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Abstract 
 
BPEL/WSBPEL is the predominant approach for com-
bining individual web services into integrated business 
processes, allowing for the specification of their se-
quence, control flow and data exchanges. BPEL however 
does not include mechanisms for considering the invoked 
services’ Quality of Service (QoS) parameters and thus 
BPEL scenarios can neither tailor their execution to the 
individual user’s needs or adapt to the highly dynamic 
environment of the WEB, where new services may be de-
ployed, old ones withdrawn or existing ones changing 
their QoS parameters. Moreover, infrastructure failures 
in the distributed environment of the web introduce an 
additional source of failures that must be considered in 
the context of QoS-aware service execution. In this work 
we propose a framework for addressing the issues identi-
fied above; the framework allows the users to specify the 
QoS parameters that they require and it undertakes the 
task of locating and invoking suitable services. Finally, 
the proposed framework intercepts and resolves faults 
occurring during service invocation, respecting the QoS 
restrictions specified by the consumer. 
 

1. Introduction 
 

The web service paradigm has been adopted by re-
search community and industry alike, as a standard for 
application communication over the Internet, guarantying 
independence from execution platforms, programming 
language and implementation details [1]. However a 
number of challenges still lie ahead for fully covering the 
needs of both service providers and consumers: [2] 
identifies a number of open issues in the current SOA 
state-of-the-art, spanning across four major categories 
namely service foundations, service composition, service 
management and monitoring and service design and de-
velopment. For service governance, in particular, [1] lists 
“service governance” as a major research challenge, stat-
ing that the potential composition of services into busi-
ness processes across organizational boundaries can 
function properly and efficiently only if the services are 

effectively governed for compliance with QoS and policy 
requirements. Services must meet the functional and QoS 
objectives within the context of the business unit and the 
enterprises within which they operate. 

In this context, development procedures as well as 
composition and execution mechanisms need to take into 
account the QoS dimension of web services in order to 
formulate successful business processes that will satisfy 
users’ (business or individuals) expectations. Regarding 
service composition into business processes, the predomi-
nant approach used nowadays is the formulation of 
BPEL/WSBPEL scenarios [19], in which the BPEL de-
signer specifies the business process logic; this includes 
invocation of selected web services, control flow con-
structs and data flow arrangements in the form of result 
gathering and parameter passing, while provisions for ex-
ception handling (e.g. service unavailability or business 
logic faults) also exist. BPEL scenarios, however, do not 
include facilities either for specifying QoS parameters for 
services, or for dynamically selecting the web service to 
be called at run-time, therefore the BPEL scenario de-
signer must select the concrete service implementation to 
be invoked in the context of the business process while 
creating the scenario, by examining the QoS parameters 
of functionally-equivalent services. This alternative, how-
ever, is not viable since (a) the same BPEL scenario may 
be used by different users with diverging or even contra-
dictory requirements and (b) even if the “best choice” is 
made at some time point there is no guarantee that this 
choice will continue to be optimal in the future. More-
over, in the presence of failures, it would be desirable for 
the system to be able to locate and use “second best” 
choices automatically, provided that they deliver the re-
quired functionality and satisfy QoS restrictions. 

In this paper we present a framework that comple-
ments BPEL execution with facilities for (a) specifying an 
execution policy, which comprises of restrictions for QoS 
attributes and defining service ranking criteria in terms of 
QoS characteristics (b) choosing dynamically the “most 
suitable” service according to the given policy and (c) 
automating exception handling in the presence of system 
faults, using QoS-aware and policy-adhering exception 



management techniques. This framework allows for 
tailoring each individual execution of a BPEL scenario 
(BPEL runtime instance) to the needs of the invoking user 
(BPEL process consumer), while relieving at the same 
time the BPEL scenario designer of tasks related to QoS 
attribute inspection and BPEL script maintenance due to 
changes in the available services (introductions, 
withdrawals or changes of QoS attributes); finally, the 
need for exception handling in BPEL scripts is reduced to 
addressing business logic faults only, since system-related 
faults (server unavailability, network partitioning etc) are 
handled automatically. The proposed framework also ad-
dresses service selection affinity, i.e. cases where a ser-
vice selection implies the binding of subsequent selec-
tions (e.g. selecting a hotel reservation from a travel 
agency dictates that the payment will be made to the same 
travel agency). 

The rest of this paper is structured as follows: section 2 
overviews related work; section 3 lists definitions and 
outlines the QoS aspects considered in this work. Section 
4 presents the overall framework architecture and gives 
details on the functionality of its components, while 
section 5 presents performance metrics. Finally, section 6 
concludes the paper and outlines future work. 
 

2. Related work 
 

A number of research works have insofar addressed 
various issues related to the QoS of web services in the 
context of composite services. [3] and [4] present Ag-
Flow, which revises the execution plan in order to con-
form the user’s QoS constraints. AgFlow may operate ei-
ther using global planning, in which the execution plan is 
revised in order to conform the user’s QoS constraints, or 
using local optimization, in which optimization is made 
on individual task basis, using the Simple Additive 
Weighting [5] technique to select the optimal service for a 
given task. [6] presents VieDAME, which performs BPEL 
scenario adaptation on the basis of QoS parameters, but 
these QoS parameters and the selection strategy are pre-
determined through pluggable modules; moreover, 
VieDAME does not support service selection affinity and 
is implemented using extensions available only in the 
ActiveBPEL engine [7], and is thus platform-dependent. 
[8] introduces end-user specified policies through 
QoSL4BP, and BPEL transformers that incorporate the 
policies and appropriate monitors to the BPEL scenario 
before its execution. This work mainly targets at monitor-
ing the execution and raising exceptions when the desired 
QoS are not met, rather than adapting the BPEL scenario 
so as to best match the QoS demands of the scenario 
consumer. [9] introduces another BPEL extension and 
uses an extended BPEL engine to deliver QoS-based 
adaptation; the use however of a BPEL extension and a 
custom execution engine are potential barriers to the ad-

aptation of this solution. [13] 
[10], [11], [12] and [14] consider service BPEL sce-

nario adaptation in the context of exception resolution. 
[10] creates exception-aware process schemas, and the in-
frastructure detects invocation faults and substitutes ser-
vices that have failed with alternate ones; QoS charac-
teristics are not considered in this work. [11] includes 
QoS characteristics in the alternate service replacement, it 
does not allow however the specification of the replace-
ment policy by the process consumer; [14] states that QoS 
is taken into account in the process of determining 
equivalence. [13] uses autonomic computing concepts for 
providing execution plan formulation for business proc-
esses, taking into account QoS parameters, monitors dy-
namically QoS violations at runtime and provides instru-
mentation for the handling of these exceptions. 

All approaches that dynamically determine the services 
that will be used either in a service composition or as 
replacement for failed services, typically employ some 
semantics-based registry to determine service capabilities 
and QoS attributes that are required for service composi-
tion and/or service equivalence, which is required for ser-
vice substitution. METEOR-S [15] [16] is a suitable 
infrastructure for such service discovery activities, em-
ploying ontologies where service inputs, outputs and QoS 
aspects are described. Execution under the METEOR-S 
framework is also monitored to allow for updating of QoS 
attributes such as response time and failure rate. WSMO 
[17] may provide the foundations for modeling, storing 
and reasoning on the relevant web service functional and 
non-functional aspects. 

Our contribution to the works above is as follows: 
• it allows the BPEL scenario designer to specify the 

desired QoS parameters for each service. These 
parameters are specified through standard BPEL 
variables, thus the designer may examine scenario input 
parameters for setting them, tuning thus the adaptation 
of the particular BPEL scenario execution to the desires 
and needs of the scenario consumer. 

• it does not require any modification to the BPEL syntax 
or semantics. 

• it takes the execution flow specified by the designer as 
granted, and optimizes service selection within this 
flow, contrary to service composition approaches which 
define this flow dynamically. This is an important 
aspect in cases where execution flow is carefully crafted 
by the designer to reflect particularities of the business 
process, specialized exception handlers are used, etc. 

• it considers service selection affinity, enabling the con-
ducting of multi-operation transactions with providers. 

• it incorporates exception handling as an integral part of 
the adaptation process, allowing for switching to the 
“next best” solution when the originally selected candi-
date is unavailable. 

• it does not use pre-determined alternative paths, but 



selects services dynamically from an suitable registry. 
 

3. Definitions and QoS Aspects 
 

As stated in section 1, the adaptation of the BPEL sce-
nario execution according to a QoS-driven policy is per-
formed by dynamically selecting at run-time the most 
suitable operation to be executed for each particular op-
eration invocation. This selection should be made among 
services that are equivalent. Formally, we define two ser-
vices s1 amd s2 to be equivalent iff (a) they support the 
same operations and (b) for each operation op1,i of service 
s1, the respective operation op2,i of service s2 are either 
syntactically or semantically equivalent [6] to op1,i. Syn-
tactic equivalence indicates that the interfaces of op1,i and 
op2,i match, while semantic equivalence indicates that 
op1,i and op2,i only have the same functionality, but expose 
it using different interfaces. 
 

 QoS provider 1 QoS provider 2 value 
Cost 10 € 11 € 1 
Security  DES/3DES 128 bits 3 
Performance High throughput 99% 5 
Response time 0.0001 ms Real-time 5 
Availability High > 95% 4 

Listing 1. Mapping of QoS values 
 

In order to enable the selection of the “most suitable” 
operation according to some QoS specification, the QoS 
attributes of the operations should be represented in an 
unambiguous and system-processable format, while 
additionally means for expressing QoS-related operation 
selection criteria should be afforded. For brevity, in the 
following we will consider only the QoS parameters cost, 
security, performance, response time and availability, 
adopting the definitions in [17]. Extension of the 
framework to include additional attributes is straightfor-
ward, thus we have no loss of generality. Note also that 
different sources of qualitative parameters (e.g. service 
providers, independent organizations performing 
benchmarks or service repositories making available 
qualitative dimensions such as those described in [1]) 
may even employ different measurement domains for the 
same qualitative attributes, as shown in. For each such 
source, mappings between the domains employed by the 
source and numeric values are employed. These mappings 
include . conversions from symbolic to numeric values, 
and issues stemming from different value ranges (e.g. [0, 
10] vs. [0, 100]) (cf. Listing 1). The latter can be accom-
modated by applying normalization like the one proposed 
for the scaling phase described in [5] or in the 
normalization phase of [18]. For convenience reasons and 
without loss of generality, in this work we normalize all 
qualitative attributes’ values in the range [0, 5]. Thus, 
each operation op in our framework is tagged with a quin-
tuple (costop, secop, perfop, respop, availop), reflecting the 
QoS aspects of the particular operation. 

In our approach we consider three vectors that define 
the QoS criteria for process invocation; in other words we 
define a QoS specification as a triple (MAX, MIN, W), 
where MAX, MIN and W are quality vectors (defined 
below). The first and the second elements specify the 
upper and the lower bounds –respectively– for particular 
QoS aspects; effectively these two vectors comprise the 
QoS constraints. The third element, W, represents the 
qualitative attributes’ corresponding weights, i.e. how 
important each qualitative attribute is considered by the 
designer in the context of the particular operation 
invocation. Higher weights (in absolute value) indicate 
higher importance of the specific qualitative attribute. 
According to the above, the quality vector for the QoS 
attributes considered in this work can be defined as: 
 
MAX = (costmax, secmax, perfmax, respmax, availmax) 
MIN = (costmin, secmin, perfmin, respmin, availmin) 
W =  (costw, secw, perfw, respw, availw) 
Listing 2.Quality Vectors 
 

Thus, if a BPEL scenario designer requires for some 
service invocation security of level ≥3 and cost ≤2, 
vectors MAX and MIN will be set to MAX = (2, 0, 0, 0, 
0) and MIN = (0, 3, 0, 0, 0). A value of zero in specific a 
position of the MIN and MAX indicates that no 
higher/lower bound is defined for the respective attribute. 
The same vectors can be equivalently and more 
compactly expressed (ommiting attributes for which no 
constraint is specified) as Constraints=cost:0,2;sec:3,0. 
Similarly, a weight vector can be defined as W=cost:-
3,sec:1,resp:2. Specification of negative values for 
elements of W may be employed to designate that 
services having smaller values for the specific QoS 
attributes are preferred against those having higher 
values; cost and response time are examples of QoS 
attributes for which negative values will be used. 
 

4. Framework architecture 
 

In order to accommodate the required functionality, the 
proposed framework introduces two additional modules 
in a standard BPEL execution environment. The first 
module is a middleware layer named ASOB (Alternate 
Service Operation Binding), which undertakes the tasks 
of (a) dynamically selecting the operations best matching 
the QoS characteristics specified by the scenario designer, 
(b) appropriately transforming messages and results to 
tackle syntactical differences between services and (c) 
intercepting exceptions owing to system-level causes, 
such as server failures or network partitionings, and 
resolving them by invoking equivalent operations. The 
second module is a preprocessor, which transforms BPEL 
scenarios created by designers so as to (a) direct in-
vocations to the middleware layer and (b) include in each 
invocation all the necessary information for selecting the 



operation best matching the QoS characteristics specified 
by the BPEL designer. The overall framework 
architecture is depicted in Figure 1, while the framework 
operation and module functionality, as well as the way 
QoS specifications are provided by the BPEL designer are 
described in the following paragraphs. 
 
4.1. QoS specification in the BPEL scenario 
 

The ASOB framework reserves two variables through 
which the BPEL designer may specify the desired QoS 
characteristics for web service invocations. These vari-
ables are named ASOB_QoSconstraints, and 
ASOB_QoSweight, and correspond to the Constraints  
and W vectors described in section 3. Before each invoke 
construct, the designer can insert an assign BPEL node to 
appropriately set the values of these variables to the de-
sired values, as shown in Listing 3. The preprocessor will 
arrange for passing these values to the ASOB middle-
ware, where the QoS specifications will be extracted and 
the scenario execution will be adapted accordingly. 

 
4.2. BPEL scenario preprocessing and 
deployment 
 

The BPEL scenario (SC) as crafted by the BPEL de-
signer is processed by the ASOB preprocessor, which 
produces an ASOB-aware BPEL scenario (SCASOB) as 
output; SCASOB is made available for invocation by BPEL 
scenario consumers. SCASOB differs from SC in the fol-
lowing respects: 
1. SCASOB contains an additional partnerLink node, 

which corresponds to the ASOB middleware. 
2. SCASOB includes, as its first operation, an invocation to 

a special web service operation of the ASOB 
middleware, namely getSessionId. This operation 
creates a value that is unique for a particular execution 
of the BPEL scenario, and returns it to the invoking 
scenario. Uniqueness is guaranteed by combining the 

requester’s IP address, the current timestamp of the 
system and a random number from a sparse domain. 
As the operation name suggests, this value will be 
used as a session identifier for the particular execution 
of the BPEL scenario, in order to implement service 
selection affinity. 

 
<!-- set the value of the input parameter for the web service --> 
<variable name="amount" type="xsd:integer"> 
<assign name="assign1"> <copy> 
 <from><literal>34</literal></from> 
 <to variable="amount"/> 
</copy></assign> 
<!-- set the QoS specification --> 
<assign name="QOSassign1"> 
 <copy> 
  <from><literal>cost:0,2;sec:3,0</literal></from> 
  <to variable="ASOB_QoSconstraints"/> 
 </copy> 
 <copy> 
  <from><literal>cost:-3,sec:1,resp:2</literal></from> 
  <to variable="ASOB_QoSweight"/> 
 </copy> 
</assign> 
<invoke partnerLink="myLink" portType="thePort" operation="someOp" 

inputVariable="amount" outputVariable="theOutput"/> 
Listing 3. Original BPEL scenario excerpt 
 
3. Each invoke node (i.e. each operation invocation) 

within SC is transformed as follows: firstly, WSDL 
file to which the partnerlink refers to is located and 
copied locally, and the soapaction address element for 
the particular invocation is amended to point to the 
ASOB middleware; the corresponding WSDL import 
is adjusted accordingly to point to the local copy. Sec-
ondly, the type of the inputVariable of the particular 
invocation is extended to accommodate five additional 
elements, namely sessionId, origPLink, origAddress, 
ASOB_qoscons and ASOB_qosw. To achieve the 
extension of inputVariable, the preprocessor 
downloads and appropriately modifies the files in 
which the type is defined (WSDL files for variables of 
type messageType; xml schemas for element) and 
amends import declarations to point to the modified 
files. For simple types (type), where the parameter is 
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Figure 1. Architecture of the ASOB framework



defined as a simple XML type (e.g. string or integer), 
the preprocessor creates an XML schema file defining 
a type containing the five aforementioned elements 
plus the element ASOBvalue of the appropriate type 
(string, integer etc), and amends the variable decla-
ration to use the newly defined type; additionally, as-
signments (copy constructs) from/to this variable are 
modified accordingly. The transformed operation in-
vocation is included in SCASOB. 
Thirdly, the invoke node is preceded with copy 
commands assigning appropriate values to the 
aforementioned variables as follows: 
• the value returned by the getSessionId operation 

invocation is copied to sessionId. 
• the value of the partnerlink attribute in the original 

invoke construct is copied to origPLink 
• the soapaction address in the original WSDL file is 

copied to origAddress. 
• the values of ASOB_QoSconstraints, and 

ASOB_QoSweight are copied to ASOB_qoscons and 
ASOB_qosw, respectively. 

All other constructs within SC (control flow, 
assignments, exception handlers etc) are left intact, and 
SCASOB can now be invoked by service consumers. The 
modifications acted upon the BPEL scenario of Listing 3 
are shown in Listing 4 (changes are denoted using italics). 
 
4.3. BPEL scenario execution 
 

Once the preprocessed BPEL scenario has been de-
ployed, it may be invoked by a consumer. At this stage, 
we assume that the Service Repository (SR) is populated 
with up-to-date web services specification entries (WSDL 
location, Endpoint addresses, Operation interfaces). In 
addition to this information, SR should at least provide 
(a) means for identifying functionally equivalent groups 
of services using semantic tagging (as, for example ME-
TEOR-S and WSMX) or any other suitable approach, and 
(b) information on the Quality of Service (QoS) 
characteristics of the operations provided by the services. 
Repositories such as [21] may be used to retrieve the 
needed QoS characteristics. 

As described in the previous section, the first operation 
invocation will retrieve a session id from the ASOB 
middleware. Subsequent invocations are effectively 
directed to the ASOB middleware, which processes them 
as follows: 

Step 1. It extracts from the SOAP message payload the 
values of the elements sessionId, origPLink, origAddress, 
ASOB_qoscons and ASOB_qosw, and constructs a new 
payload with these elements removed. The latter action 
results to a payload suitable for invoking the operation 
initially specified in the original BPEL scenario. Recall 
that origAddress here contains the address of the 

operation that was specified in the original BPEL 
scenario. This operation will be denoted as op. 
 
<!-- type_amount.xsd is a preprocessor-generated file in which the type 
type_amount is defined, having the parts sessionId, origPLink, 
allPartnerOperations and ASOBvalue --> 
<import location="type_amount.xsd" importType= 
"http://www.w3.org/2001/XMLSchema" /> 
 
<!-- retrieve session id --> 
<variable name="ASOBsessionId" type="xsd:string"> 
<invoke partnerLink="ASOB" portType="ASOBport" operation="getSessionId" 
outputVariable="ASOBsessionId" /> 
<variable name="amount" element="type_amount"> 
<assign name="assign1"> <copy> 
 <from><literal>34</literal></from> 
 <to variable="$amount.parameters/ASOBvalue"/> 
</copy></assign> 
<!--assign "QOSassign1" is left intact and is not repeated here --> 
 
<!-- plant extra fields in the input message --> 
<assign name="ASOB_ASSIGN1"> 
 <copy> <from variable="ASOBsessionId"/> 
  <to variable="$amount.parameters/sessionId"/> </copy> 
 <copy> <from><literal>"myLink"</literal></from> 
  <to variable="$amount.parameters/origPLink" /> </copy> 
 <copy> <from><literal>"http://addr.com/path"</literal></from> 
  <to variable="$amount.parameters/origAddress"> </copy> 
 <copy> <from variable="ASOB_QoSconstraints" /> 
  <to variable="$amount.parameters/ASOB_qoscons" /> </copy> 
 <copy> <from variable="ASOB_QoSconstraints" /> 
  <to variable="$amount.parameters/ASOB_qoscons" /> </copy> 
 <copy> <from variable=" ASOB_QoSweight" /> 
  <to variable="$amount.parameters/ ASOB_qosw" /> </copy> 
</assign> 
<invoke partnerLink="ASOB" portType="ASOBport" operation="proxyInvoke" 

inputVariable="amount" outputVariable="theOutput"/> 
Listing 4. Preprocessed BPEL scenario excerpt 
 

Step 2. It queries the consumer session memory 
whether the particular origPLink has already been bound 
to some specific service in the context of the same ses-
sion. If such a binding does exist, then the operation of 
the same service which is equivalent to op should be in-
voked now, to provide service selection affinity (e.g. if 
during a previous invocation the operation reserveCar of 
service AgencyA was selected, then when the operation 
payCar is invoked, the service AgencyA must be selected 
again); therefore, the appropriate operation is retrieved 
from the repository SR of Figure 1, and request process-
ing continues in the filtering and ranking module (step 4, 
below), which will only try to invoke the equivalent op-
eration from the selected service. If, however, no such 
binding is found in the consumer session memory, invo-
cation handling continues within the alternate services 
locator module (step 3, below). 

Step 3. The alternate services locator extracts from SR 
the operations op’ that can be substituted for op. Ac-
cording to the equivalence definition in section 3, these 
are the services op’ which are provided by a service 
equivalent to the one providing op, and are syntactically 
or semantically equivalent to op. These services are 
forwarded to the filtering and ranking module (step 4). 

Step 4. the filtering and ranking module prunes from 
the list it receives (either from the alternate services lo-
cator or a singleton list from step (2), if a binding to some 



service has been made in the same session) those entries 
that do not satisfy the constraints specified in 
ASOB_qoscons. If no services remain in the list after the 
pruning step, a special type of exception PolicyException 
is returned to the BPEL engine, to signify that the speci-
fied QoS criteria cannot be met, and request processing 
terminates. The BPEL scenario designer may have in-
cluded an appropriate exception handler which will at-
tempt to remedy the fault (by relaxing some constraints, 
or by trying alternate methods e.g. “try to find a courier 
mail for under $10, and if this fails send by surface mail). 

For each one of the qualifying services, the module 
completes an overall score, which is equal to 

∑
∈

=
sec,...},{cos

'' *
tatttr

attropop ASOB_qoswattrSc  

(effectively each QoS attribute of op’ is multiplied by the 
respective weight specified in ASOB_qosw and the results 
are summed up). The services are then sorted in de-
scending order of their overall scores, and execution 
continues in the service binder and invoker module. 

Step 5. The service binder and invoker module extracts 
the first operation in the list it receives (recall that the 
operations with the highest overall scores are placed first 
in this list). For this operation, it first examines if the 
operation is syntactically equivalent to op (i.e. the one 
specified in the original BPEL scenario; this information 
is available in SR). If the operations are syntactically 
equivalent, the payload can be directly used for invoking 
the operation extracted from the list; if however the 
operations are only semantically equivalent, then the 
payload must be appropriately transformed to bridge the 
syntactic differences. This is performed using XSLT 
transforms, in a manner similar to that described in [6], 
according to which the XSLT files that are used for each 
pair of equivalent operations are pre-stored in the XSLT 
repository. Finally, the extracted operation is invoked. 

Step 6. the service binder and invoker module inter-
cepts the reply from the operation. If the operation was 
concluded successfully, the result can be sent back to the 
BPEL engine as a reply; before the reply is sent, it may be 
necessary to again apply an XSLT-based transformation 
to bridge any syntactic differences. In this case, the 
consumer session memory is updated to reflect the fact 
that the particular partnerLink has been bound to a spe-
cific service in the context of the current session. If, how-
ever an exception has been raised during the execution of 
the operation, the service binder and invoker module ex-
amines the root cause of the exception to determine 
whether the exception is owing to a system fault (server 
down, network partitioning etc) or to a business logic 
fault. In the latter case, no automated resolution is possi-
ble, and the exception is returned to the BPEL process 
(where it may be caught and handled by an exception 
handler specially crafted by the BPEL scenario designer). 
In the former case, however, it is possible to remedy the 

error by simply invoking some equivalent service: there-
fore, the service binder and invoker module extracts the 
next operation in the list (which is a suboptimal alterna-
tive compared to the previous one, yet a solution satisfy-
ing the QoS constraints), and iterates over steps (5) and 
(6). If the list is exhausted and no operation has con-
cluded successfully, a PolicyException is returned to the 
BPEL engine. For more details on how it is system faults 
are distinguished from business logic faults, the interested 
reader is referred to [11]. 
 

5. Performance evaluation 
 

In order to validate our approach in terms of perform-
ance, we conducted a benchmark experiment to quantify 
the overhead imposed by the middleware layer for per-
forming the tasks described in subsection 4.3, i.e. (a) re-
pository lookups, (b) operation filtering, (c) operation 
ranking and sorting, (d) XSLT-based transforms and (e) 
request interception and returning of answers. Note that, 
in the general case, the difference between the execution 
times observed when the ASOB middleware is (a) used 
and (b) not used, may be different from this overhead, 
since due to the adaptation, the response time of the op-
eration finally selected may be different from the respec-
tive parameter of the service originally specified. Addi-
tionally, the introduction of the ASOB middleware offers 
functional aspects, including adaptation and exception 
handling, which cannot be quantified in terms of per-
formance. This experiment aims at assuring that the ap-
proach described in the previous paragraphs is feasible. 

For our experiment we used three distinct machines: 
the first one for executing BPEL scenarios, using the WS-
BPEL 2.0 compliant JBI component [18], deployed on 
Glassfish v2 application server [19]; the second one was 
hosting the ASOB middleware (java application on 
Glassfish V2) and SR, implemented as a MySQL data-
base. The third machine (with a configuration same as the 
second one) hosted the target web services. For 
benchmark data collection we used the benchmarking tool 
from Apache, ab [20] and internal profiling timers. 

Figure 2 illustrates the ASOB internal process time for 
single web service operation invocations, against the 
overall service repository (SR) size and the number of 
equivalent services present in the repository. Figure 2 
indicates that the internal process time (y-axis) mainly 
depends on the number of discovered equivalent services 
and not the overall SR size (x-axis). The very small 
dependency on the overall SR size can be attributed to the 
use of appropriate indexes within SR, which effectively 
exclude the non-relevant tuples from the search, thus only 
1-10 extra disk page accesses are performed. The 
overhead increment, on the other hand, when the number 
of alternate services increases is considerable, mainly 
affecting the sorting of the candidate operation list 



(typically of complexity O(n * log(n)) and the 
interprocess communication cost to transfer the results 
from SR to ASOB. It is expected that cases with more 
than 100-200 qualifying operations will be rare, and, as 
shown in Figure 2, such cases exhibit an overhead of 20-
25 msec/invocation. 
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Figure 2. ASOB internal process time 
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Figure 3. XSLT transformation duration 
 
Figure 3 shows the overhead incurred by applying 

XSLT transforms on request and response SOAP 
messages, to resolve syntactical differences between 
operations that are semantically but not syntactically 
equivalent. The time reported in this figure accounts for 
both the retrieval of the appropriate XSLT from the 
repository and the application of the transform. Note that 
such a transform is not always required (case of 
syntactically equivalent operations). As shown in the 
figure, when the number of concurrent connections 
increases, the time to execute each transform increases, 
since XSLT transforms are CPU-bounded and high 
concurrency means that less CPU share is available for 
each transform. 

Figure 4 illustrates the number of operation invocations 
that can be served in a unit of time against the number of 
concurrent invocations when (a) services are directly in-
voked and (b) when invocations are made through the 
ASOB middleware. This diagram indicates that the in-
troduction of the ASOB middleware is feasible, since it 
leads to a throughput drop of 8-16% (11%-19% when 
XSLT transforms are applied). At the point of 100 direct 
invocations the drop in performance is so sharp (the 
machine resources have been exhausted) that there is no 
point in considering more concurrent invocations. In the 
area between 80 and 100 concurrent invocations, the 
difference in throughput is gradually becoming smaller. 
This behavior can be attributed to the fact that while the 
web service execution machine has reached its limits 
regarding request processing at 80 direct invocations, 
there is still ample power available in the machine hosting 
the ASOB module to handle the processing required by 
the specific module. 
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Figure 4. Invocation throughput 
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Figure 5. BPEL scenario execution time 

 
Figure 5 illustrates the BPEL execution time of a BPEL 

scenario containing two web service invocations against 
the number of concurrent executions. The x-axis repre-
sents the concurrent BPEL process executions and y-axis 
the time elapsed until all of them completed successfully. 
It is obvious that the BPEL process time is slightly in-
creased in the ASOB-mediated case, but the increment is 
very small (4%-9% without XSLT transformations, 8-
16% with XSLT transformations). 
Figure 6 depicts the BPEL scenario execution throughput 
against the number of concurrent executions. The be-
havior is consistent with the previous diagrams. 
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Figure 6. ASOB-mediated vs. direct invocation BPEL 
scenario execution throughput 

 

6. Conclusions 
 

Building processes that are able to cope with the dy-
namics of real world requirements has always been a 



challenging endeavor. The adoption of BPEL in the de-
sign and execution phases of business processes has al-
ready obtained gains in speed and reliability, but has not 
been able insofar to successfully address issues arising 
form the dynamic nature of the processes themselves, the 
diversity in user requirements and the inherent instability 
of distributed environments, which leads to a number of 
system faults.  

The framework presented in this paper addresses these 
shortcomings employing a dynamic service selection 
mechanism based on QoS criteria for a BPEL process; 
these criteria are defined by the BPEL scenario designer 
and can be set to reflect the user requirements. Service 
attributes are stored in a repository that stores the ser-
vices’ functional and non-functional (qualitative) char-
acteristics; updating the repository suffices to reflect 
changes in the real world (service introductions or with-
drawals, changing of services’ QoS aspects etc). An ex-
ception resolution mechanism for faults owing to sys-
temic reasons is also included, easing thus the work of the 
BPEL designer. 

Future work will focus on tighter integration with SR, 
providing to it updates based on the observed behavior of 
invoked services. Another aspect that will be investigated 
is the optimality of partner link bindings to specific ser-
vices, when multiple operations from the same partner 
link are invoked: the current algorithm is greedy, seeking 
to obtain the best match for the first only operation invo-
cation to any individual partner link taking place within a 
session, but this choice may be sub-optimal if subsequent 
invocations are considered. Providing ASOB with 
lookahead information on the services that will poten-
tially be invoked in subsequent BPEL scenario execution 
steps, and the extension of the current service selection 
algorithm can contribute to performing more optimal 
partner link bindings. The removal of the need for sce-
nario preprocessing will also be investigated. 
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