

Preprocessor transformations for implementing greedy and
service provider-level QoS-based adaptation for BPEL

scenario execution

Christos Kareliotis (ckar@di.uoa.gr)

Costas Vassilakis (costas@uop.gr)

Efstathios Rouvas (rouvas@di.uoa.gr)

Panayiotis Georgiadis (p.georgiadis@di.uoa.gr)

August, 2012

Tripoli, Greece

University of Peloponnese

Department of Computer Science and Technology

Software and Database Systems Laboratory

Table of Contents
Table of Contents ___2

1. Introduction ___3

2. Adaptation scheme architecture _____________________________________4

3. Transforming BPEL scenarios to accommodate greedy adaptation _________5

4. Processing requests in the ASOB middleware __________________________8

5. Transforming BPEL scenarios to accommodate the service provider-level
adaptation strategy ___10

6. References ___13

1. Introduction
In this technical report, we describe and exemplify the transformations applied by the
WS-BPEL preprocessor, in order to produce a BPEL scenario that can be adapted
according to QoS specifications, in the architecture described in [1].

[1] adopts a greedy algorithm for performing adaptation, i.e. it uses only the QoS
specifications pertaining to the first invoke activity IA to a specific service provider S,
so as to decide the service provider to which both IA and further invocations to
operations provided by S will be directed.

The greedy algorithm may result in suboptimal bindings, while in some cases it may
even lead to situations where the middleware is unable to find any appropriate service
selection for fully servicing the BPEL scenario, albeit such a path does exist. To this
end, a service provider-level adaptation strategy can be employed: the transformed
scenario may communicate to the ASOB middleware [1] the information concerning
all operation invocations to a specific partner link before the first invocation an
operation provided by the specific partner link is executed, and therefore the ASOB
middleware can exploit this information to remedy the problems stemming from the
greedy nature of the adaptation method specified in [1].

The rest of this technical report is structured as follows: section 2 outlines the
architecture of the adaptation scheme presented in [1]. Section 3 presents the
transformations employed by the preprocessor for accommodating the greedy
strategy, and section 4 presents the pseudo-code for performing the adaptations in the
ASOB middleware. Finally, section 5 presents the transformations employed by the
preprocessor for accommodating the service provider-level strategy.

2. Adaptation scheme architecture
The architecture proposed in [1] introduces two additional modules in a BPEL
execution environment.

The first one is a middleware layer named Alternate Service Operation Binding
(ASOB), which undertakes the tasks of redirecting operation invocations to providers
best matching the QoS specifications designated by the clients and also performing
automated exception resolution.

The second module is a preprocessor, which transforms BPEL scenarios created by
designers so as to (a) direct invocations to the middleware layer and (b) include in
each invocation all the necessary information for performing adaptation according to
the QoS characteristics specified by the BPEL designer.

The overall framework architecture is depicted in Figure 1. In brief, the modules of
the ASOB framework have the following functionality:

BPEL Scenario
with QoS
assignments

Web Services
Platform

WS-BPEL Orchestrator

(2)

Consumer

(3)

BPEL scenario
invocation +
Parameters

Alternate Service Operation Binding

(4)
Web service
 invocation

(service spec,
parameters) +

QoS specs

(12)
Results or

Exception or
policy exception

(13)
Results or

failure

Service
repository

(e.g. Meteor-S)

Alternate services
locator

(6)
Query equivalent

services

(7)
List of

equivalent
services +

QOS

Service binder &
invoker

WS-1 WS-n...WS-2
Web Service

Implementations

(9) Filtered list of services,
parameters

(10) Invocation
(11) Results or system-related

exception or business logic exception

ASOB-aware
BPEL scenario

(1)

ASOB
preprocessor

Consumer
session memory

 (5) Query existing
binding

XSLT
repository

up
da

te

Filtering and
ranking module

(8) List of equiv. operations +
parameters +QoS specs

Figure 1 Architecture of the ASOB framework

1. Alternate services locator: locates services providing operations that are
equivalent to the one currently invoked.

2. Filtering and ranking module: filters out alternate services that do not fulfill
the QoS requirements specified by the client, and ranks remaining services
according to the QoS specifications of the client.

3. Service binder and invoker: traverses the list of alternate services produced by
the filtering and ranking module invoking each one in turn, until some service
invocation succeeds (or the list is exhausted).

The Service repository (SR) provides information about (a) which operations are
equivalent and (b) which are the values of QoS attributes of each operation. The
XSLT repository contains transformation rules between semantically equivalent but
syntactically different operations, adopting the approach of [2].

3. Transforming BPEL scenarios to accommodate
greedy adaptation
As stated above, [1] adopts a greedy algorithm for performing adaptation, i.e. it uses
only the QoS specifications pertaining to the first invoke activity IA to a specific
service provider S, so as to decide the service provider to which both IA and further
invocations to operations provided by S will be directed. To this end, each operation
invocation simply needs to be redirected to the ASOB middleware, complemented
with information regarding the QoS specifications stated by the BPEL designer, as
well as (a) information regarding the service to be invoked and (b) the current session
id [1], which is needed to maintain service selection affinity [1].

According to [1], the preprocessor takes as input the BPEL scenario SC crafted by the
BPEL designer and produces as output an ASOB-aware BPEL scenario SCASOB by
applying the following transformations:

1. SCASOB contains an additional partnerLink node, which corresponds to the ASOB
middleware.

2. SCASOB includes, as its first operation, an invocation to a special web service
operation of the ASOB middleware, namely getSessionId. This operation creates a
value that is unique for a particular execution of the BPEL scenario, and returns it to
the invoking scenario. Uniqueness is guaranteed by combining the requester’s IP
address, the current timestamp of the system and a random number from a sparse
domain. As the operation name suggests, this value will be used as a session
identifier for the particular execution of the BPEL scenario, in order to implement
service selection affinity.

3. Each invoke node (i.e. each operation invocation) within SC is transformed as
follows: firstly, WSDL file to which the partnerlink refers to is located and copied
locally, and the soapaction address element for the particular invocation is amended
to point to the ASOB middleware; the corresponding WSDL import is adjusted
accordingly to point to the local copy. Secondly, the type of the inputVariable of the
particular invocation is extended to accommodate five additional elements, namely
sessionId, origPLink, origAddress, ASOB_qoscons and ASOB_qosw. To achieve the
extension of inputVariable, the preprocessor downloads and appropriately modifies
the files in which the type is defined (WSDL files for variables of type
messageType; xml schemas for element) and amends import declarations to point to
the modified files. For simple types (type), where the parameter is defined as a
simple XML type (e.g. string or integer), the preprocessor creates an XML schema
file defining a type containing the five aforementioned elements plus the element
ASOBvalue of the appropriate type (string, integer etc), and amends the variable
declaration to use the newly defined type; additionally, assignments (copy
constructs) from/to this variable are modified accordingly. The transformed
operation invocation is included in SCASOB.

According to these transformation rules, the BPEL scenario excerpt shown in Listing 1
will be transformed as shown in Listing 2.

<!-- set the value of the input parameter for the web service -->
<variable name="amount" type="xsd:integer">
<assign name="assign1"> <copy>
 <from><literal>34</literal></from>
 <to variable="amount"/>
</copy></assign>
<!-- set the QoS specification -->
<assign name="QOSassign1">
 <copy>
 <from><literal>cost:0,2;sec:3,0</literal></from>
 <to variable="ASOB_QoSconstraints"/>
 </copy>
 <copy>
 <from><literal>cost:-3,sec:1,resp:2</literal></from>
 <to variable="ASOB_QoSweight"/>
 </copy>
</assign>
<invoke partnerLink="myLink" portType="thePort" operation="someOp"

inputVariable="amount" outputVariable="theOutput"/>

Listing 1. Original BPEL scenario excerpt.

<!-- type_amount.xsd is a preprocessor-generated file in which the type type_amount is
defined, having the parts sessionId, origServiceAddress, ASOB_qoscons, ASOB_qosw and
ASOBvalue, the latter corresponding to the actual value -->

<import location="type_amount.xsd" importType="http://www.w3.org/2001/XMLSchema" />
<partnerLinks>
 <partnerLink name="ASOB" partnerLinkType="ASOBns:middleware"
 partnerRole="ASOBrole" />
</partnerLinks>
<variable name="ASOBsessionId" type="xsd:string">
<variable name="amount" type="ns:type_amount">

<!-- retrieve session id -->
<invoke partnerLink="ASOB" portType="ASOBport" operation="getSessionId"
outputVariable="ASOBsessionId" />

<!--assign the value to be passed to actual web service - modified-->
<assign name="assign1"> <copy>
 <from><literal>34</literal></from>
 <to variable="$amount.parameters/ASOBvalue"/>
</copy></assign>

<!--assign "QOSassign1" assigning literal values to ASOB_QoSconstraints and
ASOB_QoSweight is left intact and is not repeated here -->
<!-- plant extra fields in the input message -->
<assign name="ASOB_ASSIGN1">
 <copy> <from variable="ASOBsessionId"/>
 <to variable="$amount.parameters/sessionId"/> </copy>
 <copy> <from><literal>"http://addr.com/path"</literal></from>
 <to variable="$amount.parameters/origAddress"> </copy>
 <copy> <from><literal>"someOp"</literal></from>
 <to variable="$amount.parameters/origOperation"> </copy>
 <copy> <from variable="ASOB_QoSconstraints" />
 <to variable="$amount.parameters/ASOB_qoscons" /> </copy>
 <copy> <from variable="ASOB_QoSweight" />
 <to variable="$amount.parameters/ASOB_qosw" /> </copy>
</assign>
<invoke partnerLink="ASOB" portType="ASOBport" operation="proxyInvoke"
inputVariable="amount" outputVariable="theOutput"/>

Listing 2. Preprocessed BPEL scenario excerpt.

4. Processing requests in the ASOB middleware
As stated above, the preprocessor effectively redirects operation invocation to the
ASOB middleware. Upon receiving an operation invocation request, the ASOB
middleware executes the algorithm illustrated in Listing 3. The procedure for
invoking a single alternative operation (invoked by the code in Listing 3) is detailed in
Listing 4.

In listing 5, after each invocation to a service, function update_SR_QoS is called; this
function arranges for informing the service repository about the observed behavior of
individual operations (availability, response time etc), and the repository may in turn
update the QoS database accordingly. This update takes place asynchronously, and it
may also be optimized to minimize the number of messages towards the service
repository, e.g. amassing a number of updates and forwarding them to the service
repository in a single batch.

sessionID  getPart(request, “ASOBsessionId”);
origPLink  getPart(request, “origPLink”);
origAddress  getPart(request, “origAddress”);
origOperation  getPart(request, “origOperation”);
payload  extractActualPayloadFromRequest(request);
qosConstraints  getPart(request, “ASOB_qoscons”);
qosWeights  getPart(request, “ASOB_qosw”);

boundService  SessionMemory.query(sessionID, origPLink);
if (boundService != null)
 /* query the repository to find the operation of the boundService that is equivalent to
 the operation originally invoked; only one will be returned */
 candidateList  Repository.getEquivOperation(origPLink, origOperation, boundService);
else
 /* query the repository for services that are equivalent to the one providing the
 operation originally invoked. Each service record returned contains the QoS
 parameters of the operation as well. */
 candidateList  Repository.getAlternateOperations(origPLink, origOperation);
end if

/* Prune elements not satisfying the QoS requirements */
candidateList  filterList(candidateList, qosConstraints);
/* Rank remaining elements according to the weights */
candidateList  rankList(candidateList, qosWeights);

while (!empty(candidateList))
 serviceToTry  removeFirstElement(candidateList));
 tryService(serviceToTry, origAddress, origOperation, payload);
end while

/* control reaches this point if the candidate list has been exhausted, without having either (a)

successfully invoked some service or (b) faced an application-logic exception. */
return PolicyFault to BPEL engine;

Listing 3. Main Request Processing of ASOB.

function tryService(serviceToTry, origAddress, origOperation, payload)
 if (! areSyntacticallyEquivalent(origOperation, serviceToTry.operationField))
 payloadXSLT  fetch XSLT for transforming the original payload to the payload of the

service to be invoked
 finalPayload  XSLTransform(payloadXSLT, payload);
 else
 finalPayload  payload;
 end if
 result  invoke_bind_WS(serviceToTry, finalPayload);

 if (not timeout_occured)
 if (is_normal_reply(result))
 /* update consumer session memory to reflect the binding */
 SessionMemory.insert(sessionID, origPLink, serviceToTry.PLinkField);
 if (! areSyntacticallyEquivalent(origOperation, serviceToTry.operationField)
 resultXSLT  fetch XSLT for transforming the result received to the result format

of the service originally invoked
 result  XSLTransform(resultXSLT, result);
 end if
 update_SR_QoS(serviceToTry.operationField, respTime, true, null);
 return result to BPEL engine; /* request has concluded */
 else /* an exception has been raised during the invocation*/
 knownExceptions  getExceptionsFromWSDL(serviceToTry.WSDL_Location

serviceToTry.operationField);
 if ((result.faultCode = “Sender”) or (result.faultCode = “Client”) or (result in

knownExceptions))
 /* Known, application-logic exception, or malformed client message.
 These cases cannot be remedied through substitution, thus the exception
 is directly returned to the BPEL engine. */
 update_SR_QoS(serviceToTry.addressField, respTime, true, result.faultCode);
 return result to BPEL engine;
 end if
 else /* timeout occurred */
 update_SR_QoS(serviceToTry.addressField, null, false, “timeout”);
 end if
end function

function update_SR_QoS(WS, respTime, isAvail, errType)
 /* start a new thread to forward QoS information to SR; return immediately */
end function

Listing 4. Invocation Routines.

5. Transforming BPEL scenarios to accommodate
the service provider-level adaptation strategy
In order to accommodate the service provider-level adaptation strategy, the
preprocessor arranges that all the operations that are listed within particular BPEL
scenario for a specific partner link are sent to the ASOB middleware before any
operation on the specific partner link is invoked. This can be arranged by collecting
all pertinent information from the original BPEL scenario and placing appropriate
calls to the partnerLinkInformation operation; such invocations can be placed in the
proprocessor’s output, right after the invocation to the getSessionId operation.

Listing 5 illustrates a BPEL scenario excerpt invoking multiple operations on the
same service provider, while Listing 6 presents the output of the preprocessor for the
particular BPEL scenario excerpt.

<!-- set the value of the input parameter for invoking the checkAvailability operation -->
<variable name="availPeriod" type="xsd:string">
<assign name="assign1"> <copy>
 <from><literal>"2009/Dec/12-2009/Dec/20"</literal></from>

 <to variable="availPeriod"/> </copy></assign>
<!-- set the QoS specification for invoking the checkAvailability operation -->
<assign name="ASOB_QOS_invoke1">
 <copy> <from><literal>"sec:2,0"</literal></from>

 <to variable="ASOB_QoSconstraints"/> </copy>
 <copy> <from><literal>"perf:1"</literal></from>

 <to variable="ASOB_QoSweight"/> </copy>
</assign>
<invoke name="ASOB_INV_invoke1" partnerLink="HotelB" portType="HotelB_Port"

operation="checkAvailability" inputVariable="availPeriod"
outputVariable="availableRooms"/>

<!-- set the value of the input parameter for invoking the getQuote operation -->
<assign name="assign2"> <copy>
 <from><variable="$availableRooms.parameters/roomId"></from>

 <to><variable="roomToGetQuote"></copy></assign>
<!-- set the QoS specification for invoking the getQuote operation -->
<assign name="ASOB_QOS_invoke2">
 <copy> <from><literal>"sec:5,0"</literal></from>

 <to variable="ASOB_QoSconstraints"/> </copy>
 <copy> <from><literal>"perf:1"</literal></from>

 <to variable="ASOB_QoSweight"/> </copy>
</assign>
<invoke name="ASOB_INV_invoke2" partnerLink="HotelB" portType="HotelB_Port"

operation="getQuote" inputVariable="roomToGetQuote"
outputVariable="priceQuote"/>

Listing 5. A BPEL scenario excerpt invoking multiple operations on the same service

provider.

<!-- retrieve session id -->
<invoke partnerLink="ASOB" portType="ASOBport" operation="getSessionId"

outputVariable="ASOBsessionId" />

<!-- invoke the partnerLinkInformation operation of ASOB -->
<assign name="ASOB_PLI_1">
 <copy>
 <from><variable="ASOBsessionId" /></from>
 <to variable="$PartnerLinkOperations.parameters/sessionId“ />
 </copy>
 <copy>
 <from><literal>"HotelB"</literal></from>
 <to variable=”$PartnerLinkOperations.parameters/partnerLinkName“ />
 </copy>
 <copy>
 <from><literal>"http://HotelB/BookRoom"<literal></from>
 <to variable="$PartnerLinkOperations.parameters/endPointAddress" />
 </copy>
<!-- QOS parameters for invocation to checkAvailability -->
 <copy>
 <from><literal>"checkAvailability"</literal>
 <to variable="$PartnerLinkOperations.parameters/QoS[1].opname" />
 </copy>
 <copy>
 <from><literal>"Cons=sec:2,0"</literal></from>
 <to variable="$PartnerLinkOperations.parameters/QoS[1].Cons" /></copy>
 <copy>
 <from><literal>"perf:1"</literal></from>
 <to variable="$PartnerLinkOperations.parameters/QoS[1].Weight" />
 </copy>
<!-- QOS parameters for invocation to getQuote -->
 <copy>
 <from><literal>"getQuote"</literal></from>
 <to variable="$PartnerLinkOperations.parameters/QoS[2].opname" />
 </copy>
 <copy>
 <from><literal>"Cons=sec:5,0"</literal></from>
 <to variable="$PartnerLinkOperations.parameters/QoS[2].Cons" /></copy>
 <copy>
 <from><literal>"perf:1"</literal></from>
 <to variable="$PartnerLinkOperations.parameters/QoS[2].Weight" />
 </copy>
</assign>
<invoke name="ASOB_PLI_invoke_1" partnerLink="ASOB" portType="ASOBport"

operation="partnerLinkInformation” inputVariable="PartnerLinkOperations"
/>

<!-- assignments for availableRooms not listed for brevity -->
<invoke name="ASOB_INV_invoke1" partnerLink="ASOB" portType="ASOBport"

operation="proxyInvoke" inputVariable="availPeriod"
outputVariable="availableRooms" />

<!-- assignments for roomToGetQuote not listed for brevity -->
<invoke name="ASOB_INV_invoke2" partnerLink="ASOB" portType="ASOBport"

operation="proxyInvoke" inputVariable="roomToGetQuote"
outputVariable="priceQuote" />

Listing 6. The result of preprocessing the BPEL scenario of listing 5.

In listing 6 we can notice that the input parameter for the invocation to the
partnerLinkInformation operation includes the session id, which will be later used by

the middleware to correlate incoming operation invocations from the same BPEL
scenario execution to the information conveyed to it through this invocation. The field
QoS of the partnerLinkInformation operation’s input parameter is a repeating
element, where each instance contains information for an operation that will be
invoked for the partner link designated through the origServiceAddress and
origOperation fields, together with the QoS attribute constraints and weights
associated with the particular operation invocation.

6. References
[1] Kareliotis C, Vassilakis C, Rouvas E, Georgiadis P (2009) QoS-Driven Adaptation of BPEL

Scenario Execution. Proceedings of ICWS 2009, July 6-10, 2009, Los Angeles, CA, USA.

[2] Kareliotis C, Vassilakis C, Rouvas E, Georgiadis P (2009). QoS-aware Exception Resolution for

BPEL Processes: A Middleware-based Framework and Performance Evaluation. International Journal

on Web and Grid Services (IJWGS), 2009 - Vol. 5, No.3 pp. 284 - 320

