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Abstract

Intermittent faults are a very common problem in the software world, while difficult to be
debugged. Most of the existing approaches though assume that suitable instrumentation has
been provided in the program, typically in the form of assertions that dictate which program
states are considered to be erroneous. In this paper we propose a method that can be used to
detect probable sources of intermittent faults within a program. Our method proposes certain
points in the code, whose data interdependencies combined with their execution interweaving
indicate that they could be the cause of intermittent faults. It is the responsibility of the user
to accept or reject these proposals. An advantage of this method is that it removes the need
for having predefined assertion points in the code, being able to detect potential sources of
intermittent faults in the whole bulk of the code, with no instrumentation requirements on the
side of the programmer. The proposed approach exploits information from the dynamic behavior
of the program. In comparison with parser-based approaches which analyze only the program
structure, our approach is immutable to language term changes and in general is not depending
on any user-provided assertions or configuration.
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1. Introduction1

An intermittent fault in computer software is a malfunction of a soft-2

ware program that occurs at intervals, usually irregular, while the software3
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functions normally at other times. Avizienis et al. [1] defines intermittent4

faults as the union of (a) elusive permanent faults, i.e. faults that mani-5

fest themselves conditionally, with their activation conditions depending on6

complex combinations of internal state and external requests, that occur7

rarely and can be very difficult to reproduce and (b) transient faults, which8

includes physical faults (i.e. faults associated with the hardware) as well as9

interaction faults, stemming from reciprocal actions with external systems.10

The root causes of intermittent faults can be traced to (a) particular hard-11

ware conditions, e.g. radiation-induced transient faults are caused by alpha12

particles found in chip packages and atmospheric neutrons [2], (b) limit con-13

ditions (e.g. out of memory or disk storage, lost interrupts, not initialized14

memory, unexpected data from external sources including interactions with15

other systems) and (c) concurrency errors, including race conditions and16

scheduling decisions [3][1].17

Software-rooted intermittent faults are referred to as MandelBugs [4][5].18

A Mandelbug is a bug residing some location in the code, however apply-19

ing test cases on the code even under seemingly exact conditions does not20

always lead to a failure. The reason for this non-deterministic behavior21

is twofold: firstly, the execution of the buggy code leads to an erroneous22

internal condition (e.g. a wrong variable value) which does not necessar-23

ily manifest itself as a failure immediately, but rather it may necessitate24

a chain between errors (error propagation) until the system uses elements25

(e.g. variable values) involved in the erroneous internal conditions in a way26

that influences a perceivable system behavior. And secondly, other elements27

of the software system, including other applications, the operating system28

or the hardware, may affect the behavior of a fault in a specific application.29

For instance, if a multi-threaded application lacks adequate synchronization30

mechanisms, race conditions may occur, depending on the choices made by31

the operating system scheduler regarding the exact time points that threads32

are dispatched on the CPU for execution, or preempted. Gray [3] uses the33

term Heisenbugs, to refer to software bugs that either do not appear or34

change their behavior when attempts are made to discover them. Typically35

this is owing to the fact that when programs are debugged the execution36

environment and conditions change [6]: optimization features are turned off;37

debugger programs may initialize memory contents to zero or modify the38

memory layout during execution; stepwise execution alters timings; state-39

ments inserted to print out variable values differentiate register values and40

so forth. Grottke et al. [7] identifies aging-related bugs as an interesting41
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a sub-type of Mandelbugs: aging-related bugs are faults capable of causing42

degraded performance or increased failure rate because they either accu-43

mulate internal error states and/or the activation and/or error propagation44

of the fault is influenced by the total time the system has been running.45

MandelBugs and Heisenbugs are contrasted to Bohrbugs [3], which refers to46

the class of bugs that always produce a failure on retying the operation that47

involves the bug; in this respect, a Bohrbug is a solid and easily detectable48

bug, that can be isolated by standard debugging techniques.49

In the analysis presented in [7] Mandelbugs correspond to the 36.5%50

of the total number of the faults discovered in the on-board software for51

18 JPL/NASA space missions. Carrozza et al. [5] studied an industrial52

mission-critical software system, in which Mandelbugs accounted for the53

14.56% of the total number of faults. Cotroneo et al. [8] examine four54

major open source projects, and report that the percentage of Mandelbugs55

ranges from 7.5% (for the AXIS project) to 50.2% (for the Linux project);56

they also assert that in their sample, the fault densities for Bohrbugs and57

Mandelbugs are similar for large software projects, while for smaller projects58

the fault density for Bohrbugs tends to be higher and that Mandelbugs take59

more time to fix than Bohrbugs. Chillarege [9] concludes that Mandelbugs60

predominantly affect non-functional aspects, such as reliability, availability61

and serviceability, while they rarely affect software functionality.62

A common cause of software-rooted intermittent faults in applications, is63

the erroneous order of accessing shared variables in multi-threaded applica-64

tions, e.g. when a write-after-write (WAW) hazard occurs, a shared variable65

is written by a thread while it should have first been written by another66

one, and so forth. The more complex the software program, the greater67

the likelihood of an intermittent fault to occur and the harder to locate its68

root cause. Many research efforts have targeted the issue of intermittent69

faults, and in this context a number of concurrency anti-patterns, (i.e. con-70

currency control mechanisms that have been proven to be ineffective and71

error-prone) and possible solutions have been identified, e.g. [10, 11]).72

Intermittent faults can be detected both using static and dynamic de-73

bugging techniques [12]. For the detection of logical faults, in particular, in74

the context of dynamic approaches, the programmer typically needs to add75

appropriate assert statements expressing program-specific invariants (i.e.76

conditions that must always hold), which is evaluated at runtime. When77

the invariant is found not to hold, then a fault is flagged and the developer78

may use a dynamic debugger to examine the program state, trying to trace79
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back the root cause of the error.80

The method proposed in this paper, intends to help programmers dis-81

cover locations in the code that could cause intermittent faults that are82

owing to improper order of accessing shared variables. On top of an exist-83

ing debugging and verification tool, we add mechanisms that create traces84

of shared variable access sequences and rules that are able to identify such85

improper access patterns within these traces; these patterns may be mani-86

festations of intermittent fault presence. Then, the system is able to suggest87

to the developer code locations that may be the root cause of these inter-88

mittent faults. In this paper, we have chosen Java Path Finder (JPF [13];89

a brief overview of JPF is given in section 2.3) as the base debugger tool,90

on top of which the proposed method is built; we exploit the capabilities of91

JPF to extract runtime information from the executing program. Our ap-92

proach is immutable to any user configuration (e.g. parser configurations),93

as it exploits information from the dynamic behavior of the program, which94

is sourced through the mechanisms provided by JPF. More specifically, JPF95

functionalities are used to gather all the information about possible inter-96

leavings of the accesses of the shared variables from the different threads97

in a tree structure, and after the tree structure is shaped, it is searched for98

the presence of shared variable access patterns that indicate the presence of99

an intermittent fault. Code locations that are involved in the suspectable100

shared variable accesses are then identified, and these locations are pro-101

posed to the user (i.e. the developer) for check (e.g. code review to verify102

whether synchronization mechanisms are used appropriately). The devel-103

oper is the one who makes the final decision on whether a suggestion made104

by the tool should be accepted or not. Contrary to other algorithms in105

the literature, the proposed approach needs no instrumentation (e.g. in-106

sertion of appropriate assertions in selected code locations) to work. In107

this way, the whole extent of the executed code is always checked, and no108

additional effort on the side of the developer is required. The proposed109

technique can be used in conjunction with other intermittent fault detec-110

tion techniques, both at hardware and software level (e.g. [14][15][16][17]);111

combined application can be achieved either by the simultaneous use of in-112

dividual techniques (this is directly applicable for other techniques that are113

hardware-based, e.g. [14][16]; for software-based techniques, an integration114

step will be required), or through a more loosely coupled approach where115

the proposed algorithm is run in parallel with other techniques and their116

results are combined.117
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In addition, in this paper, we examine the complexity of the proposed118

intermittent fault detection algorithm, by experimentally quantifying the119

effect that partial order reduction techniques [18] have on to the limitation120

of this number of paths.121

The rest of the paper is structured as follows: section 2 overviews related122

work, including static and dynamic verification tools and elaborating on123

JPF, which is used in our approach. Section 3 introduces the proposed124

algorithm, while section 4 discusses the complexity of the algorithm. Section125

5 explores methods for speeding up the execution of the proposed algorithm126

by (a) exploiting parallelism and (b) pruning the possible execution paths127

tree, with the latter techniques being able to also tackle the state explosion128

issue, which is inherent in state space-based approaches. Section 6 presents129

an experimental evaluation of the algorithm, and finally section 7 concludes130

the paper and outlines future work.131

2. Related work132

Since reliability is a key objective in software development, numerous133

techniques have been proposed and employed to aid developers to localize,134

identify and remove faults. Some techniques examine the source code stati-135

cally to identify code smells, i.e. characteristics that may indicate a deeper136

problem. Towards this direction, code smell detectors have been employed137

[19][20]. Similarly, software fault prediction aims to identify fault-prone soft-138

ware modules by using some underlying properties of the software project139

before the actual testing process begins [21].140

Considering the dynamic behavior of the software, using test cases for141

unit-level [22] or integration testing was one of the first tools to verify soft-142

ware correctness [22]. Considering the size and complexity of modern soft-143

ware, methods for automatically generating comprehensive test case suites144

have been developed [23][24][25]. Since test case-based fault detection may145

miss certain faults, even under high code coverage, approaches to identifying146

faults that evade test-case based detection processes have also been proposed147

[26]. Additionally, taking into account that execution of test cases consumes148

time and resources, their minimization and management have been explored149

[27][28]. With security aspects gaining increasing attention in the past few150

years, specialized methods for analyzing and detecting software vulnerabil-151

ities have been developed [29].152

When faults do manifest in software, either in the context of testing or153

while execution in production environments, testers and developers need154
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to pinpoint the actual fault location and root cause: to this end, a num-155

ber of relevant algorithms and techniques have been proposed. Besides156

“traditional” fault localization techniques, which include logging, asser-157

tions, breakpoints and profiling, a number of advanced fault localization158

techniques have been proposed, which are classified as (a) slice-based, (b)159

program spectrum-based, (c) statistics-based, (d) program state-based, (e)160

machine learning-based, (f) data mining-based and (g) model-based tech-161

niques. Wong et al. [30] provides a survey on fault localization techniques.162

Intermittent faults however, due to their nature, may evade detection163

from typical fault discovery tools [3], therefore specialized methods have164

been developed to assist developers in identifying and removing intermittent165

faults. In the rest of section we overview related work for intermittent fault166

detection. We initially survey work in the domain of static debuggers, and167

subsequently we examine approaches using dynamic debuggers. Finally, we168

give a brief introduction to JPF, the dynamic debugging tool used for the169

instrumentation of the proposed intermittent fault detection approach.170

2.1. Static debuggers171

Static debuggers analyze the software code without running it. Because172

these debuggers do not rely on tests, they can be extremely thorough. Theo-173

retically, static debuggers can test even code paths which are rarely executed174

in practice [31]. Because they are based on static analysis and satisfying175

predefined constraints, they could fail to detect some errors. Moreover,176

while static debuggers can be used in unsafe languages1 to reveal potential177

bugs, they cannot guarantee that the data in memory is coherent according178

to any high-level criteria [32].179

It is very common that a static analyzer tool is used to analyze the180

software code and then symbolic execution with SMT (Satisfiability Modulo181

Theory) [33] formulas of defined constraints is used for the verification of182

the code [34].183

Symbiosis is an example of a static debugger [35]. Symbiosis necessitates184

the existence of a failing scheduling, which is then analyzed to determine185

the root cause of the fault.186

1An unsafe language does not ensure that primitive program operations are applied
to arguments of the proper form, e.g. does not ensure that array subscripts are within
the allowable range.
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2.2. Dynamic debuggers187

Dynamic debuggers examine the software code while it is running. The188

code in instrumented and all the possible paths are executed in order to189

detect candidate errors; the Partial Order Reduction technique ([18]) can be190

used to reduce the number of paths tested, by avoiding to re-examine some191

path that has been already examined while exploring some other branch.192

However, depending on the actual values assigned to input variables of the193

code, it is possible that some paths are not executed and thus the tools194

may miss certain code defects. In addition, because dynamic debuggers use195

information available at run time, which is harder to extract statically from196

the source code, dynamic debuggers can detect errors that are harder to197

discover when using static analysis tools [31].198

The CHESS tool [36] is an example of a dynamic debugger. CHESS199

creates multiple versions of the debugged program, each one suitably in-200

strumented to control the scheduling of threads. The instrumentation step201

generates O(2n) versions for a function with n components, however [36] re-202

ports that the execution of O(n) versions (context switch at one of the com-203

ponents each time) is usually enough to activate a concurrency fault; this204

however may lead to missing Heisenbugs with complex activation patterns.205

Furthermore, [37] reports that CHESS necessitates additional scaffolding206

and test code, on top of the test code that would be normally needed for207

unit or integration testing.208

The SCURF tool [37] also follows the instrumentation approach to create209

particular combinations of thread interleaving. Then, each of these versions210

is run against a number of test cases -coupled with test oracles- for checking211

system functionality that need to be available, and a spectrum-based fault212

localization [38] is utilized to correlate detected errors with concurrently213

executing code blocks.214

CTrigger [39] focuses on atomicity violation bugs; the fault identification215

process begins by profiling the software and identifying potential unserial-216

izable interleavings, while subsequently infeasible interleavings are pruned217

and low-probability interleavings are ranked. Afterwards, the unserializ-218

able interleaving space is explored. CTrigger also requires testing inputs219

and oracles.220

Java Path Finder (JPF) [13], is another dynamic debugger which is used221

by the proposed algorithm. In the following subsection, we provide a brief222

introduction to JPF, to present the core functionalities exploited by the223

proposed algorithm. JPF can locate a number of concurrency bugs, such as224
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deadlocks and missed signals, as well as Java-related faults e.g. unhandled225

exceptions and improper heap usage; in order to identify faults related to226

application semantics (e.g. erroneous variable values), relevant assertions227

should be given within the application code.228

Table 1 summarizes the existing tools and methods, their features and229

capabilities and compares them to those of the proposed algorithm.230
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Table 1. Comparison of existing fault identification tools and methods
Tool-
method

Scope Capabilities Limitations

Test cases Unit & integra-
tion testing

Mostly detects
Bohrbugs.

MandelBugs and Heisenbugs
typically evade detection;
coverage alone cannot guar-
antee a comprehensive fault
detection. Manual creation
of test cases is laborious and
tedious, however test case
generators are available.

Static de-
buggers

Static checking of
code properties;
symbolic execu-
tion can be also
performed

Identification of re-
source leaks, security
issues and code smells.
Can be used in con-
junction with SMT
models for increased
detection capabilities.
With failing schedules
available, faults can
be localized.

Cannot capture dynamic be-
havior and may miss some er-
rors; cannot guarantee data
coherence in memory accord-
ing to any high-level crite-
ria. Use with SMT models
necessitates definition of con-
straints (program invariants).

Chess [36] Concurrency
faults

Detects faults owing
to thread interleaving

May miss Heisenbugs with
complex activation patterns;
necessitates additional scaf-
folding and test code.

SCURF
[37]

Concurrency
faults

Detects faults owing
to thread interleaving
and inadequate atom-
icity guarantees.

Necessitates pre-crafted test
cases and test oracles; errors
not foreseen in these cases
may be missed.

CTrigger
[39]

Atomicity viola-
tion bugs

Locates faults owing
to thread interleaving,
catering for efficiency.

Necessitates pre-crafted test
cases and test oracles; errors
not foreseen in these cases
may be missed.

JPF [13] Concurrency
faults, including
deadlocks and
atomicity vio-
lations; generic
faults.

Powerful detection en-
gine, extendable via
the listener mecha-
nism.

Needs programmer-provider
assertions to detect errors re-
lated to high-level data coher-
ence.

Proposed
algorithm

Enhances JPF
with detection
of erroneous/-
suspect shared
variable access
patterns.

Captures all errors de-
tected by JPF and er-
rors related to high-
level data coherence,
without the need to
pre-define assertions,
test cases or oracles.

May flag false positives.
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2.3. JPF - A brief overview231

Java Path Finder (JPF) is an open-source software verification system,232

initially developed by NASA, that performs model checking for Java pro-233

grams. While test case-based software checks only some of the potential234

program executions and may thus miss errors, model checking automati-235

cally combines the behavior of state machines with a specification, which236

corresponds to the properties that the system should satisfy [13, 40, 41]. In237

more detail, the model checker accepts as input the state machine (FSM) of238

the program and the specification, and exhaustively explores all executions239

in a systematic way, flagging executions where the specification is found not240

to hold [42, 43]. The JPF code is available at [44].241

While the systematic generation of all potential execution paths covers242

the whole search space of program states, handling millions of combinations243

which are hard to be modeled by manually crafted test cases [42], and244

thus expose all errors, this approach entails excessive computation cost,245

which renders it infeasible [42]. Two techniques can be used here to reduce246

computation costs, namely backtracking and state matching.247

• Backtracking is a technique that allows the restoration of previous248

execution states, to examine if there are unexplored choices left. For249

instance, if JPF reaches a program end state, it can walk backwards250

to find different possible scheduling sequences that have not been ex-251

plored yet. While this theoretically can be achieved by re-executing252

the program from the beginning, and arranging that a different schedul-253

ing sequence is adopted in each execution, backtracking is a much more254

efficient mechanism if state storage is optimized.255

256

• State Matching is another key mechanism to avoid unnecessary work.257

The execution state of a program mainly consists of the heap and258

thread-stack snapshots. While JPF executes, it checks for every new259

state, whether an identical one has already been explored (c.f. Fig.260

1); in this case, there is no use to explore again from that state on-261

wards. When state matching occurs, JPF backtracks to the nearest262

non-explored non-deterministic choice.263

Since concurrent actions can be executed in any arbitrary order, con-264

sidering all possible interleavings of concurrent actions can lead to a very265

large state space. It can be shown that the number of states increases ex-266

ponentially with the number of threads [45]. JPF uses a technique called267
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Figure 1. State matching: both execution paths lead to the same state (state 3).

Partial Order Reduction (POR [46]), which basically identifies statements268

whose order of interleaving does not affect in any way the overall program269

execution, and groups them into a single state transition, reducing thus270

drastically the number of states that must be maintained. For instance, the271

instructions of threads T1 and T2 in Fig. 2 can be interleaved in any of the272

six ways listed in the same figure, however to verify program correctness it273

suffices to explore the two paths highlighted in Fig. 3 [47, 46].274

JPF uses a customizable Virtual Machine that supports various features275

related to model checking, including state storage and state matching. Ac-276

tually, JPF is a virtual machine (VM) running on top of the Java Virtual277

Machine (JVM) and controlling its operation. The core JPF model sup-278

ports checks for generic properties, such as absence of unhandled exceptions,279

deadlocks, and race conditions.280

Listeners are perhaps the most important extension mechanism of JPF.281

They provide a way to observe, interact with and extend JPF execution282

through code provided in the form of custom classes. Listeners are dynam-283

ically configured at runtime, and therefore they do not require any modifi-284

cation to the JPF core. Listeners are executed at the same authorization285

level as JPF, so no limitations are imposed to their functionality (c.f. Fig.286

4). In our approach, we use one listener that observes shared variable access287

by threads, and logs these accesses for further analysis.288
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Figure 2. POR - Partial Order Reduction Example

3. The Proposed Intermittent Fault Detection Algorithm289

The method proposed in this paper comprises three parts: The first290

one encompasses the development of a rule base for the detection of shared291

variable access patterns that may indicate sources of intermittent faults.292

The second one is about the generation of complete execution traces for293

the target program, to record all possible shared variable access patterns.294

In this part, JPF, augmented with additional logging listeners, is used to295

implement the generation of the program traces. The third one comprises296

the application of the rule base developed in part 1 on the traces generated297

during step 2, in order to detect possible sources of intermittent faults within298

the program. These points are proposed to the user for review and, if299

appropriate, application of the necessary corrections.300

The first phase (rule base development) need not be performed for each301

program. Instead, a generic rule base can be developed once and be subse-302

quently applied to all target programs. It is possible that derivatives of the303

generic rule base are created to match the requirements of specific program304
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Figure 3. POR - Partial Order Reduction Example

Figure 4. JPF listeners
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classes, e.g. programs with different isolation levels. The basic rules that305

we use in this paper, are :306

1. sequences of operations of the form readT1(X), writeT2(X), writeT1(X),307

corresponding to write-after-write hazards (the notation readT (X) de-308

notes that thread T reads variable X; and similarly for writeT (X))309

2. sequences of operation of the form readT1(X), writeT2(X), readT1(X),310

corresponding to the read-after-write hazard311

When either of these patterns is detected in the program traces, then312

the corresponding code may be the cause of intermittent faults. In case313

of the write-after-write hazard rule, we can observe that this order is not314

equivalent to any serializable order: if T1 were scheduled before T2, then315

the value finally stored in X would be the one written by T2 instead of the316

value written by T1, which is finally stored by the schedule above (this is317

known as the lost update problem [48]); and if T2 were scheduled before318

T1, T1 would have read the value of X stored by T2 instead of the value319

previously stored for X (recall that T1 may have used the value read for X320

to compute a new value for X, so reading a different value leads to erroneous321

computation). In case of the read-after-write hazard rule, before we read322

our shared variable X for the second time on thread T1, it is modified on T2323

with a write operation, which makes the value of X on thread T1 to have a324

new value (without having saved the product of the previous X read value325

or simply using different values of X in different parts of the computation326

in T1; the latter is also known as the non-repeatable read problem [49]),327

which may be a potential cause of some intermittent fault.328

In the second phase, we create a tree structure, where we store the data of329

the states of the JPF run. Each state can be a combination of data from the330

different threads that are accessed concurrently. Typical data that we store331

during this state are: the variable name, the class name, whether the access332

is a read or write one, the thread id, the method name, synchronization333

info, the package name, the value of the variable, if there is a monitor enter334

or exit operation, lock info, the line of the code that is executed and the335

source line, etc. When the JPF run is done, the detailed trace about the336

accesses of the state variables is available for analysis. Since each state may337

have one or more previous states (recall that the state matching mechanism338

specifically searches for cases where multiple execution paths have led to the339

same state) and may lead to multiple subsequent states, the trace effectively340

forms a directed acyclic graph (DAG).341
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In the third phase (processing phase), we apply our rule base on this342

structure in order to detect the points in the code that match our rules.343

Multiple rule bases or even ad-hoc rules could be applied during this phase.344

The JPF should be executed only once while the tree structure can be stored345

and reused for the application of all user rules.346

As an example of applying the proposed algorithm, consider the case347

that the rule base contains the two rules listed above, and that the code348

illustrated in Listing 1 is checked for the presence of intermittent faults.349

Before the execution of line (3) of this code, the value of the filled variable350

should always be smaller than MAXNUM, a condition that is checked by the351

condition at line (1) and the code associated with it. However, in the context352

of concurrent executions of the put method, it is possible that two distinct353

threads detect that the value of the filled variable is equal to MAXNUM-1,354

and subsequently each one increases the value of the variable by 1, therefore355

violating the invariant filled ≤MAXNUM ; this is owing to the premature356

lock release, occurring at line (2).357

Listing 1. A simple code example, which produces faults intermittently
358

private final static Lock l = new ReentrantLock ();359

private static int filled = 0;360

private static ArrayList queue = new ArrayList ();361

private static final int MAXNUM = 2;362

363

public void put(Object elem) {364

365

l.lock();366

(1) if (filled < MAXNUM) {367

//other code368

(2) l.unlock ();369

} else {370

l.unlock ();371

return;372

}373

l.lock();374

// assert (filled < MAXNUM);375

(3) filled ++;376

queue.add(elem);377

l.unlock ();378

return ;379

380
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}381

382

public Object get() {383

Object elem = null;384

l.lock();385

386

if (filled > 0) {387

(4) filled --;388

elem = queue.remove (0);389

}390

l.unlock ();391

392

return elem;393

}394
395

Fig. 5 demonstrates the different access interleavings that may occur396

when the code of the put method is executed concurrently by two threads,397

T1 and T2, assuming that the condition at line (1) evaluates to true for398

both threads. We can notice that six distinct interleavings are possible,399

out of which four (the 1st, 2nd, 4th and 5th branches of the tree) en-400

tail the appearance of the non-repeatable read problem. For instance, in401

the second branch of the tree, the following shared variable accesses will402

be performed: readT1(filled), readT2(filled), readT1(filled), writeT1(filled),403

readT2(filled), writeT2(filled), with the first two reads corresponding to the404

checking of condition at line (1), and subsequently each read/write pair405

corresponding to the variable increment at line (3). In this sequence, we406

can observe that a read-after-write hazard occurs, since a write operation407

on variable filled is performed by thread T1 between the two read op-408

erations performed on the same variable by thread T2, therefore the read409

performed by T2 is non-repeatable.410

Fig. 6 shows the respective states of the filled variable, again as-411

suming that the condition at line (1) evaluates to true for both threads.412

Notably, when the filled variable is less than MAXNUM-1 all interleavings413

lead to a correct state, increasing the filled variable by two. However,414

if filled == MAXNUM-1, the execution of the branches entailing the read-415

after-write hazard leads to an incorrect state, where the filled variable416

is set to MAXNUM+1. The proposed algorithm can thus identify code that417

is bound to cause intermittent faults, without any knowledge about the418

correctness of the states.419
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Figure 5. The possible access interleavings of the shared variable ”filled” when two put
methods of two different threads are executed concurrently.

Figure 6. The states of the shared variable ”filled” when two put methods of two different
threads are executed concurrently.

Using JPF to generate our state tree structure, has the advantage that420

the user does not need to give any a-priori information about the code421

(shared variables, atomic blocks, etc.), while JPF is not sensitive in possible422

code structure changes as a static analyzer could potentially be.423

An implementation of the algorithm is available in open source at https:424

17
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//github.com/pansot2/JPF.425

4. Complexity analysis426

When a multithreaded program with k threads executes, at each time427

point the scheduler may pick any of the threads that are not in a suspended428

state to execute, thus having a maximum of k alternative choices. Since429

we focus on operations that access shared variables (because inappropriate430

shared variable access patterns are a major cause of intermittent faults), if431

we consider that each thread ti performs ni shared variable accesses, then432

the corresponding states of a multithreaded program can be arranged in a433

tree whose rank is equal to the number of threads k and its depth is equal434

to:435

depth =
k∑
i=1

ni (1)

The root of the tree corresponds to the initial state of the program, while436

an edge denotes a transition from a state to a subsequent one, through437

the execution of an instruction that accesses a shared variable, with the438

instruction belonging to some thread ti (c.f. Fig. 5). Sibling tree states439

correspond to different scheduling decisions. The total number of paths in440

the tree is equal to the number of ways to interleave k ordered sequences.441

In order to compute the number of paths, we consider that the instruc-442

tions in each thread ti (1 ≤ i ≤ k) are essentially ordered lists, and we want443

to interleave the elements of these lists while preserving the order of the444

elements in each ordered list.445

According to equation (1), there will be n1 + n2 + · · · + nk places that446

we must fill (one place for each level of the tree). We can proceed by first447

assigning the elements of the first list, corresponding to the instructions of448

the first thread, to places. Therefore, we select n1 out of the available n1 +449

n2+· · ·+nk places, and we assign to the selected n1 places the instructions of450

the first thread, preserving their order. The number of possible alternatives451

is (n1+n2+···+nk
n1

).452

Next, we choose n2 of the remaining places that will accommodate mem-453

bers of the second list, which correspond to the instructions of the second454

thread. Out of the total number of n1 + n2 + · · · + nk places in the list,455

n1 are now occupied by elements of the first list, therefore the number of456

available places in the list is n2 + · · · + nk. Consequently, the number of457
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possible alternatives is (n2+···+nk
n2

). Working in the same way with the re-458

maining ordered lists, when placing the elements of the kth list there are nk459

elements to be placed in nk positions, therefore there exist (nk
nk) alternatives.460

Combining all the above, the mathematical formula that calculates the461

number of ways to interleave k ordered sequences is:462

k∏
i=1

( ∑k
j=i nj
ni

)
(2)

In each state of the execution tree, we store information about the cur-463

rent accesses of the shared variables, synchronization info, etc. for all active464

threads. If a thread progresses, by accessing a shared variable, recording465

changes in the synchronization info, etc., then a new tree node is created as466

a child of the previous state (c.f. Fig. 7).467

Figure 7. JPF State Tree - Rank of the tree: The maximum number of threads that
can run in parallel. Depth of the tree: The sum of the accesses of all shared memory
variables for all the threads.

In our work, execution path traversal is instrumented via the JPF model468

checker, which is a so-called explicit-state model checker, since it enumer-469

ates all visited states, and therefore suffers from the state-explosion problem470

inherent in analyzing large programs [50], while the number of paths to be471

examined also increases rapidly, with the number of threads and instructions472

per thread (c.f. equation 2. However, JPF employs a number of techniques473

including POR (Partial Order Reduction), state matching, and branch cov-474

erage [50] to reduce the number of states and the number of paths that475
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will be examined. Using these techniques, JPF can scale up to analyzing476

programs up to 100,000 lines of code [51].477

Insofar, there has not been any theoretical analysis of the effect that478

POR and state matching have on the complexity of the algorithms that479

explore the search space of possible execution paths. This is due to the480

fact that the final effect is highly dependent on the specific instruction481

placement for each program (which affects the number of cases that POR482

can be applied), existence and location of lock/unlock instructions (which483

may limits the actual choices available to the scheduler at each step), as484

well as volatility of external inputs, which is a determinant factor for the485

number of cases that states will be actually matched. Further theoretical486

analysis of this aspect is part of our future work.487

The proposed algorithm dictates that shared variable accesses that are488

performed along an execution path are recorded, and access sequences are489

scanned for occurrences of the two concurrency hazards, i.e.:490

1. access patterns of the form readT1(X), writeT2(X), writeT1(X), corre-491

sponding to write-after-write hazards492

2. access patterns of the form readT1(X), writeT2(X), readT1(X), corre-493

sponding to the read-after-write hazard494

The complexity of recording shared variable access sequences within an495

execution path is O(n), where n is the number of shared variable access496

sequences occurring within the execution path. Once the access sequence is497

recorded, the next task is to determine whether this sequence contains any498

of the access patterns (1) and (2) above. In the following, we discuss the499

matching procedure, considering initially the first form of access pattern500

for a specific thread, and subsequently we generalize for the second form of501

access patterns and all threads of a program.502

When searching for access patterns of the form (1) above, it is not neces-503

sary that the instructions are found in strict sequence. The following types504

of instructions may intervene between the first instruction of the pattern505

(readT1(X)) and the last one (writeT3(X)):506

• accesses to other shared variables, either by the same or by other507

threads, e.g. readT1(Y) and writeT2(Y);508

• accesses to the same shared variable by threads other than T1, e.g.509

readT3(X) and writeT2(X);510
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If such instructions occur, then still the hazard can be flagged, since511

they have no effect on the semantics of the pattern. Additionally, we can512

note the following:513

• if a readT1(X) instruction occurs between the first and the second514

instruction of the pattern (i.e. we have an access sequence readT1(X),515

readT1(X), writeT2(X), writeT1(X)), then the hazard still exists, and516

it actually maps to the instructions 2-4 of the extended access pattern517

(i.e. the first readT1(X) is not a part of the hazard; the hazard occurs518

later on).519

• similarly, if a writeT1(X) instruction occurs between the second and520

the third instruction of the pattern (i.e. we have an access sequence521

readT1(X), writeT2(X), writeT1(X), writeT1(X)), then the hazard still522

exists, and it actually maps to the instructions 1-3 of the extended523

access patterns (i.e. the last writeT1(X) is not a part of the hazard;524

the hazard has already occurred upon the execution of the third in-525

struction of the extended access pattern).526

• if a readT1(X) occurs between the second and the third instruction of527

the pattern (i.e. we have an access sequence readT1(X), writeT2(X),528

readT1(X), writeT1(X)), then the hazard does not occur, since the529

computation of the value written by the fourth instruction has been530

performed based on a “fresh” copy of variable X (i.e. a copy obtained531

after thread T2 has written a new value [48]).532

• finally, if a writeT1(X) instruction occurs between the first and the533

second instruction of the pattern (i.e. we have an access sequence534

readT1(X), writeT1(X), writeT2(X), writeT1(X)) then the hazard may535

occur, since the value stored by the fourth instruction may be depen-536

dent on the value read by thread T1 during the execution of the first537

instruction of the extended access sequence.538

Considering all the above, the target access pattern may be formulated539

as a regular expression of the form:540

readT1(X) (all except readT1(X))* writeT2(X) (all except readT1(X))* writeT1(X)541

where the notation all except readT1(X) means any either a read or write on542

any shared variable, by any thread except for a read access by thread T1;543

note here that since both the number of shared variables and the number of544

threads are finite, the notation all except readT1(X) corresponds to a finite545
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set of elements, whose cardinality is (#threads * #shared variables - 1).546

Furthermore, the star operator denotes “zero or more occurrences of the547

preceding element”.548

In order to match a regular expression against an element sequence, a549

deterministic finite state automaton can be used [52]; Fig. 8 depicts the550

deterministic finite state automaton which matches the regular expression551

described above. The finite state automaton performs the match in linear552

time, performing one state transition for each input symbol. Therefore,553

matching a single instance of a rule, pertaining to a specific thread and a554

specific shared variable, can be performed in linear time.555

Figure 8. Deterministic finite state automaton for matching the access pattern

In the detection phase multiple instances of rules must be matched556

against the shared variable access traces of each execution path; effectively,557

each of the two rules corresponding to the write-after-write and the read-558

after-write hazard must be specialized for each thread and each shared559

variable. Therefore a maximum of (2 * #threads * #shared variables) rules560

must be matched; the number may be lower if some thread T does not read561

or write some shared variable V, in which case the respective rule instances562

specialized for thread T and shared variable V need not be considered.563

Matching of all rule instances can be performed by a single reading
of the shared variable access trace, by combining the deterministic finite
state automata into a single deterministic finite state automaton capable of
recognizing all suspect shared variable access patterns. The procedure for
building the automaton is described in [52] and summarized in the following.
Let Mi = (Ki,Σ, si, Fi, δi) be the automaton that realizes the match of
rule instance Ri, where Ki is the set of states of the automaton, Σ is the
alphabet (read and write operations on shared variables by threads), si is
the start state of the automaton, Fi is the set of final states and δi the
transition function for Mi. A new non-deterministic automaton Mnd =
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(Knd,Σ, snd, Fnd, δnd) is constructed where:

Knd = Snd
⋃

(
⋃
i

Ki) (3)

snd = Snd (4)

Fnd =
⋃
i

Fi (5)

δnd = (
⋃
i

δi)
⋃

(
⋃
i

{Snd
ε−→}) (6)

Effectively, a new start state Snd is introduced which is non-deterministically564

linked to all start states of the individual automata under an ε-transition565

(i.e. a transition that occurs with no input), and all final states of the566

individual automata are considered as final states in the merged automa-567

ton. The non-deterministic automaton is depicted in Fig. 9. Finally, the568

non-deterministic automaton is converted to a deterministic one, using the569

algorithm described in [52].570

Figure 9. The non-deterministic automaton.

Since an execution path typically includes other instructions besides ac-571

cesses to shared variables (e.g. accesses to local variables, computations,572

etc.), the overall complexity of shared variable access recording and match-573

ing is inferior to that of the execution of the path. Additionally, note here574

that in the context of the execution performed by JPF as part of the explicit575

state-model checking, some operations such as state matching are expensive576

ones, needing to examine a number of data elements (e.g. values of state577

variables), as contrasted to the shared variable access recording and rule578

matching operations introduced by the algorithm, where each shared vari-579

able access is recorded or processed in the merged deterministic finite state580
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automaton in a O(1) operation. Therefore, the overall complexity of the581

suspicious shared variable access pattern detection procedure is dominated582

by the complexity of the execution of the different execution paths, which583

is instrumented by JPF which -as noted above- can satisfactorily handle584

programs of the magnitude of 100,000 lines of code.585

5. Optimizing Intermittent Fault Identification586

While the presented algorithm leverages the intermittent error detection587

potential, it introduces additional overheads. In this section, we examine588

methods for limiting overheads and increasing the efficiency of intermittent589

fault detection.590

5.1. Separate analysis of independent thread partitions591

Our method targets the identification of access patterns on shared vari-592

ables which may lead to errors; to test whether such patterns may appear,593

all possible execution paths are examined. However, when two threads do594

not access any variable in common, it is not necessary to test all possi-595

ble interleavings of these threads’ execution, since obviously no “suspect”596

variable access patterns may be identified among these threads.597

Generalizing, we can partition the threads in the program in subsets598

TS1, TS2, ..., TSn where:599

• TSi ∩ TSj = ∅, ∀ i, j: i 6= j600

•
⋃
i TSi = T , where T is the set of all program threads601

• SV A(TSi) ∩ SV A(TSj) = ∅, ∀ i,j: i 6= j, where SV A(TSj) is the set602

of all shared variables accessed by any thread in TSj603

In order to exploit this aspect towards the optimization of the intermit-604

tent fault identification process, we override the default choice generation605

and backtracking behavior of JPF, to allow the user to specify the threads606

whose execution will be monitored in a particular execution. At implemen-607

tation level, this is realized by overriding the stateAdvanced method of608

the listener, which controls what happens when a new state is generated.609

In more detail, the user defines in the configuration file the threads that610

contain related shared variables, which form a thread subset, and the rest611

of the threads being partitioned into trivial, single-thread subsets which612

24



Panagiotis Sotiropoulos and Costas Vassilakis / Journal of Systems and
Software 00 (2019) 1–42 25

are ignored in order not to produce any alternative choices; only a single613

choice is considered for these threads. Effectively we have a model involv-614

ing some “interacting threads” and some “independent threads”. This is615

accomplished using the following configuration parameter:616

vm.watched.threads = the threads that should trigger alternative choice gen-617

erations in JPF618

The code in the listener that handles this functionality is illustrated in619

the following Algorithm (Listing 2):620

Listing 2. Process followed by the listener used for choice generation only for a subset of
the threads of the software program

621

1. Get information about the watched threads defined622

with the configuration parameter vm.watched.threads623

2. Get information about the threads that the watched624

threads depend on; this is defined via the625

configuration parameter vm.watched.threads.seqdeps626

3. In the stateAdvanced overriden method , ignore the627

states that are not caused by executing628

instructions of the watched threads or the threads629

they depend on. This is accomplished by invoking630

the search.getVM().ignoreState () method.631
632

As it can be noticed in the process above, the ignoreState() method633

that JPF provides is used in order to ignore the states related to a thread634

change that are not included at the vm.watched.threads list in the con-635

figuration. There is no need to make alternative choices for the scheduling636

of threads that are not included in the vm.watched.threads variable and637

have no watched thread depending on them, as these, in general, do not638

influence the subset of threads for which the intermittent fault analysis is639

conducted.640

In order to comprehensively analyze the program for existence of in-641

termittent faults, the intermittent fault detection procedure should be run642

for each thread subset TSi. If the number of states examined when an-643

alyzing thread subset TSi is equal to numStates(TSi), then the analysis644

of all subsets entails the examination of
∑

i numStates(TSi) states. Con-645

trary, if a combined analysis of all threads is employed (i.e. the thread646

“independence property” is not exploited), then the analysis will entail the647

examination of
∏

i numStates(TSi) states, under the assumption that no648

dependent threads exist for each thread subset. It is clear that the thread649

partitioning scheme introduces significant performance gains.650
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The formulation of independent thread partitions that are separately651

examined for suspect shared variable access patterns contributes to the652

reduction of the state space that need to be examined, alleviating thus the653

issue of state explosion. The gains regarding the aspect of state space size654

reduction are quantified through the experiments presented in subsection655

6.3.656

At this stage of development, we have delegated the responsibility of657

partitioning threads to thread subsets to the user; in our future work, we658

will consider automatic or semi-automated ways to determine independent659

thread subsets.660

5.2. Pruning state subtrees of specific nodes661

In this section we explore the potential to optimize the intermittent fault662

analysis time, by reducing the nodes of the JPF tree for different ranks and663

depths. This method can be used for software programs employing a Boss-664

workers model [53] (or the dispatcher-worker model, as listed in [54]), where665

the different tasks are distributed to workers which use code/libraries that666

are independent (in terms of shared variables) from the rest of the program.667

A typical case of this example is the web server process service loop, where668

requests are accepted by the main thread and then their execution is del-669

egated to worker threads, with worker threads being totally independent670

and not accessing any shared variables. In this case, we could avoid the671

expansion of alternatives for worker thread states, since -by virtue of their672

independence- are not bound to be the source of intermittent faults (cf. Fig.673

10).674

Pruning state subtrees can be configured by specifying the depth of the675

state tree at which pruning will occur and the order of the child nodes676

at this level to be allowed: at the present state of development, prun-677

ing is regulated via the properties listed in table 2. At runtime, when678

the listener detects that a subtree should be pruned it executes the state-679

ment ti.breakTransition(true);, which breaks the current transition680

and forces an end state.681

Pruning the state subtrees of specific nodes contributes to the alleviation682

of the state explosion problem, since the state space that is explored within683

the program execution is reduced. The gains regarding the aspect of state684

space size reduction are quantified through the experiments presented in685

subsection 6.3.686
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Figure 10. JPF State Tree Reduction : Pruning subtrees of nodes at Level N by allowing
execution of the first child of each node only.

Property name Description
vm.parallel.allow.depth the level of the nodes where the reduction

will be applied (single value or a range)
vm.parallel.allow.child the order of the child node(s) at the specified

level that will be allowed to continue (e.g.
the value “2” designates that the 2nd child
will be allowed to continue, while execution
of other children will be inhibited)

Table 2. Parameters regulating the pruning of state subtrees

5.3. Exploiting processing power in share-nothing architectures687

The proposed method is orchestrated on top of JPF, and can thus ben-688

efit from JPF’s potential to run efficiently on shared memory architectures,689

exploiting multiple execution cores for accelerating the state space search690

procedure [55]. To further scale parallelism potential and take advantage691

of share-nothing architectures, the user could designate specific JPF paths692

whose exploration would be assigned to a different machine. More specifi-693

cally:694

• the listener examines all transitions695

• when a path that is designated to be transferred to another machine is696
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reached, the state space is serialized and transferred over the network697

to the destination machine698

• at the local machine further exploration is inhibited by means of the699

ti.breakTransition(true); statement, which breaks the current700

transition and forces an end state.701

• On the remote machine, the state is deserialized, and execution re-702

sumes from the point that it was suspended; in this case, the listener703

does not issue the ti.breakTransition(true); statement, allowing704

the exploration of the path.705

The state serialization, transfer and execution resumption mechanisms706

are currently under implementation.707

6. Experimental evaluation708

In this section, we present the experiments conducted to:709

1. validate the proposed algorithm in terms of its fault detection poten-710

tial,711

2. experimentally assess the complexity of the algorithm and quantify712

the overhead introduced over the “plain JPF” software validation and713

3. assess and quantify the gains reaped from applying the optimization714

methods presented in section 5.715

6.1. Algorithm validation716

6.1.1. Small-scale validation717

Initially, when we ran the non-extended version of JPF against the code718

illustrated in listing 1 using three parallel threads. The validation succeeds719

without identifying any potential error sources, exhibiting thus a false neg-720

ative.721

Then we run the proposed algorithm to generate data access traces, ap-722

plying the rules read(s,T1)-write(s,T2)-write(s,T1) and read(s,T1)-write(s,T2)-723

read(s,T1), which can identify data access patterns that are potentially er-724

roneous. After the processing of the tree, which has been generated via725

our listener, the following instruction interleavings are identified as possible726

intermittent fault causes:727

1. t1(1)− t2(3)− t1(3)728
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2. t1(1)− t2(4)− t1(3)729

3. t1(1)− t2(4)− t1(4)730

where ti(j) denotes the execution of instruction j (cf. code example in731

Section 3) by thread i.732

The user is invited to review the relevant code and accept or reject733

those proposals. In the above case, the first case flagged by the algorithm734

is a source of intermittent faults, since it may lead to the violation of the735

filled < MAXNUM program invariant, as we would like in every case736

before executing line (3) to have a shared variable which is smaller than737

MAXNUM (filled < MAXNUM). The two last sequences do not gener-738

ate an intermittent fault in our case, however it is worth noting that when739

the instructions l.unlock(); (line (2) in listing 1) as well as the corre-740

sponding l.lock() instruction immediately preceding line (3) in the same741

listing, effectively thus removing the atomicity violation which is the root742

cause of the error flagged in the first case, the second error flagging are743

removed and only the third one is reported.744

Our approach is able to identify previously missed intermittent faults.745

On the other hand, it introduces some false positives. An annotation-based746

approach could be used to inhibit the reporting of specific patterns that747

have been validated not to cause intermittent faults.748

6.1.2. Validation in real-world scale749

To validate our approach in a real-world scale, we conducted experiments750

using the multithreaded Java websever available in [56], which extensively751

uses multithreading (using a thread pool of configurable size) and shared752

variables. We initially ran the non-extended version of JPF against the753

simulation code given in GitHub [57], and no errors were flagged. The code754

was also checked by the proposed algorithm, and no errors were flagged755

either.756

Subsequently, we followed a fault injection approach [8], to inject faults757

within the code and test whether these faults are detected by (a) the non-758

extended versions of the JPF and (b) the proposed algorithm (i.e. JPF759

extended with our listener and the potentially erroneous access pattern760

detection). The results of the tests are summarized in table 3.761

Effectively, the proposed algorithm was able to detect all faults detected762

by JPF (which underpins the proposed algorithm), plus errors related to763

erroneous access patterns, which were missed by JPF. Therefore, the pro-764

posed algorithm offers more comprehensive error detection, at the expense765
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Fault type JPF Proposed algorithm

Deadlock Yes Yes
Unhandled exception Yes Yes
Race conditions Yes Yes
Application-specific
assertions

Yes Yes

Erroneous shared vari-
able access patterns as in
listing 1

No Yes; for the injected erroneous ac-
cess pattern faults, one related
false positive was also raised

Table 3. Detection of injected faults by JPF and the proposed algorithm

of flagging a limited number of false positives and a performance overhead,766

which has been quantified to be up to 10.7%, as discussed in subsection767

6.2. Recall here that the potential of the proposed algorithm to detect erro-768

neous shared variable access patterns is advantageous over the detection of769

errors based on application-specific assertions, in that (a) the former does770

not necessitate any instrumentation by the programmer (i.e. insertion of771

assert statements), while the latter does and (b) assertion-based error de-772

tection is limited to detecting errors at the locations that assertions have773

been inserted and related to the conditions within the assertions, whereas774

erroneous shared variable access pattern detection can identify errors at any775

location and under any condition.776

An instance of the code of [56] with injected faults is available at [58] 2
777

6.2. Complexity Assessment Experiments778

In this subsection, we report on the experiments conducted to gain in-779

sight regarding the size of the state space and the execution time needed780

under different thread mixtures, and present the obtained metrics. To pro-781

mote example clarity, we initially present a complexity analysis on the code782

depicted in listing 3, while subsequently we present our complexity analysis783

findings on our real world-scale example of the multithreaded Java websever784

[56]. All the experiments reported in this subsection, as well as in the fol-785

lowing one, have been performed on a PowerEdge M910 blade server, with786

2At different phases of the test, different faults were injected; [58] contains a specific
set of faults.
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256 GBytes of physical memory and four 8-core E7-4830 Intel Xeon proces-787

sors. The Java environment had been configured to use up to 40 GBytes of788

memory.789

The example in listing 3 entails instructions belonging to three threads,790

namely T1, T2 and T3. Threads T1 and T2 access two shared variables A791

and B, therefore the interleaving of their instructions can be the root cause792

of intermittent fault occurrence. On the contrary, thread T3 accesses only793

local variables, and consequently no intermittent faults can occur due to794

the instructions of this thread.795

Listing 3. Thread code
796

shared int A, B;797

798

T1:799

B = 2;800

A = B + 1;801

802

T2:803

B = 0;804

B = B + 2;805

A = B + 1;806

807

T3:808

local int c, d;809

d = 0;810

d = d + 2;811

c = d + 1;812
813

In terms of shared variable read and write operations, threads T1 and T2814

can be written as:815

Listing 4. Thread read and write operations
816

T1: w(B), r(B), w(A)817

T2: w(B), r(B), w(B), r(B), w(A)818

T3: -819
820

Some possible execution schedules of threads T1 and T2 are presented821

in the following list. For conciseness, we have only included those execution822

schedules which end with the last instruction of thread T1 ; inclusion of823

cases that end with the last instruction of T2 is done in an identical fashion.824
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The instructions of T1 (i.e. instructions of thread T1 for which at least825

one instruction of T2 intervenes between them and the last instruction of826

T1 )are denoted using boldface, to promote readability.827

For the creation of the execution schedules presented in the following828

list, we assume a simple processor addressing mode, where each instruction829

can fetch access only one memory location (corresponding to a variable),830

fetching its contents to a register or storing register contents to it. This is831

in-line with the Java model, where instructions operate on operands individ-832

ually stored on the operand stack, and results are then copied to variables3.833

In this sense, read and write operations executed in the context of the same834

instruction (e.g. r(B)T1, w(A)T1 corresponding to the instruction A = B835

+ 1; are separable, in the sense that thread switching can occur between836

these two accesses. However, in some processors it is possible to execute837

multiple variable accesses in a single instruction: for instance in the Pen-838

tium it is possible to map the program instruction B = B + 2; to a single839

machine-language instruction ADD WORD PTR [ESI],0x2 (assuming that840

the ESI register points to the memory location of variable B) [59]. Notably,841

this can happen when Java bytecode is compiled into optimized machine842

instructions e.g. through the Java HotSpot VM4. In these cases, execution843

schedules in which the involved read and write operations appear separated844

cannot occur and therefore should not be considered; henceforth, the follow-845

ing list contains only execution schedules where the operations r(B)T2 and846

w(B)T2 realizing the B = B + 2; instruction of thread T2 are adjacent.847

1. w(B)T2, r(B)T2, w(B)T2, r(B)T2, w(A)T2, w(B)T1, r(B)T1, w(A)T1848

2. w(B)T1, w(B)T2, r(B)T2, w(B)T2, r(B)T2, w(A)T2, r(B)T1, w(A)T1849

3. w(B)T2, w(B)T1, r(B)T2, w(B)T2, r(B)T2, w(A)T2, r(B)T1, w(A)T1850

4. w(B)T2, r(B)T2, w(B)T2, w(B)T1, r(B)T2, w(A)T2, r(B)T1, w(A)T1851

5. w(B)T2, r(B)T2, w(B)T2, r(B)T2, w(B)T1, w(A)T2, r(B)T1, w(A)T1852

6. w(B)T1, r(B)T1, w(B)T2, r(B)T2, w(B)T2, r(B)T2, w(A)T2, w(A)T1853

7. w(B)T1, w(B)T2, r(B)T1, r(B)T2, w(B)T2, r(B)T2, w(A)T2, w(A)T1854

8. w(B)T1, w(B)T2, r(B)T2, w(B)T2, r(B)T1, r(B)T2, w(A)T2, w(A)T1855

9. w(B)T1, w(B)T2, r(B)T2, w(B)T2, r(B)T2, r(B)T1, w(A)T2, w(A)T1856

10. w(B)T2, w(B)T1, r(B)T1, r(B)T2, w(B)T2, r(B)T2, w(A)T2, w(A)T1857

3https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html
4http://www.oracle.com/technetwork/java/javase/tech/index-jsp-

136373.html
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11. w(B)T2, w(B)T1, r(B)T2, w(B)T2, r(B)T1, r(B)T2, w(A)T2, w(A)T1858

12. w(B)T2, w(B)T1, r(B)T2, w(B)T2, r(B)T2, r(B)T1, w(A)T2, w(A)T1859

13. w(B)T2, r(B)T2, w(B)T2, w(B)T1, r(B)T1, r(B)T2, w(A)T2, w(A)T1860

14. w(B)T2, r(B)T2, w(B)T2, w(B)T1, r(B)T2, r(B)T1, w(A)T2, w(A)T1861

15. w(B)T2, r(B)T2, w(B)T2, r(B)T2, w(B)T1, r(B)T1, w(A)T2, w(A)T1862

Table 4 depicts the experimental results obtained from running the code863

in listing 3 with a varying number of instances of threads T1, T2 and T3.864

The experimental results are contrasted with the theoretical maximum of865

possible paths, which is equal to the number of possible distinct execution866

schedules (c.f. Section 4).867

Complexity Comparison Table
2
Threads
(1xT1,
1xT2)

3
Threads
(1xT1,
1xT2,
1xT3)

4
Threads
(1xT1,
1xT2,
2xT3)

4
Threads
(2xT1,
2xT2)

5
Threads
(1xT1,
1xT2,
3xT3)

5
Threads
(2xT1,
2xT2,
1xT3)

6
Threads
(1xT1,
1xT2,
4xT3)

4
Threads
(2xT1,
2xT2,
2xT3)

Theoretical
number of
possible paths

56 56 56 40360320 56 40360320 56 40360320

Experimentally
determined
number of
paths (JPF)

13 18 63 49766 63 90627 63 154081

Practical num-
ber of final
states (JPF)

2 2 2 3 2 3 2 3

Experimentally
determined
number of final
states (JPF)

4 4 4 11 4 11 4 11

JPF end states 29 33 37 331 41 342 45 353

Table 4. Complexity comparison for varying number of threads

At this point, we note the following :868

1. For the number of possible paths, we assume all possible execution869

schedules regarding instructions accessing shared variables, as calcu-870

lated by equation 2.871

2. The metric Practical number of final states corresponds to the number872

of the different program results, in terms of shared variable values.873
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3. The difference between the Practical number of final states and the874

JPF end states exists because of the additional information regarding875

shared data used in JPF (e.g thread shared information).876

Regarding the complexity analysis experiments conducted using our real877

world-scale example of the multithreaded Java websever [56], table 5 depicts878

the execution statistics of the multithreaded Java websever [56] regarding879

the number of states, and table 6 depicts the runtimes measured, while880

varying the parameter of the execution tree depth search limit (c.f. subsec-881

tion 5.2). In all experiments, all injected faults were flagged, while in the882

setting where the JPF search depth was set to 350 it was observed that the883

limit was not reached within the fault detection process execution, indicat-884

ing that further increments to that parameter would not affect the time and885

resources needed. We can observe that the overhead introduced by the pro-886

posed algorithm over the non-extended version of JPF is up to 10.7%, which887

is deemed acceptable, considering the increased fault detection potential of888

the proposed algorithm.889

new states 35,185,856
visited states 24,779,490
backtracked states 59,965,346
end states 0
instructions 499,329,9768
max memory 30,7 GB

Table 5. Execution statistics for the fault detection process of the multithreaded Java
websever

where:890

• new states is the number of unique states visited during the run;891

• visited states is the number of states that are examined and have been892

revisited during the same execution;893

• backtracked states refers to the states from which the search back-894

tracked, so as to examine different paths;895

• end states refers to the concluding states of the program execution,896

from which there are no forward transitions to try.897
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JPF execution time
JPF search
depth=120

JPF search
depth=240

JPF search
depth=350

JPF (not extended) 01:27:19 04:01:59 04:05:09
Proposed algotithm 01:34:25 04:26:15 04:31:26

Table 6. Fault detection process execution time for Java web server Simulation

6.3. Optimization Experiments898

In this subsection we report on the experiments conducted to assess899

the gains introduced by the optimization methods presented in section 5,900

and present our findings. As noted above, all the experiments reported in901

this subsection have been performed on a PowerEdge M910 blade server,902

with 256 GBytes of physical memory and four 8-core E7-4830 Intel Xeon903

processors. The Java environment had been configured to use up to 40904

GBytes of memory.905

Table 7 illustrates the performance gains obtained by isolating threads906

that are not bound to be involved in the occurrence of intermittent faults,907

regarding the code depicted in listing 3. In more detail, the first data column908

in Table 7 corresponds to the measurements obtained from the execution909

of a program whose main thread creates one instance of threads T1 and910

T2, as well as four instances of T3 (1xT1, 1xT2, 4xT3); in this execution,911

JPF monitors all threads. The second data column in Table 7 corresponds912

to the execution of the same program, with JPF being however instructed913

to monitor only the main thread and the instances of threads T1 and T2,914

since no instance of thread T3 is bound to be involved in the generation of915

intermittent faults. As described in Section 5.1, this is realized through the916

setting vm.watched.threads=main,1,2.917

Table 8 depicts how performance benefits can be obtained from applying918

the Children Node Reduction technique described in Section 5.2, regarding919

the code depicted in listing 3. The figures in this table refer to the execution920

of a java program with 6 threads (1xT1, 1xT2, 4xT3), varying the order921

of the child that is allowed to continue. Since in our example the first and922

second children correspond to executions of instructions by threads T1 and923

T2, which include accesses to shared variables, these choices entail more924

states to be examined. Given that only these two choices may actually lead925

to intermittent faults, it suffices to examine only these two cases to fully926

uncover all intermittent fault root causes.927
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watched threads All Threads main,T1,T2
elapsed time 00:00:10 00:00:03
new states 5147 2192
visited states 14365 1264
backtracked states 19512 3456
end states 45 -
instructions 418886 88756
max memory 303MB 169MB

Table 7. Examining all possible threads vs. limiting the set of threads examined by
JVM.

Children Node Reduction
1st child node
for depths be-
tween 10-30

2nd child node
for depths be-
tween 10-30

3rd child node
for depths be-
tween 10-30

No cut
off

Time 2 sec 1 sec 1 sec 10 sec
New states 1637 523 302 5147
Visited states 1118 344 253 14365
Backtracked
states

2755 867 555 19512

Table 8. Children Node Reduction effect applied at different thread orders

Table 9 focuses on the scalability of the proposed algorithm under the928

optimization techniques presented in section 5, depicting the time needed to929

execute the proposed algorithm to detect faults injected to the open-source930

multithreaded Java web sever [56] when the thread partitioning and the931

state subtree pruning of specific nodes techniques (cf. subsections 5.1 and932

5.2, respectively) are applied. The configuration used in this experiment is:933

934

vm.parallel.allowed.depth=40-350935

vm.watched.threads=main,Thread-1,Thread-2,Thread-3,Thread-4936

vm.parallel.allowed.child=[1] search.depth limit = 350937

938

This configuration effectively scans the full state tree up to the depth939

of 40, and beyond that point limits the detection to the first child only,940
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Number of threads in the web server request executor thread pool
5 10 50 100

Elapsed time 00:32:41 00:47:04 00:47:41 00:47:54

Table 9. JPF execution time for the Java web server simulation

since the Java web server [56] employs the worker thread model discussed941

in section 5.2 [54], and moreover worker threads are totally independent and942

are thus not bound to generate any intermittent errors.943

We can observe that the time needed to run the fault detection algorithm944

increases very slowly with the overall number of threads, while additionally945

significant time savings against the non-optimized version (c.f. table 6) are946

introduced; these savings are quantified to 82%.947

7. Conclusions and Future work948

In this paper we presented a methodology for intermittent fault detec-949

tion that is based on the identification of suspicious shared variable access950

patterns in the code execution traces. Execution traces are generated using951

the JPF tool, which has been enhanced by a customized listener, while the952

suspicious access patterns that are searched for correspond to well-known953

parallel programming hazards. Out method has been shown to be capable954

of detecting intermittent faults that evade detection when other methods955

are used, while on the other hand introducing some false positives. In this956

sense, the programmer is asked to review the potential intermittent fault957

root causes and accept or reject them. In order to leverage the efficiency958

of the proposed method, we have introduced optimization methods which959

can exploit structural properties of the code, such as thread independence960

and thread subtree isolation, as well as parallel hardware capabilities. Our961

experiments on optimizations exploiting structural properties of the code962

have demonstrated that significant performance gains can be reaped.963

In the context of our future work we plan to examine the following964

dimensions:965

1. fully implement and evaluate the optimization method for exploiting966

parallel hardware capabilities.967

2. take into account dependencies between global and local variables,968

which are established via assignment statements.969

3. Identify and evaluate additional dependency rules.970
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4. study the computational complexity of the proposed algorithm, com-971

puting a theoretical upper bound for the number of possible execution972

paths that need to be explored.973
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