
QoS-Driven Adaptation of BPEL Scenario Execution

Kareliotis Christos
Dept. of Informatics and

Telecommunications,
University of Athens,

Greece
ckar@di.uoa.gr

Dr. Costas Vassilakis
Dept. of Computer

Science and
Technology, University
of Peloponnese, Greece

costas@uop.gr

Efstathios Rouvas
Dept. of Informatics and

Telecommunications,
University of Athens,

Greece
rouvas@di.uoa.gr

Dr. Panayiotis Georgiadis
Dept. of Informatics and

Telecommunications,
University of Athens,

Greece
p.georgiadis@di.uoa.gr

Abstract

BPEL/WSBPEL is the predominant approach for com-
bining individual web services into integrated business
processes, allowing for the specification of their se-
quence, control flow and data exchanges. BPEL however
does not include mechanisms for considering the invoked
services’ Quality of Service (QoS) parameters and thus
BPEL scenarios can neither tailor their execution to the
individual user’s needs or adapt to the highly dynamic
environment of the WEB, where new services may be de-
ployed, old ones withdrawn or existing ones changing
their QoS parameters. Moreover, infrastructure failures
in the distributed environment of the web introduce an
additional source of failures that must be considered in
the context of QoS-aware service execution. In this work
we propose a framework for addressing the issues identi-
fied above; the framework allows the users to specify the
QoS parameters that they require and it undertakes the
task of locating and invoking suitable services. Finally,
the proposed framework intercepts and resolves faults
occurring during service invocation, respecting the QoS
restrictions specified by the consumer.

1. Introduction

The web service paradigm has been adopted by re-
search community and industry alike, as a standard for
application communication over the Internet, guarantying
independence from execution platforms, programming
language and implementation details [1]. However a
number of challenges still lie ahead for fully covering the
needs of both service providers and consumers: [2]
identifies a number of open issues in the current SOA
state-of-the-art, spanning across four major categories
namely service foundations, service composition, service
management and monitoring and service design and de-
velopment. For service governance, in particular, [1] lists
“service governance” as a major research challenge, stat-
ing that the potential composition of services into busi-
ness processes across organizational boundaries can
function properly and efficiently only if the services are

effectively governed for compliance with QoS and policy
requirements. Services must meet the functional and QoS
objectives within the context of the business unit and the
enterprises within which they operate.

In this context, development procedures as well as
composition and execution mechanisms need to take into
account the QoS dimension of web services in order to
formulate successful business processes that will satisfy
users’ (business or individuals) expectations. Regarding
service composition into business processes, the predomi-
nant approach used nowadays is the formulation of
BPEL/WSBPEL scenarios [19], in which the BPEL de-
signer specifies the business process logic; this includes
invocation of selected web services, control flow con-
structs and data flow arrangements in the form of result
gathering and parameter passing, while provisions for ex-
ception handling (e.g. service unavailability or business
logic faults) also exist. BPEL scenarios, however, do not
include facilities either for specifying QoS parameters for
services, or for dynamically selecting the web service to
be called at run-time, therefore the BPEL scenario de-
signer must select the concrete service implementation to
be invoked in the context of the business process while
creating the scenario, by examining the QoS parameters
of functionally-equivalent services. This alternative, how-
ever, is not viable since (a) the same BPEL scenario may
be used by different users with diverging or even contra-
dictory requirements and (b) even if the “best choice” is
made at some time point there is no guarantee that this
choice will continue to be optimal in the future. More-
over, in the presence of failures, it would be desirable for
the system to be able to locate and use “second best”
choices automatically, provided that they deliver the re-
quired functionality and satisfy QoS restrictions.

In this paper we present a framework that comple-
ments BPEL execution with facilities for (a) specifying an
execution policy, which comprises of restrictions for QoS
attributes and defining service ranking criteria in terms of
QoS characteristics (b) choosing dynamically the “most
suitable” service according to the given policy and (c)
automating exception handling in the presence of system
faults, using QoS-aware and policy-adhering exception

management techniques. This framework allows for
tailoring each individual execution of a BPEL scenario
(BPEL runtime instance) to the needs of the invoking user
(BPEL process consumer), while relieving at the same
time the BPEL scenario designer of tasks related to QoS
attribute inspection and BPEL script maintenance due to
changes in the available services (introductions,
withdrawals or changes of QoS attributes); finally, the
need for exception handling in BPEL scripts is reduced to
addressing business logic faults only, since system-related
faults (server unavailability, network partitioning etc) are
handled automatically. The proposed framework also ad-
dresses service selection affinity, i.e. cases where a ser-
vice selection implies the binding of subsequent selec-
tions (e.g. selecting a hotel reservation from a travel
agency dictates that the payment will be made to the same
travel agency).

The rest of this paper is structured as follows: section 2
overviews related work; section 3 lists definitions and
outlines the QoS aspects considered in this work. Section
4 presents the overall framework architecture and gives
details on the functionality of its components, while
section 5 presents performance metrics. Finally, section 6
concludes the paper and outlines future work.

2. Related work

A number of research works have insofar addressed
various issues related to the QoS of web services in the
context of composite services. [3] and [4] present Ag-
Flow, which revises the execution plan in order to con-
form the user’s QoS constraints. AgFlow may operate ei-
ther using global planning, in which the execution plan is
revised in order to conform the user’s QoS constraints, or
using local optimization, in which optimization is made
on individual task basis, using the Simple Additive
Weighting [5] technique to select the optimal service for a
given task. [6] presents VieDAME, which performs BPEL
scenario adaptation on the basis of QoS parameters, but
these QoS parameters and the selection strategy are pre-
determined through pluggable modules; moreover,
VieDAME does not support service selection affinity and
is implemented using extensions available only in the
ActiveBPEL engine [7], and is thus platform-dependent.
[8] introduces end-user specified policies through
QoSL4BP, and BPEL transformers that incorporate the
policies and appropriate monitors to the BPEL scenario
before its execution. This work mainly targets at monitor-
ing the execution and raising exceptions when the desired
QoS are not met, rather than adapting the BPEL scenario
so as to best match the QoS demands of the scenario
consumer. [9] introduces another BPEL extension and
uses an extended BPEL engine to deliver QoS-based
adaptation; the use however of a BPEL extension and a
custom execution engine are potential barriers to the ad-

aptation of this solution. [13]
[10], [11], [12] and [14] consider service BPEL sce-

nario adaptation in the context of exception resolution.
[10] creates exception-aware process schemas, and the in-
frastructure detects invocation faults and substitutes ser-
vices that have failed with alternate ones; QoS charac-
teristics are not considered in this work. [11] includes
QoS characteristics in the alternate service replacement, it
does not allow however the specification of the replace-
ment policy by the process consumer; [14] states that QoS
is taken into account in the process of determining
equivalence. [13] uses autonomic computing concepts for
providing execution plan formulation for business proc-
esses, taking into account QoS parameters, monitors dy-
namically QoS violations at runtime and provides instru-
mentation for the handling of these exceptions.

All approaches that dynamically determine the services
that will be used either in a service composition or as
replacement for failed services, typically employ some
semantics-based registry to determine service capabilities
and QoS attributes that are required for service composi-
tion and/or service equivalence, which is required for ser-
vice substitution. METEOR-S [15] [16] is a suitable
infrastructure for such service discovery activities, em-
ploying ontologies where service inputs, outputs and QoS
aspects are described. Execution under the METEOR-S
framework is also monitored to allow for updating of QoS
attributes such as response time and failure rate. WSMO
[17] may provide the foundations for modeling, storing
and reasoning on the relevant web service functional and
non-functional aspects.

Our contribution to the works above is as follows:
• it allows the BPEL scenario designer to specify the

desired QoS parameters for each service. These
parameters are specified through standard BPEL
variables, thus the designer may examine scenario input
parameters for setting them, tuning thus the adaptation
of the particular BPEL scenario execution to the desires
and needs of the scenario consumer.

• it does not require any modification to the BPEL syntax
or semantics.

• it takes the execution flow specified by the designer as
granted, and optimizes service selection within this
flow, contrary to service composition approaches which
define this flow dynamically. This is an important
aspect in cases where execution flow is carefully crafted
by the designer to reflect particularities of the business
process, specialized exception handlers are used, etc.

• it considers service selection affinity, enabling the con-
ducting of multi-operation transactions with providers.

• it incorporates exception handling as an integral part of
the adaptation process, allowing for switching to the
“next best” solution when the originally selected candi-
date is unavailable.

• it does not use pre-determined alternative paths, but

selects services dynamically from an suitable registry.

3. Definitions and QoS Aspects

As stated in section 1, the adaptation of the BPEL sce-
nario execution according to a QoS-driven policy is per-
formed by dynamically selecting at run-time the most
suitable operation to be executed for each particular op-
eration invocation. This selection should be made among
services that are equivalent. Formally, we define two ser-
vices s1 amd s2 to be equivalent iff (a) they support the
same operations and (b) for each operation op1,i of service
s1, the respective operation op2,i of service s2 are either
syntactically or semantically equivalent [6] to op1,i. Syn-
tactic equivalence indicates that the interfaces of op1,i and
op2,i match, while semantic equivalence indicates that
op1,i and op2,i only have the same functionality, but expose
it using different interfaces.

 QoS provider 1 QoS provider 2 value
Cost 10 € 11 € 1
Security DES/3DES 128 bits 3
Performance High throughput 99% 5
Response time 0.0001 ms Real-time 5
Availability High > 95% 4

Listing 1. Mapping of QoS values

In order to enable the selection of the “most suitable”
operation according to some QoS specification, the QoS
attributes of the operations should be represented in an
unambiguous and system-processable format, while
additionally means for expressing QoS-related operation
selection criteria should be afforded. For brevity, in the
following we will consider only the QoS parameters cost,
security, performance, response time and availability,
adopting the definitions in [17]. Extension of the
framework to include additional attributes is straightfor-
ward, thus we have no loss of generality. Note also that
different sources of qualitative parameters (e.g. service
providers, independent organizations performing
benchmarks or service repositories making available
qualitative dimensions such as those described in [1])
may even employ different measurement domains for the
same qualitative attributes, as shown in. For each such
source, mappings between the domains employed by the
source and numeric values are employed. These mappings
include . conversions from symbolic to numeric values,
and issues stemming from different value ranges (e.g. [0,
10] vs. [0, 100]) (cf. Listing 1). The latter can be accom-
modated by applying normalization like the one proposed
for the scaling phase described in [5] or in the
normalization phase of [18]. For convenience reasons and
without loss of generality, in this work we normalize all
qualitative attributes’ values in the range [0, 5]. Thus,
each operation op in our framework is tagged with a quin-
tuple (costop, secop, perfop, respop, availop), reflecting the
QoS aspects of the particular operation.

In our approach we consider three vectors that define
the QoS criteria for process invocation; in other words we
define a QoS specification as a triple (MAX, MIN, W),
where MAX, MIN and W are quality vectors (defined
below). The first and the second elements specify the
upper and the lower bounds –respectively– for particular
QoS aspects; effectively these two vectors comprise the
QoS constraints. The third element, W, represents the
qualitative attributes’ corresponding weights, i.e. how
important each qualitative attribute is considered by the
designer in the context of the particular operation
invocation. Higher weights (in absolute value) indicate
higher importance of the specific qualitative attribute.
According to the above, the quality vector for the QoS
attributes considered in this work can be defined as:

MAX = (costmax, secmax, perfmax, respmax, availmax)
MIN = (costmin, secmin, perfmin, respmin, availmin)
W = (costw, secw, perfw, respw, availw)
Listing 2.Quality Vectors

Thus, if a BPEL scenario designer requires for some
service invocation security of level ≥3 and cost ≤2,
vectors MAX and MIN will be set to MAX = (2, 0, 0, 0,
0) and MIN = (0, 3, 0, 0, 0). A value of zero in specific a
position of the MIN and MAX indicates that no
higher/lower bound is defined for the respective attribute.
The same vectors can be equivalently and more
compactly expressed (ommiting attributes for which no
constraint is specified) as Constraints=cost:0,2;sec:3,0.
Similarly, a weight vector can be defined as W=cost:-
3,sec:1,resp:2. Specification of negative values for
elements of W may be employed to designate that
services having smaller values for the specific QoS
attributes are preferred against those having higher
values; cost and response time are examples of QoS
attributes for which negative values will be used.

4. Framework architecture

In order to accommodate the required functionality, the
proposed framework introduces two additional modules
in a standard BPEL execution environment. The first
module is a middleware layer named ASOB (Alternate
Service Operation Binding), which undertakes the tasks
of (a) dynamically selecting the operations best matching
the QoS characteristics specified by the scenario designer,
(b) appropriately transforming messages and results to
tackle syntactical differences between services and (c)
intercepting exceptions owing to system-level causes,
such as server failures or network partitionings, and
resolving them by invoking equivalent operations. The
second module is a preprocessor, which transforms BPEL
scenarios created by designers so as to (a) direct in-
vocations to the middleware layer and (b) include in each
invocation all the necessary information for selecting the

operation best matching the QoS characteristics specified
by the BPEL designer. The overall framework
architecture is depicted in Figure 1, while the framework
operation and module functionality, as well as the way
QoS specifications are provided by the BPEL designer are
described in the following paragraphs.

4.1. QoS specification in the BPEL scenario

The ASOB framework reserves two variables through
which the BPEL designer may specify the desired QoS
characteristics for web service invocations. These vari-
ables are named ASOB_QoSconstraints, and
ASOB_QoSweight, and correspond to the Constraints
and W vectors described in section 3. Before each invoke
construct, the designer can insert an assign BPEL node to
appropriately set the values of these variables to the de-
sired values, as shown in Listing 3. The preprocessor will
arrange for passing these values to the ASOB middle-
ware, where the QoS specifications will be extracted and
the scenario execution will be adapted accordingly.

4.2. BPEL scenario preprocessing and
deployment

The BPEL scenario (SC) as crafted by the BPEL de-
signer is processed by the ASOB preprocessor, which
produces an ASOB-aware BPEL scenario (SCASOB) as
output; SCASOB is made available for invocation by BPEL
scenario consumers. SCASOB differs from SC in the fol-
lowing respects:
1. SCASOB contains an additional partnerLink node,

which corresponds to the ASOB middleware.
2. SCASOB includes, as its first operation, an invocation to

a special web service operation of the ASOB
middleware, namely getSessionId. This operation
creates a value that is unique for a particular execution
of the BPEL scenario, and returns it to the invoking
scenario. Uniqueness is guaranteed by combining the

requester’s IP address, the current timestamp of the
system and a random number from a sparse domain.
As the operation name suggests, this value will be
used as a session identifier for the particular execution
of the BPEL scenario, in order to implement service
selection affinity.

<!-- set the value of the input parameter for the web service -->
<variable name="amount" type="xsd:integer">
<assign name="assign1"> <copy>
 <from><literal>34</literal></from>
 <to variable="amount"/>
</copy></assign>
<!-- set the QoS specification -->
<assign name="QOSassign1">
 <copy>
 <from><literal>cost:0,2;sec:3,0</literal></from>
 <to variable="ASOB_QoSconstraints"/>
 </copy>
 <copy>
 <from><literal>cost:-3,sec:1,resp:2</literal></from>
 <to variable="ASOB_QoSweight"/>
 </copy>
</assign>
<invoke partnerLink="myLink" portType="thePort" operation="someOp"

inputVariable="amount" outputVariable="theOutput"/>
Listing 3. Original BPEL scenario excerpt

3. Each invoke node (i.e. each operation invocation)

within SC is transformed as follows: firstly, WSDL
file to which the partnerlink refers to is located and
copied locally, and the soapaction address element for
the particular invocation is amended to point to the
ASOB middleware; the corresponding WSDL import
is adjusted accordingly to point to the local copy. Sec-
ondly, the type of the inputVariable of the particular
invocation is extended to accommodate five additional
elements, namely sessionId, origPLink, origAddress,
ASOB_qoscons and ASOB_qosw. To achieve the
extension of inputVariable, the preprocessor
downloads and appropriately modifies the files in
which the type is defined (WSDL files for variables of
type messageType; xml schemas for element) and
amends import declarations to point to the modified
files. For simple types (type), where the parameter is

BPEL Scenario
with QoS
assignments

Web Services
Platform

WS-BPEL Orchestrator

(2)

Consumer

(3)

BPEL scenario
invocation +
Parameters

Alternate Service Operation Binding

(4)
Web service
 invocation

(service spec,
parameters) +

QoS specs

(12)
Results or

Exception or
policy exception

(13)
Results or

failure

Service
repository

(e.g. Meteor-S)

Alternate services
locator

(6)
Query equivalent

services

(7)
List of

equivalent
services +

QOS

Service binder &
invoker

WS-1 WS-n...WS-2
Web Service

Implementations

(9) Filtered list of services,
parameters

(10) Invocation (11) Results or system-related
exception or business logic exception

ASOB-aware
BPEL scenario

(1)

ASOB
preprocessor

Consumer
session memory

 (5) Query existing
binding

XSLT
repository

up
da

te

Filtering and
ranking module

(8) List of equiv. operations +
parameters +QoS specs

Figure 1. Architecture of the ASOB framework

defined as a simple XML type (e.g. string or integer),
the preprocessor creates an XML schema file defining
a type containing the five aforementioned elements
plus the element ASOBvalue of the appropriate type
(string, integer etc), and amends the variable decla-
ration to use the newly defined type; additionally, as-
signments (copy constructs) from/to this variable are
modified accordingly. The transformed operation in-
vocation is included in SCASOB.
Thirdly, the invoke node is preceded with copy
commands assigning appropriate values to the
aforementioned variables as follows:
• the value returned by the getSessionId operation

invocation is copied to sessionId.
• the value of the partnerlink attribute in the original

invoke construct is copied to origPLink
• the soapaction address in the original WSDL file is

copied to origAddress.
• the values of ASOB_QoSconstraints, and

ASOB_QoSweight are copied to ASOB_qoscons and
ASOB_qosw, respectively.

All other constructs within SC (control flow,
assignments, exception handlers etc) are left intact, and
SCASOB can now be invoked by service consumers. The
modifications acted upon the BPEL scenario of Listing 3
are shown in Listing 4 (changes are denoted using italics).

4.3. BPEL scenario execution

Once the preprocessed BPEL scenario has been de-
ployed, it may be invoked by a consumer. At this stage,
we assume that the Service Repository (SR) is populated
with up-to-date web services specification entries (WSDL
location, Endpoint addresses, Operation interfaces). In
addition to this information, SR should at least provide
(a) means for identifying functionally equivalent groups
of services using semantic tagging (as, for example ME-
TEOR-S and WSMX) or any other suitable approach, and
(b) information on the Quality of Service (QoS)
characteristics of the operations provided by the services.
Repositories such as [21] may be used to retrieve the
needed QoS characteristics.

As described in the previous section, the first operation
invocation will retrieve a session id from the ASOB
middleware. Subsequent invocations are effectively
directed to the ASOB middleware, which processes them
as follows:

Step 1. It extracts from the SOAP message payload the
values of the elements sessionId, origPLink, origAddress,
ASOB_qoscons and ASOB_qosw, and constructs a new
payload with these elements removed. The latter action
results to a payload suitable for invoking the operation
initially specified in the original BPEL scenario. Recall
that origAddress here contains the address of the

operation that was specified in the original BPEL
scenario. This operation will be denoted as op.

<!-- type_amount.xsd is a preprocessor-generated file in which the type
type_amount is defined, having the parts sessionId, origPLink,
allPartnerOperations and ASOBvalue -->
<import location="type_amount.xsd" importType=
"http://www.w3.org/2001/XMLSchema" />

<!-- retrieve session id -->
<variable name="ASOBsessionId" type="xsd:string">
<invoke partnerLink="ASOB" portType="ASOBport" operation="getSessionId"
outputVariable="ASOBsessionId" />
<variable name="amount" element="type_amount">
<assign name="assign1"> <copy>
 <from><literal>34</literal></from>
 <to variable="$amount.parameters/ASOBvalue"/>
</copy></assign>
<!--assign "QOSassign1" is left intact and is not repeated here -->

<!-- plant extra fields in the input message -->
<assign name="ASOB_ASSIGN1">
 <copy> <from variable="ASOBsessionId"/>
 <to variable="$amount.parameters/sessionId"/> </copy>
 <copy> <from><literal>"myLink"</literal></from>
 <to variable="$amount.parameters/origPLink" /> </copy>
 <copy> <from><literal>"http://addr.com/path"</literal></from>
 <to variable="$amount.parameters/origAddress"> </copy>
 <copy> <from variable="ASOB_QoSconstraints" />
 <to variable="$amount.parameters/ASOB_qoscons" /> </copy>
 <copy> <from variable="ASOB_QoSconstraints" />
 <to variable="$amount.parameters/ASOB_qoscons" /> </copy>
 <copy> <from variable=" ASOB_QoSweight" />
 <to variable="$amount.parameters/ ASOB_qosw" /> </copy>
</assign>
<invoke partnerLink="ASOB" portType="ASOBport" operation="proxyInvoke"

inputVariable="amount" outputVariable="theOutput"/>
Listing 4. Preprocessed BPEL scenario excerpt

Step 2. It queries the consumer session memory
whether the particular origPLink has already been bound
to some specific service in the context of the same ses-
sion. If such a binding does exist, then the operation of
the same service which is equivalent to op should be in-
voked now, to provide service selection affinity (e.g. if
during a previous invocation the operation reserveCar of
service AgencyA was selected, then when the operation
payCar is invoked, the service AgencyA must be selected
again); therefore, the appropriate operation is retrieved
from the repository SR of Figure 1, and request process-
ing continues in the filtering and ranking module (step 4,
below), which will only try to invoke the equivalent op-
eration from the selected service. If, however, no such
binding is found in the consumer session memory, invo-
cation handling continues within the alternate services
locator module (step 3, below).

Step 3. The alternate services locator extracts from SR
the operations op’ that can be substituted for op. Ac-
cording to the equivalence definition in section 3, these
are the services op’ which are provided by a service
equivalent to the one providing op, and are syntactically
or semantically equivalent to op. These services are
forwarded to the filtering and ranking module (step 4).

Step 4. the filtering and ranking module prunes from
the list it receives (either from the alternate services lo-
cator or a singleton list from step (2), if a binding to some

service has been made in the same session) those entries
that do not satisfy the constraints specified in
ASOB_qoscons. If no services remain in the list after the
pruning step, a special type of exception PolicyException
is returned to the BPEL engine, to signify that the speci-
fied QoS criteria cannot be met, and request processing
terminates. The BPEL scenario designer may have in-
cluded an appropriate exception handler which will at-
tempt to remedy the fault (by relaxing some constraints,
or by trying alternate methods e.g. “try to find a courier
mail for under $10, and if this fails send by surface mail).

For each one of the qualifying services, the module
completes an overall score, which is equal to

∑
∈

=
sec,...},{cos

'' *
tatttr

attropop ASOB_qoswattrSc

(effectively each QoS attribute of op’ is multiplied by the
respective weight specified in ASOB_qosw and the results
are summed up). The services are then sorted in de-
scending order of their overall scores, and execution
continues in the service binder and invoker module.

Step 5. The service binder and invoker module extracts
the first operation in the list it receives (recall that the
operations with the highest overall scores are placed first
in this list). For this operation, it first examines if the
operation is syntactically equivalent to op (i.e. the one
specified in the original BPEL scenario; this information
is available in SR). If the operations are syntactically
equivalent, the payload can be directly used for invoking
the operation extracted from the list; if however the
operations are only semantically equivalent, then the
payload must be appropriately transformed to bridge the
syntactic differences. This is performed using XSLT
transforms, in a manner similar to that described in [6],
according to which the XSLT files that are used for each
pair of equivalent operations are pre-stored in the XSLT
repository. Finally, the extracted operation is invoked.

Step 6. the service binder and invoker module inter-
cepts the reply from the operation. If the operation was
concluded successfully, the result can be sent back to the
BPEL engine as a reply; before the reply is sent, it may be
necessary to again apply an XSLT-based transformation
to bridge any syntactic differences. In this case, the
consumer session memory is updated to reflect the fact
that the particular partnerLink has been bound to a spe-
cific service in the context of the current session. If, how-
ever an exception has been raised during the execution of
the operation, the service binder and invoker module ex-
amines the root cause of the exception to determine
whether the exception is owing to a system fault (server
down, network partitioning etc) or to a business logic
fault. In the latter case, no automated resolution is possi-
ble, and the exception is returned to the BPEL process
(where it may be caught and handled by an exception
handler specially crafted by the BPEL scenario designer).
In the former case, however, it is possible to remedy the

error by simply invoking some equivalent service: there-
fore, the service binder and invoker module extracts the
next operation in the list (which is a suboptimal alterna-
tive compared to the previous one, yet a solution satisfy-
ing the QoS constraints), and iterates over steps (5) and
(6). If the list is exhausted and no operation has con-
cluded successfully, a PolicyException is returned to the
BPEL engine. For more details on how it is system faults
are distinguished from business logic faults, the interested
reader is referred to [11].

5. Performance evaluation

In order to validate our approach in terms of perform-
ance, we conducted a benchmark experiment to quantify
the overhead imposed by the middleware layer for per-
forming the tasks described in subsection 4.3, i.e. (a) re-
pository lookups, (b) operation filtering, (c) operation
ranking and sorting, (d) XSLT-based transforms and (e)
request interception and returning of answers. Note that,
in the general case, the difference between the execution
times observed when the ASOB middleware is (a) used
and (b) not used, may be different from this overhead,
since due to the adaptation, the response time of the op-
eration finally selected may be different from the respec-
tive parameter of the service originally specified. Addi-
tionally, the introduction of the ASOB middleware offers
functional aspects, including adaptation and exception
handling, which cannot be quantified in terms of per-
formance. This experiment aims at assuring that the ap-
proach described in the previous paragraphs is feasible.

For our experiment we used three distinct machines:
the first one for executing BPEL scenarios, using the WS-
BPEL 2.0 compliant JBI component [18], deployed on
Glassfish v2 application server [19]; the second one was
hosting the ASOB middleware (java application on
Glassfish V2) and SR, implemented as a MySQL data-
base. The third machine (with a configuration same as the
second one) hosted the target web services. For
benchmark data collection we used the benchmarking tool
from Apache, ab [20] and internal profiling timers.

Figure 2 illustrates the ASOB internal process time for
single web service operation invocations, against the
overall service repository (SR) size and the number of
equivalent services present in the repository. Figure 2
indicates that the internal process time (y-axis) mainly
depends on the number of discovered equivalent services
and not the overall SR size (x-axis). The very small
dependency on the overall SR size can be attributed to the
use of appropriate indexes within SR, which effectively
exclude the non-relevant tuples from the search, thus only
1-10 extra disk page accesses are performed. The
overhead increment, on the other hand, when the number
of alternate services increases is considerable, mainly
affecting the sorting of the candidate operation list

(typically of complexity O(n * log(n)) and the
interprocess communication cost to transfer the results
from SR to ASOB. It is expected that cases with more
than 100-200 qualifying operations will be rare, and, as
shown in Figure 2, such cases exhibit an overhead of 20-
25 msec/invocation.

0

20

40

60

80

100

120

140

10
00

0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0
90

00
0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

db-size in recs

Ti
m

e
in

 m
s

10 qws 1000 qws 2000 qws 3000 qws 4000 qws 5000 qws

Figure 2. ASOB internal process time

concurrent ASOB invocations 20 40 60 80 100
time in msecs 17.8 18.5 34.5 46.2 61.7

Figure 3. XSLT transformation duration

Figure 3 shows the overhead incurred by applying

XSLT transforms on request and response SOAP
messages, to resolve syntactical differences between
operations that are semantically but not syntactically
equivalent. The time reported in this figure accounts for
both the retrieval of the appropriate XSLT from the
repository and the application of the transform. Note that
such a transform is not always required (case of
syntactically equivalent operations). As shown in the
figure, when the number of concurrent connections
increases, the time to execute each transform increases,
since XSLT transforms are CPU-bounded and high
concurrency means that less CPU share is available for
each transform.

Figure 4 illustrates the number of operation invocations
that can be served in a unit of time against the number of
concurrent invocations when (a) services are directly in-
voked and (b) when invocations are made through the
ASOB middleware. This diagram indicates that the in-
troduction of the ASOB middleware is feasible, since it
leads to a throughput drop of 8-16% (11%-19% when
XSLT transforms are applied). At the point of 100 direct
invocations the drop in performance is so sharp (the
machine resources have been exhausted) that there is no
point in considering more concurrent invocations. In the
area between 80 and 100 concurrent invocations, the
difference in throughput is gradually becoming smaller.
This behavior can be attributed to the fact that while the
web service execution machine has reached its limits
regarding request processing at 80 direct invocations,
there is still ample power available in the machine hosting
the ASOB module to handle the processing required by
the specific module.

Invocation Throughput

0

10

20

30

40

50

1 10 20 30 40 50 60 70 80 90 100
concurrent invocations

ex
ec
ut
io
ns
/s
ec

direct invocations ASOB‐mediated invocations, no XSLT

ASOB‐mediated invocations, with XSLT

Figure 4. Invocation throughput

BPEL Execution Time

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

0 10 20 30 40 50 60 70 80 90 100
concurrent BPEL executions

Ti
m
e
(i
n
m
se
cs
)

BPEL execution ASOB‐mediated BPEL execution, no XSLT ASOB‐mediated BPEL execution + XSLT

Figure 5. BPEL scenario execution time

Figure 5 illustrates the BPEL execution time of a BPEL

scenario containing two web service invocations against
the number of concurrent executions. The x-axis repre-
sents the concurrent BPEL process executions and y-axis
the time elapsed until all of them completed successfully.
It is obvious that the BPEL process time is slightly in-
creased in the ASOB-mediated case, but the increment is
very small (4%-9% without XSLT transformations, 8-
16% with XSLT transformations).
Figure 6 depicts the BPEL scenario execution throughput
against the number of concurrent executions. The be-
havior is consistent with the previous diagrams.

BPEL execution throughput

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100
concurrent BPEL executions

ex
ec
ut
io
ns
/s
ec

No ASOB ASOB‐mediated, no XSLT ASOB‐mediated with XSLT

Figure 6. ASOB-mediated vs. direct invocation BPEL
scenario execution throughput

6. Conclusions

Building processes that are able to cope with the dy-
namics of real world requirements has always been a

challenging endeavor. The adoption of BPEL in the de-
sign and execution phases of business processes has al-
ready obtained gains in speed and reliability, but has not
been able insofar to successfully address issues arising
form the dynamic nature of the processes themselves, the
diversity in user requirements and the inherent instability
of distributed environments, which leads to a number of
system faults.

The framework presented in this paper addresses these
shortcomings employing a dynamic service selection
mechanism based on QoS criteria for a BPEL process;
these criteria are defined by the BPEL scenario designer
and can be set to reflect the user requirements. Service
attributes are stored in a repository that stores the ser-
vices’ functional and non-functional (qualitative) char-
acteristics; updating the repository suffices to reflect
changes in the real world (service introductions or with-
drawals, changing of services’ QoS aspects etc). An ex-
ception resolution mechanism for faults owing to sys-
temic reasons is also included, easing thus the work of the
BPEL designer.

Future work will focus on tighter integration with SR,
providing to it updates based on the observed behavior of
invoked services. Another aspect that will be investigated
is the optimality of partner link bindings to specific ser-
vices, when multiple operations from the same partner
link are invoked: the current algorithm is greedy, seeking
to obtain the best match for the first only operation invo-
cation to any individual partner link taking place within a
session, but this choice may be sub-optimal if subsequent
invocations are considered. Providing ASOB with
lookahead information on the services that will poten-
tially be invoked in subsequent BPEL scenario execution
steps, and the extension of the current service selection
algorithm can contribute to performing more optimal
partner link bindings. The removal of the need for sce-
nario preprocessing will also be investigated.

7. References

[1] Newcomer, E., Lomow, G.: Understanding SOA with Web
Services, Addison-Wesley, (2005)
[2] M. P. Papazoglou, P. Traverso, F. Leymann, Service-
Oriented Computing: State of the Art and Research Challenges.
IEEE Computer (40) 11, Nov. 2007, pp. 38-45.
[3] L. Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J.
Kalagnanam, H. Chang. QoS-aware middleware for web
services composition. IEEE Trans. Softw. Eng., 30(5), 2004.

[4] L. Zeng, Dynamic Web Services Composition, PhD thesis,
Univ. of New South Wales, 2003.
[5] H.C.-L and, K. Yoon, Multiple Criteria Decision Making,
Lecture Notes in Economics and Mathematical Systems.
Springer-Verlag, 1981.
[6] O. Moser, F. Rosenberg, S. Dustdar, Non-Intrusive
Monitoring and Service Adaptation for WS-BPEL, WWW
2008, Beijing, China, pp. 815-824.
[7] Active Endpoints. ActiveBPEL Engine, 2007.
http://www.active-endpoints.com/.
[8] F. Baligand, N. Rivierre, T. Ledoux. A Declarative
Approach for QoS-Aware Web Service Compositions. B.
Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007,
LNCS 4749, pp. 422–428, 2007.
[9] H. Cao, H. Jin, S. Wu, L. Qi, ServiceFlow: QoS Based
Service Composition in CGSP. Proceedings of IEEE EDOC'06.
[10] Liangzhao Zeng; Hui Lei; Jun-jang Jeng; Jen-Yao Chung;
Benatallah, B. Policy-driven exception-management for
composite Web services, E-Commerce Technology,
Proceedings of CEC 05, 19-22 July 2005, pp. 355 – 363
[11] C. Kareliotis, C. Vassilakis, E. Rouvas, P. Georgiadis,
Exception Resolution for BPEL Processes: a Middleware-based
Framework and Performance Evaluation. Procs of iiWAS 2008,
Linz, Austria.
[12] Liangzhao Zeng, Jun-Jan Jeng, Santhosh Kumaran and
Jayant Kalagnanam, Reliable Execution Planning and Exception
Handling for Business Process, LNCS, Springer, Technologies
for E-Services, 2003. p.119-130
[13] A. E. Arpacı, A. B. Bener. Agent Based Dynamic
Execution of BPEL documents. Proceedings of ISCIS 2005,
LNCS 3733, pp. 332 – 341, 2005.
[14] C. Kareliotis, C. Vassilakis, P. Georgiadis, Enhancing
BPEL scenarios with Dynamic Relevance-Based Exception
Handling, Proceedings of the ICWS 2007, , pp.751-758.
[15] Verma, K., Sivashanmugam, K. , Sheth, A., Patil, A.,
Oundhakar, S. and Miller, J. METEOR–S WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology
and Management, vol. 1(6), 2005, pp. 17-39.
[16] Cardoso, J. and A. Sheth. Semantic e-Workflow
Composition. Journal of Intelligent Information Systems (JIIS).
Vol. 21(3): pp. 191-225 (2003)
[17] J. O’Sullivan, D. Edmond, and A. Ter Hofstede: What is a
Service?: Towards Accurate Description of Non-Functional
Properties, Distributed and Parallel Databases, 12, 2002.
[18] JBI Team, 2008. Java Business Integration, https://open-
esb.dev.java.net/Components.html
[19] Glassfish Team, 2008. Glassfish Open Source Application
Server, https://glassfish.dev.java.net/
[20] Apache foundation, 2007. ab Apache Open Source
benchmarking tool,
http://httpd.apache.org/docs/2.0/programs/ab.html
[21] Al-Masri, E., 2008. The QWS Dataset,
http://www.uoguelph.ca/~qmahmoud/qws/index.html

