ଶሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ 

൬6 ∗ 10 ∗	 924൰൅ ሺ9 ∗ 10 ∗ 1ሻ ൅ ൬6 ∗ 10 ∗ 2632൰

ට62 ൅ 92 ൅ 62 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.869 

൫ݎ ሬܴԦ, ହሬሬሬሬሬሬሬሬሬሬԦ൯ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ହሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ହሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ 



൬7 ∗ 10 ∗	 924൰൅ ൬8 ∗ 10 ∗ 1424൰൅ ሺ6 ∗ 10 ∗ 1432ሻ

ට72 ൅ 82 ൅ 62 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.607 

൫ݎ ሬܴԦ, ଺ሬሬሬሬሬሬሬሬሬሬԦ൯ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ଺ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ଺ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ 

൬6 ∗ 10 ∗	1924൰൅ ൬8 ∗ 10 ∗ 1424൰

ට62 ൅ 82 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.544 

൫ݎ ሬܴԦ, ሬሬሬሬሬሬሬሬሬሬԦ൯଼ݓ݋ݎ ൌ
෌ ൫ܴሾ݇ሿ ∗ ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿ଼ݓ݋ݎ ∗ ݀ሺܴሾ݇ሿ, ሬሬሬሬሬሬሬሬሬሬԦሾ݇ሿሻ൯଼ݓ݋ݎ

ଷ

௞ୀଵ

‖ ሬܴԦ‖ ∗ ‖ଶሬሬሬሬሬሬሬሬሬሬԦݓ݋ݎ‖
ൌ 

൬9 ∗ 10 ∗	1924൰൅ ሺ9 ∗ 10 ∗ 1ሻ ൅ ሺ8 ∗ 10 ∗ 58ሻ

ට92 ൅ 82 ൅ 82 ∗ ට102 ൅ 102 ൅ 102
ൌ 0.844 

Subsequently, we compute each service’s rating prediction using, as discussed in 
section 3, the rating prediction formula 

൫݌ ሬܴԦሾ݇ሿ൯ ൌ
∑ ൫ ሬܰሬԦሾ݇ሿ൯ ∗ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

∑ ሺݎ ሬܴԦ, ሬܰሬԦሻேሬሬԦ∈௥௔௧௘௥௦ሺோሬԦሾ௞ሿሻ

 

And therefore we obtain 

p(Lufthansa) = (6*0.869 + 0.844*9)/ (0.869+0.844) = 7.48 

p(AirFrance) = 7* 0.607 / 0.607 = 7 

p(SwissAir) = 6* 0.544 / 0.544 = 6 

These values are then normalized to the range [0,1] by dividing by the maximum 

possible value of a rating, in our case 10: 

pn(Lufthansa) = (6*0.869 + 0.844*9)/ (0.869+0.844) = 0.748 

pn(AirFrance) = 7* 0.607 / 0.607 = 0.7 

pn(SwissAir) = 6* 0.544 / 0.544 = 0.6 

Since the number of possible solutions is less than 20, all solutions are retained. 

Subsequently, similarly to the case of the QoS-based algorithm, we formulate the 

integer programming problem, i.e. to maximize the overall utility function 

ܱܷ ஼ܸி ൌ ሺ෍෍݊݋݅ݐܿ݅݀݁ݎ݌൫ݏ௜,௝൯ ∗ ௜,௝ݔ

௅ሺ௜ሻ

௝ୀଵ

ሻ/ܨ

ி

௜ୀଵ

 

subject to the constraint 

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑  ܨ



Since the number of functionalities requiring adaptation F is equal to 1, the integer 

optimization problem is reduced to  

ܱܷ ஼ܸி ൌ෍݊݋݅ݐܿ݅݀݁ݎ݌൫ݏ஺௜௥்௥௔௩௘௟,௝൯ ∗ ஺௜௥்௥௔௩௘௟,௝ݔ

ଷ

௝ୀଵ

ሻ ൌ 

predictionሺAirFranceሻ ∗ x୅୧୰୊୰ୟ୬ୡୣ ൅ 

predictionሺLufthansaሻ ∗ x୐୳୤୲୦ୟ୬ୱୟ ൅ 

predictionሺSwissAirሻ ∗ xୗ୵୧ୱୱ୅୧୰ 

subject to the constraint 

x୅୧୰୊୰ୟ୬ୡୣ ൅ x୐୳୤୲୦ୟ୬ୱୟ ൅ xୗ୵୧ୱୱ୅୧୰ ൌ 1 

The three possible solutions to this problem are as shown in Table 8. 

Solution CF-score 

xAirFrance=1, xLufthansa=0, xSwissAir=0 0.7 

xAirFrance=0, xLufthansa=1, xSwissAir=0 0.748 

xAirFrance=0, xLufthansa=0, xSwissAir=1 0.6 

Table 8. Solutions proposed by the CF-based algorithm 

4.3 Combining the results 
Finally, we apply the CombMNZ metasearch algorithm to compute the final score of each 

solution. The CombMNZ algorithm adds the individual scores and multiplies the result by the 

number of algorithms proposing each solution. In our case, all solutions are proposed by both 

the QoS-based algorithm and the CF-based algorithm, hence the results are as follows: 

 

CombMNZAirFrance = (0.913 + 0.7) * 2 = 1.613 * 2 = 3.226 

CombMNZLufthansa = (0.888 + 0.748) * 2 = 1.636 * 2 = 3.272 

CombMNZSwissAir = (0.788 + 0.6) * 2 = 1.388 * 2 =2.776 

 

We can observe that the CombMNZLufthansa score is the maximum among all scores, hence the 

Lufthansa service will be chosen for the particular adaptation, so the user scenario execution 

plan becomes «Lufthansa, YouthHostel, ChampionsLeague». 



5. Conclusions 
In this technical report we have presented an approach to the adaptation of BPEL scenario 

execution, combining QoS-based criteria with a CF-based approach. The CF-based approach 

allows for considering the ratings of the users for individual services, hence complementing the 

objective and measurable QoS-based criteria with user views, reflecting the real-world 

experience from using the services. We have also given a running example on the algorithm, to 

facilitate the understanding of its operation. 



6. References 
[1] O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What is a Service?: Towards Accurate Description of Non-

Functional Properties. Distributed and Parallel Databases, vol. 12 (2002) 
[2] Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service Composition 

based on Genetic Algorithms. In: 2005 Cnference on genetic and evolutionary computation, H-G. Beyer, 
U-M. O'Reilly (eds.), 1069-1075 (2005) 

[3] Shao, L., Guo, Y., Chen, X., He, Y.: Pattern-Discovery-Based Response Time Prediction. In: Advances 
in Automation and Robotics, vol. 2 LNEE, vol. 123, 355-362 (2012) 

[4] Duan, Y., Huang, Y.: Research on availability prediction model of web service. In: 2011 International 
Conference on Computer Science and Service System, 1590–1594 (2011) 

[5] Paolucci, M., Kawamura, T., Payne, T., Sycara, T.,: Semantic Matching of Web Services Capabilities. 
In: International Semantic Web Conference, 333-347 (2002) 

[6] Yu, J., Sheng, Q., Han, J., Wu, Y., Liu, C.: A semantically enhanced service repository for user-centric 
service discovery and management. In: Data & Knowledge Engineering, vol. 72, 202-218 (Feb. 2012) 

[7] Margaris, D., Vassilakis, C., Georgiadis, P.: Adapting WS-BPEL scenario execution using collaborative 
filtering techniques. In: IEEE 7th International Conference on Research Challenges in Information 
Science, R. Wieringa, et al. (eds), Paris, France (2013)  

[8] Arpacı, A.E., Bener, A.B.: Agent Based Dynamic Execution of BPEL documents. In: ISCIS 2005, LNCS 
3733, P. Yolum, et al. (eds.), 332 – 341 (2005) 

[9] Alrifai, M., Risse, T.: Combining Global Optimization with Local Selection for Efficient QoS-aware 
Service Composition. In: 18th international conference on World wide web (WWW '09), Th. Karagiannis 
and M. Vojnovic (Eds.), 881-890 (2009) 

[10] Yu, T., Lin, K.J.: Service selection algorithms for Web services with end-to-end QoS constraints. In: 
Information systems and e-business management vol. 3(2), 103-126 (2005) 

[11] Saric, A., Hadzikadic, M., Wilson, D: Alternative Formulas for Rating Prediction Using Collaborative 
Filtering. In: Proceedings of the 18th International Symposium on Foundations of Intelligent Systems, 
301-310 (2009) 

[12] Bramantoro, A., Krishnaswamy, S., Indrawan, M.: A semantic distance measure for matching web 
services. In: 2005 International Conference on Web Information Systems Engineering,. Ngu, A.H.H et 
al. (eds.), 217-226 (2005) 

[13] Chelminski, P., Coulter, R.: An examination of consumer advocacy and complaining behavior in the 
context of service failure. In: Journal of services marketing, vol. 25(5), 361–370 (2011) 

[14] Montague, M., Aslam, J.A.: Relevance score normalization for metasearch. In: CIKM 2001, H. Paques 
et al. (eds), 427-433 (2001) 

 


