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Abstract. In the past years the management of temporal data has attracted nu-
merous researchers resulting to a large number of temporal data extensions to the
relational and object oriented data models. In this paper, the proposed temporal
data model focuses on the functional characteristics of the histories. The paper in-
troduces a set oriented description of the calendars together with a function oriented
history concept with a history-algebra. The completeness of the proposed model
with respect to the reduced temporal algebra TA is also proven. The expressive
power of the proposed model is demonstrated in the end of the paper by a hospital
example.
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1 INTRODUCTION

Temporal database management systems (TDBMS) extend the traditional database
management systems by incorporating the temporal aspects of the data. Temporal
databases store the history of the data updates including the different values and
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the dates when changes occurred. Several approaches were developed during the
last years to support the temporal aspects in databases [14], [16]. These temporal
databases allow the users to query not only the current state, but the history of the
database as well, and sometimes also the investigation of anticipated future events is
possible. The proposals for the temporal extensions are mainly related to the three
basic data models:

1. ER Semantic Data Model [8]

2. Relational Data Model [3]

3. Object Oriented Data Model [1]

Beside the time-invariant objects, i.e. the objects whose value does not change,
the different approaches propose several types of time-variant objects. Most of the
proposed temporal database management systems given in [6] include temporal ob-
jects with version-based characteristics. These objects may change their values with
arbitrary frequency. Every version constitutes of a date and a complex value. If
the changes occur regularly, according to a particular pattern of time, we get the
time-series objects [15]. This pattern of time is called a calendar. The adminis-
tration of the time-series objects differs from the management of the version-based
objects as the regularity involves new aspects, different implementation techniques
and new integrity constraints. In [12], an integrated temporal data model is given
that incorporates both version-based and time-series objects.

In this paper, we propose another approach for interpreting both the version-
based and time-series temporal objects in an integrated way. We treat the list of
historical values as function over the time axis. Based on this assumption, we can
define a set of operators to manage the temporal data. Besides the operators, we
deal with the integrity constraints related to the derived new data type. To compare
our proposal with other well-known query interfaces, we prove the completeness with
respect to the reduced temporal algebra TA for the non-grouped, flat data model.
The functionality of the proposed approach is demonstrated through an application-
oriented example. The example refers to a clinical research information system,
where patients are examined several times, according to a number of criteria.

The paper is organized as follows. In Section 2, the different aspects of the
temporal data and the existing representation alternatives are presented. Section 3
gives the structural description of our approach. The history list is defined in detail
in Section 4. Section 5 presents the proposed operators and integrity constraints. A
completeness proof is contained in Section 6. The hospital example is demonstrated
in Section 7.

2 BASIC CONCEPTS

In this paper, unless otherwise stated, we will use the term “time” for the valid time
[7]. We will use the term object to refer to the information element which time is
related to.
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The time related to an object can be described by different types of quantities.
In [17], the following types of time are defined:

1. an instant is a time point,

2. a period is a quantity of time between two time instants, called boundaries,

3. an interval is a duration of time with known length but without specified bound-
aries.

The value of a time entity can be expressed in different formalisms. Usually a
discrete time model is employed. The smallest segment of the time axis is called
granule. The concept of calendar [11] is used to describe the granularity dependant
characteristics of time assignment. A calendar is usually given by a set of allowed
granules, and the mapping between the different granularities. The smallest granule
is called chronon.

During the lifetime of an object, several events may be recorded in the database
with different time values. Thus a list of time values is usually assigned to every
temporal object in the database. The history of an object can be described by a list
of the following form:

{(t1, 〈objectstate〉), (t2, 〈objectstate〉), . . . }

where ti denotes a temporal value.
According to [12], we can distinguish two types of lists. The first type is called

version based list, while the second one is called time-series list. The main difference
between these types is that in the case of time-series the ti time values strictly follow
a time pattern, i.e. the ti+1− ti value is the same for every i. In time-series lists, the
time values are usually based on a calendar. On the other hand, in version based
lists, the ti values may be arbitrary.

Regarding the granularity of the temporal attributes, we distinguish:

1. object versioning : the history list contains object states and each time value is
assigned to the whole objects [13],

2. attribute versioning : every attribute of an object may have its own history list,
i.e. the ti values are assigned to the attribute values [5]. Each temporal real-word
object is represented by a complex, nested database object.

3 SET-ORIENTED DESCRIPTION OF CALENDARS

Let B be a finite interval of natural numbers, i.e.

B = [a, b], where a, b ∈ N ∧ a < b.

Let ci denote a chronon unit of the time axis. The



4 L. Kovács, C. Vassilakis

C0 = {ci}

where i ∈ B is called the chronon-calendar. The set C0 is totally ordered with
respect to the following property: ci < cj if and only if i < j. In other words, C0 is
equivalent to B regarding the ‘<’ relation.

We define the set of calendars X as follows:

(a) C0 ∈ X

(b) If C1 ∈ X ∧ C2 ⊂ 2C1 :

(1) ∀e1, e2 ∈ C2 ⇒ e1 ∩ e2 = ∅
(2) ∀e1, e2 ∈ C2,∀x1, x2 ∈ e1,∀y1, y2 ∈ e2 : (x1 < y1 ⇔ x2 < y2) ∧ (x1 > y1 ⇔

x2 > y2)

then C2 ∈ X i.e. C2 is a calendar. In this case, calendar C1 is called the base
calendar of C2 and will be denoted as B(C2).

(The notation 2C1 denotes the powerset of C1, i.e. the set of subsets of C1.)
In this definition, calendars other than the chronon calendar are defined as a

set of subsets; this enables transformations between the different granularity levels
with minimal information loss. When moving to finer granularities, no information
loss occurs.

An ordering relation may be defined among the elements of calendar C2 as
follows: Let e1, e2 denote two arbitrary elements of C2 and let x and y be arbitrary
elements of e1 and e2, respectively. Then

(a) e1 < e2, if x < y,

(b) e1 > e2, if x > y.

Since E = {x |x ∈ ei∧ei ∈ C2} is a subset of C1, E is totally ordered. Thus calendar
C2 is totally ordered as well.

Based on this result, we can define an ordered list of the values e ∈ C2 and
we can assign the position number to an e element as an index. Thus if e =
{xi, xj, . . . , xn} ∈ C2, the index of element e is

min(y) : xy ∈ e.

By virtue of this definition, the index set of any calendar C is drawn from B,
and ei < ej if and only if i < j.

We call two calendars, C1 and C2 non-overlapping, if taking the corresponding
representation at the chronon granularity level, the two sets are disjoint.

Since every calendar except the C0 calendar has a base calendar, the calendars
can be structured into an hierarchy. The parent calendar of a calendar C is B(C).
The root element of this hierarchy is C0. If C1 and C2 are two arbitrary calendars
and there is a path from C1 to C2 towards the leafs, then C1 is an ancestor of C2.
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Given two calendars C1 and C2, C1 is convertible into C2 if C2 is an ancestor of
calendar C1. We define the conversion function M(C1, C2) as follows:

M(C1, C2) =

{
{e | ∃x ∈ C1 : e ∈ x}, if C2 = B(C1)

M(M(C1, B(C1)), C2), otherwise.

In other words, converting a calendar C1 to an ancestor calendar C2 is equivalent
to selecting the elements of the ancestor calendar which are included (at any depth)
in C2. We call the result of the M(C1, C2) function the representation of C1 at the
C2 level.

We introduce the term of filtering for the calendars. This operation can be used
to extract a subset of the calendar. If C1 and C2 are two arbitrary calendars and
C1 is an ancestor of C2, then

Filter(C1, C2) = {e | e ∈ C1 ∧ ∀x ∈ e : x ∈ M(C2, C1)}

where M(C2, C1) denotes the representation of calendar C2 at the B(C1) level. The
result subset contains only those elements from C1 which are members of the calen-
dar C2.

For every calendar C except C0, we can define a membership function over its
base calendar. This function has values zero or one, defined as follows:

f(x) =

{
1, if ∃ e ∈ C : x ∈ e

0, otherwise.

We can see that this type of formalism is equivalent to the original calendar formal-
ism, but it provides additionally a more homogenous and flexible tool to manage the
temporal data. We can use the following algorithm to convert a normal calendar
specification into a set-oriented formalism:

Let C{gr, pt, pr, st, et} be a calendar according to [12], i.e. gr is a gran-
ularity specification, pt a pattern set, pr a period specification, st a starting
time value and et an ending time value. As the gr defines the units of C, i.e.
the elements of the calendar, it is straightforward to relate the granularity
to the role of the base calendar. If the pr is not null, then the membership
function of the C calendar is periodical. If pr is null then the membership
function has no period. The pt set together with the pr value determine the
concrete form of the membership function. The pt is the description of the
membership function within a period. This membership function fragment
should be repeated in every period. The st and et values give the absolute
boundaries of the membership function.

The problems of the normal calendar definition and interpretation can be illus-
trated by the following example from [12]. It defines the calendar Months :
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Calendar Months 〈
granularity: Day,
pattern: {[1, 28] | [1, 29] | [1, 30] | [1, 31]}
period: 28 | 29 | 30 | 31
start time: 1
end time: ∞〉

The confusing side of this definition is that it does not express unambiguously the
relationship between periods and patterns, neither it provides information when the
different periods or patterns should be used. This shows that we cannot oversimplify
the formalism without the losing of some crucial information parts.

4 STRUCTURAL DESCRIPTION OF HISTORY LISTS

According to [12], the history of an object can be described by a list of the following
form:

{(t1, 〈objectstate〉), (t2〈objectstate〉), . . . , (tm, 〈objectstate〉)}

where ti denotes a temporal value. We assume the following:

(a) the ti values are disjoint (i.e. ∀i, j ≤ m : ti ∩ tj = ∅),

(b) ∀i : ti < ti+1 is met,

(c) every ti has the same granularity.

These conditions are usually met in real applications. 〈objectstate〉 is an arbitrary
structure.

We can assign a calendar C to every history list. We will call this calendar a
history calendar. The history calendar C has the following properties:

(a) every element ei of C corresponds to the ti from the history,

(b) x ∈ ei ⇔ x ∈ ti,

(c) |C| = m.

Based upon this formalism, we will consider the

{(t1, 〈objectstate〉), (t2, 〈objectstate〉), . . . , (tm, 〈objectstate〉)}

history list as a function

H : C → {〈objectstate〉}

from the history calendar into the set of subsets of possible object state values. This
function returns an object state for every element of C, i.e. for every time position
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stored in C. We call this function as a history function. Dom(H) denotes the
domain of H, i.e. the calendar C. We use the symbol V alDom(H) to denote the
database domain of the corresponding object states.

Since an hierarchical relationship exists among the calendars, function H may
be transferred along this hierarchy. Mapping the H function into the base calendar,
the result function is denoted by

M(H) : B(C) → {〈objectstate〉}.

Function M(H) is defined as follows:

M(H)(x) =

{
H(e), if x ∈ B(C), e ∈ C, x ∈ e

undefined, otherwise.

Applying this transformation recursively, function H may be mapped to the C0

level. Thus every history list has a descriptor function at the chronon granularity.

5 OPERATORS

The functionality of a data model is mainly expressed by the corresponding set of
operators. All proposals for temporal data models contain an operational part too.
In [12], for example, the following operators are introduced as the basic operators
of the model:

(a) calendar operators: select, intersect, union, exclude,

(b) history operators: insert entity, delete entity, modify attribute.

The formalisms used in the proposals are diverse, although their functionality is
quite similar. As the data manipulation part contains generally very clear and
unambiguous activities, we are focusing here only on the query part. First we take
the requirements and the operational structure into consideration. Regarding the
required functionality, we use the requirements given in [9] as guiding principles.

It is expected that the temporal model will be implemented by extending an
existing data model (like relational or object oriented). The extension may be
implemented in a layered fashion [19], according to which the existing data model
becomes the bottom layer, supporting the non-temporal characteristics, whereas
temporal features are implemented in a temporal layer, operating on top of the
existing data model. We assume that the existing model contains the following
structural elements:

(a) entity set level (a relation in terms of the relational model),

(b) attribute level (an attribute in terms of the relational model).

We will use the term host layer to refer to the existing layer. We assume that
the host layer contains a powerful operational part that meets the requirements
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regarding the attributes and entity set elements. The temporal layer will connect
to this host layer. In our proposal, the temporal elements, the history lists are
contained in the attributes.

Before going on, we should mention that our assumption (i.e. keeping history
lists in attributes rather than tuples) seems to be a restriction regarding the ap-
plication of tuple versioning. In our model only the attributes may have temporal
descriptor, indeed. But it can be shown that every tuple-versioned formalism can
be converted into attribute-versioned description without any loss of information
provided that it exists an unambiguous grouping expression [19].

We have to involve new operators manipulating the history lists. The coupling
of the two query systems should be solved without hurting the rules of the host
system. We denote the host query system by Q1, and the set of new temporal part
as Q2.

Analysing the requirements given in [9] we can identify the necessity of the
following new operator classes:

(a) Q2 internal operators:
Operators of this type are used to process the history list instances, i.e. the
temporal attribute values. The results of these operators are history lists. We
call the set of these operators a history list algebra. An example is the selection
of a sub-history based on the calendar or on the state value.

(b) Q2 – Q1 operators:
These operators accept one or more history lists (temporal attributes) as pa-
rameters and return a value defined in the host system. We can divide these
operators into the following groups:

(1) Intra-history operators : the calculation uses only the data values stored
within a single history list. The maximal duration of the history intervals
can be calculated by an operator of this group.

(2) Inter-history operators : the calculation uses the data values stored within
several history lists. Within this group we define two sub-groups:

i. intra-instance: the different history lists belong to the same object entity,

ii. inter-instance: the different history lists belong to the different object
entities.

The elements of Q2 will be appear as an extension to the Q1 query system. The
extension covers the introduction of

(a) new data types and literal types,

(b) new operators and functions.
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5.1 Q2 Internal Operators, History Algebra

In order to provide a flexible query and manipulation language, we introduce an
algebra for the history functions. Let H1, H2 denote two arbitrary history functions.
We define the following basic operators for the history functions:

(a) Select(H1, cond|C) or σH
t (H1, cond|C), to select a subpart of H1.

(b) Project(H1, ident−list) or πH(H1, ident−list), the projection on a list of object
elements.

(c) Join(H1, H2) or ×H(H1, H2), which joins those object states of H1 and H2 which
pertain to the same time element, into a single tuple.

(d) Union(H1, H2), to merge the two H functions.

(e) Extend(H1, C), to extend the H1 function’s domain with C.

(f) Expand(H1), to set the H1 function’s domain to its basic calendar.

(g) Group(H1, C, aggr), to set the H1 function’s domain to a higher level calendar
C using the given aggregation function aggr.

Using these basic operators, we can define a set of derived operators, which
can be used for complex tasks and which can be expressed in terms of the basic
operators. We will mention here only two such complex operators:

(a) Normalize(H1), to set the H1 function’s domain to C0.

(b) Reformat(H1, C, aggr), to set the H1 function’s domain to C.

All of these operators result in a new history function, i.e. the set of the history
functions is closed related to the defined operators.

The Select(H1, cond|C) operator can be used to filter the H1 function. The
second parameter contains the filtering condition. The filter may refer both to the
calendar time value and to the object state. The cond part contains a filter for the
object state which is evaluated for every object state instant. C denotes a calendar
that is used as a filtering condition. If C is used, only those domain elements which
are contained in C remain in the domain. Calendar C should be convertible into
Dom(H1). The domain of the result history function is a subset of the domain
belonging to the H1 function.

The Project(H1, indent-list) operator can be used to reduce the object state
structure elements to a subset of this set. The second parameter is a list of object
state structure component identifiers. The result history list has the same domain
as H1 has, but the value domain will be reduced.

The Join(H1, H2) operator results in couples of the elements of H1 and H2. The
precondition for the join operation is that both H1 and H2 are based on the same
base calendar. The result calendar consists of the
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{(h1(t), h2(t)), t}

history elements for every t in the common domain.

The Union(H1, H2) operator is used to merge the H1 and H2 functions. To
successfully perform the merging, the following conditions should be met:

(a) V alDom(H1) = V alDom(H2),

(b) Dom(H1) and Dom(H2) are disjoint calendars.

The domain of the result history function is based on the greatest common divisor
calendar. The elements come either from H1 or H2. The term of greatest common
divisor calendar corresponds to the nearest common ancestor node in the base-
calendar tree. The calendar C1 is the parent of the calendar C2 in the base calendar
tree, if B(C2) is equal to C1.

The Extend(H1, C) operator is used to extend the H1 function’s domain with the
C calendar. To successfully perform the extension, the following conditions should
be met:

(a) Dom(H1) and C are disjoint calendars,

(b) H1 should be an extendable history.

Not every history is extendable as it has no sense to assign a state for such
point of time where the object has no state. This may occur if the object stores the
history of events. The events are related to fixed time-points. The domain of the
resulting history function H is based on the greatest common divisor calendar. Let
Cr denote the domain of the result function. For every e ∈ Cr the corresponding
H(e) is calculated as follows:

(a) H(e) = H1(e
′), if e was derived from e′ ∈ Dom(H1),

(b) otherwise the value H(e) is interpolated (or extrapolated) from the H1 history
function.

We distinguish different types of interpolation algorithm, depending on the char-
acteristic of the V alDom(H1) database domain.

The Expand(H1) operator is used to create a new history function which is
derived from H1 and it is based on the basic calendar of H1. The result of the
Expand(H1) operation is equivalent to the M(H1) function.

The Group(H1, C, aggr) operation is in some way the opposite of the Expand
operator. It is used to set the H1 function’s domain to a higher level using the given
aggr aggregation function. To successfully perform the aggregation, the following
condition should be met:

Dom(H1) is an ancestor of the C calendar.
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When performing aggregation, several e ∈ Dom(H1) are mapped to the same a ∈ C.
The resulting history set H is based on C, i.e. Dom(H) is equal to C. The H(e)
values for every a ∈ C are calculated by means of the aggr function.

By means of these basic operators, we can introduce new, complex operators
too. The Normalise(H1) is used to set the H1 function’s domain to C0. This can be
achieved by applying the Expand(H1) operation iteratively, until the domain of the
result function is equal to C0.

The Reformat(H1, C, aggr) operator can be used to set the H1 function’s domain
to a new calendar C. The Reformat operation, by means of a series of Extend and
Group operators transforms the calendar into an equivalent calendar with another
base domain.

5.2 Q2 – Q1 Intra-History Operators

In order to perform queries and to define constraints, functions should be incorpo-
rated into the proposed model. Only some basic functions are mentioned here, how-
ever more functions are necessary to enhance expressiveness. In general, the usual
operators, descriptor elements for the mathematical functions as well the usual rela-
tions can be adapted here. The main purpose of this section is only to demonstrate
the embedding of the functions into the model.

We first introduce logical functions, which yield Boolean values. In the descrip-
tion, symbols H, H1, . . . denote history functions, while symbols C, C1, . . . denote
calendars.

(a) CMatch(H1, C2): it returns true if and only if for every element e2 of C2 there
exists an element e1 in C1 = Dom(H1) such that e1 is a subset of e2. The
CMatch logical function can be used to check whether C1 contains a history
element for every time interval given by C2.

(b) MonInc(H, expr): it returns true, if for every e1, e2 ∈ Dom(H) the following
condition is met:

H(e1).expr < H(e2).expr ⇔ e1 < e2

where expr is an expression based on the attributes of H. The H(e).expr denotes
the value of the expression at the e time element.

(c) CrosValUp(H, expr, val): it returns true if and only if there exists an e ∈
Dom(H) such that

H(e).expr > val.

This function can be used to check whether the object values crossed a threshold
value or not.

We can additionally define functions to access the different components of the
history list. These functions can return a list of values or a single value, returning
a component, a subpart of a history.



12 L. Kovács, C. Vassilakis

(a) GetList(H): it returns the whole history list in a readable form. The concrete
form depends on the host database environment.

(b) GetVal(H, ident): it returns the values of the ident attribute from the history
list.

(c) GetDom(H): it returns the domain calendar of the H history list.

(d) GetAggVal(H, ident, func): it returns only one aggregated value for the set of
ident attribute values from the history list.

(e) GetCount(H): it returns the number of elements in H.

(f) GetMinTime(H): it returns the time position of the first element in H.

(g) GetMaxTime(H): it returns the time position of the last element in H.

5.3 Q2 – Q1 Intra-History Operators

Inter-history operators facilitate comparisons between different histories and calcu-
lations on sets of histories, which includes aggregate functions.

(a) VDomin(H1, iden1, H2, iden2): it returns true if H1 is dominated by H2, i.e. the
H2(e).iden1 value is greater than the H1(e).iden2 value for every time position.
We assume that the conditions

(1) Dom(H1) = Dom(H2)

(2) ValDom(H1) = ValDom(H2)

are met.

(b) HSum(A, expr, [group]): this aggregation function computes the sum of expr
evaluated on the A attribute of history type for every tuple instance in the
object instance set. expr is a list of expressions. The result is a composite value,
similar to an object state. Elements of expr may refer to the time component
too. If the group tag is given, then the list elements are grouped according to
the group tag. In this case, the expr may contain the group expression element
too. The expression is evaluated for every group. If group tag is not present,
only one list element is contained in the result value structure.

(c) HMin(A, expr, [group]): this aggregation function computes the minimum of the
expr evaluated on the A attribute of history type for every tuple instance in the
object instance set for every group.

(d) HMax (A, expr, [group]): this aggregation function computes the maximum of
expr evaluated on the A attribute of history type for every tuple instance in the
object instance set for every group.
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(e) HCount(A, expr, [group]): this aggregation function computes the count of the
tuples for which the simple expression expr evaluates to a non-null value. Again,
expr is evaluated on the A attribute of history type for every tuple instance in
the object instance set for every group.

(f) HAvg(A, expr, [group]): this aggregation function computes the average of the
expr evaluated on the A attribute of history type for every tuple instance in the
object instance set for every group.

5.4 Integrity Constraints

The introduced operators and functions can be used to define integrity constraints
over the history lists. We include two types of integrity constraints:

(a) static, which are bounded to database history list data elements and behave
similarly to the CHECK integrity constraints in the relational model,

(b) dynamic, which are bounded to database history list data elements and behave
similarly to the ALERT active integrity constraints.

The static integrity constraint is given by an expression yielding a logical value. If
X is a database object of history list type, then we can assign a logical expression to
X. The expression should be evaluated on the instances of X. It contains references
to X which are replaced during evaluation by the actual instances of X. Only the
instances for which the expression evaluates to true are valid. This condition is
checked when

(a) X is modified or

(b) new instances of X are inserted in the database.

For example, if temperature values are not allowed to exceed 1000, the constraint
expression may be the following:

NOT CrosValUp(X, temperature, 1000).

The dynamic integrity constraints may also be given by means of logical expres-
sions. But, in this case, the expression value is continuously monitored and when
the value becomes true, then an action procedure is activated. As the condition may
refer to the current clock time, the need to determine the time points on which it
must be checked arises. This can be handled by specifying checking intervals.

For example, we require that every day should be added a new element into the
history. We create an alert that calls a ‘message’ stored procedure if there exists a
day that has no corresponding value in the history. We assume the domain of the
X is based on an Hour calendar. The corresponding expression to be checked can
be given as follows:
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NOT CMatch(GetDom(X), (D){{GetMinTime(X), NOW}});

the function to be triggered is:

message()

and the controlling period is

(D).

6 ON COMPLETENESS OF THE OPERATIONAL PART

To describe the expressive power of the different query languages we can use the
metric of completeness [4]. We state that the proposed operational part is complete
with respect to the reduced temporal algebra TA over the temporally ungrouped
relations defined in [4]. The schema of a temporally ungrouped relation is a 3-tuple:

Ru = 〈A, K, D〉

where A ∪ 〈TIME〉 is the set of attributes in Ru, K is the key,

D : A ∪ 〈TIME〉 → Dom(A) ∪Dom(TIME)

is the value domain assignment. The tuple in Ru contains beside the normal at-
tributes a ∈ A, a t time attribute also, which expresses the valid time of the actual
tuple. In Ru every attribute has scalar value. This type of relations corresponds to
the tuple-versioned temporally relations. We assume the following conditions:

(a) the value of K is non-temporal,

(b) there is an integrity constraint to denote that ∀a ∈ A: a is non-temporal.

The schema of the temporally grouped relation Rg differs from Ru in the defi-
nition of D. The schema of a temporally grouped relation is a 3-tuple:

Rg = 〈A, K, D〉

where A is the set of attributes in Rg, K is the key and

D : A → Dom(A) ∪Dom(TIME)

is the value domain assignment. The attributes in Rg may contain a history.
The term of completeness can be summarised as follows [4]: given a data model

M and two query languages L1 and L2 for M , language L2 is complete with respect
to L1 if and only if

∀db ∈ M, ∀q ∈ L1,∃q′ ∈ L2 : q′(db) = q(db)

where db is a database in M .
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To compare two languages based on different data models, we should first find
a correspondence between the database objects of the two different models. The
mapping is defined between the structural components of the data models. We
denote this correspondence mapping function by

Ω : DS1 → DS2

where DSi is the corresponding structural component of the data models. Given
data models M1 = (DS1, QL1) and M2 = (DS2, QL2) we say that M2 is weakly
complete with respect to M1 if and only if there exist two mappings

Ω : DS1 → DS2 (which is a correspondence mapping)

and

Γ : QL1 → QL2

such that for all φ ∈ QL1 and for all instances D of structures DS1:

Ω(φ(D)) = Γ(φ)(Ω(D)).

If the Ω correspondence mapping is a one-to-one function then we say that M2 is
strongly complete with respect to M1. The two data models to be compared are the
proposed temporally grouped model and the temporally ungrouped model defined
in [4]. Please note that, as stated in [4], a temporally grouped model and a tem-
porally ungrouped model supplemented with group-ids are strongly equivalent. The
temporally ungrouped model and algebra to which we compare our approach, sat-
isfies the requirement for the existence of group-ids (we assume the existence of a
non-temporal key), so it is strongly equivalent to a temporally grouped model and
algebra. Thus, showing that our model is strongly complete with respect to the spe-
cific temporally ungrouped model effectively proves strong completeness with respect
to temporally grouped models, which are, in general, semantically and operationally
richer than temporally ungrouped ones.

We assume that the host model is based on the relational model with the rela-
tional algebra. Let RTG denote the set of grouped relations relevant to the problem
area. We will define Ω2 as a correspondence mapping function that converts any
r ∈ RTG into a temporally ungrouped relation. The set of ungrouped relations
RTU corresponding to RTG is defined as follows:

RTU = {Ω2(r) | r ∈ RTG}.

We assume that every history list in RTG is based on the chronon calendar, C0.
This is not a restriction as every history can be converted into this base calendar,
without any information loss. Another assumption is that we require the existence
of a non-temporal key for every r ∈ RTG.

Function Ω2 : RTG → RTU is defined as follows:
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(1) Ω2(r) = ∪Ω2(q), where q ∈ r, i.e. q is a tuple in r.

(2) let q = {k, a1, . . . , an, an+1, . . . , am} be a tuple in r, where k is the key and
a1, . . . , am the non-key attributes. Without loss of generality, we assume that
attributes a1, . . . , an are non-temporal, whereas attributes an+1, . . . , am are tem-
poral. Let Lifespan(q) denote the set of time positions in which at least one of
the temporal attributes has a not null value, and ai(t) denote the value of the
temporal attribute ai (n + 1 ≤ i ≤ m) at time position t. If attribute ai is not
defined for time position t, ai(t) = NULL. Then,

Ω2(q) = {(k, a1, . . . , an, an+1(t), . . . , am(t), t) | t ∈ Lifespan(q)}.

The Ω2 has an inverse mapping Ω1 that is defined as follows:

(1) Group the tuples by the key k and the non-temporal attributes.

(2) Create a history for every temporal attribute a ∈ REL(r) from the tuples con-
tained in the group.

(3) Create a new tuple in r for every group.

The Ω1 : RTU → RTG function is a correspondence mapping between RTU
and RTG. We can see that Ω1 function describes a one-to-one mapping between
the two sets.

Let AU and AG denote the two algebras to be compared where AU is based
on the RTU and AG is based on the RTG, and let Mu = (RTU, AU), Mg =
(RTG,AG). We prove the completeness by showing that for every operation φ ∈
AU , there exists a counterpart operation Γ(φ) ∈ AG such that for every D ∈ RTU
the result in Mu is equivalent with the result in Mg, i.e.:

Ω1(φ(D)) = Γ(φ)(Ω1(D)).

From the set of operators in AU defined in [4], we omit the recursive operator,
thus the considered AU contains the following operators:

(1) Selection: S = σF (R) iff St = σF (Rt),∀t and F is a first order non-temporal
formula.

(2) Projection: S = πA1,...,An(R) iff St = πA1,...,An(Rt),∀t.

(3) Cartesian product : S = R×Q iff St = Rt ×Qt,∀t.

(4) Set difference: S = R−Q iff St = Rt−Qt,∀t and R and Q are union-compatible.

(5) Union: S = R ∪Q iff St = Rt ∪Qt,∀t and R and Q are union-compatible.

The following conditions are met in AU :

(1) σ(∪ti) = ∪σ(ti), ti ∈ Ru,

(2) π(∪ti) = ∪π(ti), ti ∈ Ru.
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6.1 Selection

We first consider the Select operation. Let ru denote an arbitrary relation in RTU .
rg denotes the corresponding structure in RTG, i.e.

rg = Ω1(ru)

ru = Ω2(rg)

It follows from the definition of Ω that

ru = ∪qΩ2(q)

where q is a tuple in rg. Let the considered selection be

su = σF (ru).

It can be expressed in the following way:

su = σF (ru) = σF (∪qΩ2(q)) = ∪qσF (Ω2(q)).

Thus, if we can find a Γ(φ) for which

σF (Ω2(q)) = Ω2(Γ(σF )(q)) (c1)

Γ(σF )(∪q) = ∪Γ(σF )(q) (c2)

are met for any arbitrary q then the Γ(σF ) is the required counterpart of the selection.
The proof can be given in the following way:

Ω2(Γ(σF )(rg)) = Ω2(Γ(σF )(∪q)) = Ω2(∪Γ(σF )(q)) = ∪Ω2(Γ(σF )(q))

= ∪σF (Ω2(q)) = σF (∪(Ω2(q))) = σF (Ω2(∪q)) = σF (Ω2(rg)).

We can assume that the F formula does not contain ∨ and ∀ operators as they can
be replaced by other operators ¬,∧,∃. We will show that the counterpart operation
of σF (ru) can be given by

Γ(σF )(rg) = π′
P ′(σ′

F ′(rg))

where πP ′ and σ′
F ′ denote the projection and selection operators for the grouped

relations. In this case (c2) is satisfied as for both π′ and σ′
F ′ , the condition ∪θ(q) =

θ(∪q) is met. If F is atomic then F may be one of the following cases:

(1) F = [α]θβ, where α, β are non-temporal attributes or literal values in RTU , θ
is a binary or unary operator. In this case

(a) F ′ = Dom(σH(ap, [α] θ β)) 6= ∅ where ap is a temporal attribute.

(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(ap, [α] θ β))) if ai tem-
poral].
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(2) F = [α]θβ, where α denotes non-temporal attributes or literal values, β denotes
a temporal attribute in ru and θ is a binary or unary operator. In this case

(a) F ′ = Dom(σH(ap, [α] θ β)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(ap, [α] θ β))) if ai tem-

poral]

where ap is the temporal attribute of rg whose sub-attribute is the β attribute
of ru.

(3) F = [α]θβ, where α, β are temporal attributes in ru and θ is a binary operator.
In this case

(a) F ′ = Dom(σH(×H(ap, aq), α θ β)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(×H(ap, aq), α θ β))) if ai

temporal]

where ap is a temporal attribute of rg whose sub-attribute is the β attribute of
ru and aq is the temporal attribute of rg whose sub-attribute is the α attribute
of ru.

(4) F = αθt, where α is a temporal literal value, t denotes the time position and θ
is a binary operator. In this case

(a) F ′ = Dom(σH(ap, α θ t)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(ap, α θ t))) if ai temporal]

where ap is a temporal attribute of rg.

In the case of the non-atomic formulas, we should consider the ¬, ∧ and ∃ operators.

(1) F = ¬f , where f is a well-formed first-order formula. We assume that the f
formula is described by

(a) F ′ = Dom(σH(h, I)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(h, I))) if ai temporal]

where h is the corresponding history list expression and I the corresponding
condition. As we mentioned before, the Dom(h) is equal to the Lifespan(q)
for every history-based attribute in tuple q. Assuming a two-valued logic, the
true-value domain for ¬f is the complement of Dom(σH(h, I)). As ∀e ∈ h :
I(e) ∧ ¬I(e) = 0 and I(e) ∨ I(e) = 1, so

Dom(σH(h,¬I))

yields the required complement. Thus, the parameters of the counterpart oper-
ation for σ¬f are:
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(a) F ′ = Dom(σH(h,¬I)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(h,¬I))) if ai temporal].

Similar considerations are taken for the conjunction too.

(2) F = f1 ∧ f2 and the corresponding parameters for the tag formulas are:

(a) F ′ = Dom(σH(h1, I1)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(h1, I1))) if ai temporal]

and

(a) F ′ = Dom(σH(h2, I2)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(h2, I2))) if ai temporal]

then the parameters for f1 ∧ f2 are:

(a) F ′ = Dom(σH(h, I1 ∧ I2)) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(h, I1∧I2))) if ai temporal]

with h = ×H(h1, h2).

(3) The last operator is the ∃. The usage of this operator is somewhat different in
the algebra and in the calculus. The usage in the calculus is

∃x(f(x)).

In a safe algebra we consider only those cases when x is based on a finite set.
We assume that this finite set is a result of a query. Thus,

f(x) = f ′(x) ∧R(x)

where R denotes the result relation. This formula is usually implemented by the

∃(σf ′(R))

expression. As the existence operator is present in AG too, it can be proved that
the counterpart expression of a ∃(σf ′(R)) formula has the following parameter:

(a) F ′ = Dom(σH(h,∃(Γ(σf ′(R))))) 6= ∅
(b) P ′ = k, . . . , [ai if ai non-temporal | σH(ai, Dom(σH(h,∃(Γ(σf ′(R)))))) if ai

temporal]

where h is history list over the Lifespan of the tuple and containing all the
attributes referenced by Γ(σf ′(R)).

As every selection with atomic formula has an equivalent expression in AG and
we showed that after every step in building a non-atomic formula the result has a
counterpart in AG, every selection AU has an equivalent operation in AG.
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6.2 Project

The operation

πa1,...,an(ru)

eliminates some attributes from ru where each ai may be temporal or non-temporal
attribute. As the Ω2 mapping transfers every non-temporal attribute and every
temporal sub-attribute into attributes of ru, we can perform the projection in AG
similarly to the projection in AU . Thus the counterpart of πa1,...,an(ru) is:

π′
P ′(rg)

where

P ′ = k, . . . , [ai if ai non-temporal |πH(ap, ai) if ai temporal]

where ap is the attribute for the ai sub-attribute in rg.

6.3 Cartesian Product

The Cartesian product of two RTU relations R,Q is

S = R×Q = ∪tR(t)×Q(t) = ∪t ∪i,j (ri(t), qj(t), t)

where R(t), Q(t) denote the subsets belonging to the time position t and r, q are
tuples from R and Q. We can show that the counterpart of this operation in AG is
the normal Cartesian product, i.e.

Ω1(S) = Ω1(R)×′ Ω1(Q).

The product relation contains all possible pairs of tuples:

Ω2(Ω1(R)×′ Ω1(Q)) = Ω2(∪i,j(rgi, qgj)) = ∪t(∪i,j(ri(t), qj(t), t)) = S.

This shows the equivalence of the two expressions.

6.4 Union and Difference

As Ω(R) = ∪Ω(q), we can see that

Ω(R ∪Q) = Ω(R) ∪ Ω(Q),

Ω(R−Q) = Ω(R)− Ω(Q).

The set-based operators have the same meaning in both algebras:

Γ(∪) = ∪′,

Γ(−) = −′.
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We can see that every query expression in AU has an equivalent expression in AG.
Thus, the AG is complete with respect to AU .

We will demonstrate the operator equivalence rules through an example. The
TG table is as follows:

K A B

1 (<2>, 1) (<3>, 1)
(<->, 2) (<4>, 2)
(<3>, 3) (<6>, 3)

2 (<->, 1) (<5>, 1)
(<3>, 2) (<4>, 2)
(<->, 3) (<3>, 3)
(<2>, 4) (<4>, 4)

The corresponding TU = Ω2(TG) is as follows:

k a b t
1 2 3 1
1 - 4 2
1 3 6 3
2 - 5 1
2 3 4 2
2 - 3 3
2 2 4 4

We perform the σa IS NOT NULL ∧b>3(TU) operation. The result is:

k a b t
1 3 6 3
2 3 4 2
2 2 4 4

The corresponding operation on TG is formulated in the history algebra as
follows:

πH
P (σH

S (TG))

where

S = Dom(×H(A, B), a IS NOT NULL ∧ b > 3) 6= ∅)
P = k, σH(A, Dom(×H(A, B), a IS NOT NULL ∧ b > 3)),

σH(B, Dom(×H(A, B), a IS NOT NULL ∧ b > 3))
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The result of this query is

K A B

1 (<3>, 3) (<6>, 3)

2 (<3>, 2) (<4>, 2)
(<2>, 4) (<4>, 4)

The mapping of this TG′ table is the same as the required table, so the operation
expressions are equivalent for the tables given in the example.

k a b t
1 3 6 3
2 3 4 2
2 2 4 4

7 THE HOSPITAL EXAMPLE

To demonstrate the functionality of the proposed model we will use it for modelling
the temporal requirements of a hospital. During the hospitalisation period, each
patient receives a number of tests implying some temporal requirements. For this
example, we identify the following temporal needs:

(1) A constraint is defined on the patients’ temperature stating that at least one
value per day must be recorded for all days within the hospitalisation period.
An additional constraint is that the temperature should always be between two
values (lowerTempLimit, upperTempLimit). Each temperature measurement is
associated with an instant-type timestamp, denoting the time point that the
patient’s temperature was measured.

(2) The blood tests for a patient are associated with instant-type timestamps, in-
dicating the date on which the patient took the test; a constraint is defined for
blood tests stating that five days after the patient’s hospitalisation at least one
blood test must have been recorded. If this condition is not met, an alert should
be issued for the director of the hospital. Within each blood test, the patient’s
LDL and HDL cholesterol are measured, together with the number of blood
cells. For the values of LDL and HDL cholesterol, it must hold that HDL >

LDL.

(3) The treatment cost history for each patient is instant-timestamped, with each
(timestamp, cost) pair indicating that the cost for the patient’s treatment for
the period starting at the patient’s admission and ending at the designated
timestamp is cost. Since updates to the treatment cost incorporate additional
costs (e.g. costs for examination tests) to the overall cost, a constraint is defined
stating that the overall cost should increase with time. The initial cost for the
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patient’s treatment is set to a specified value, indicating the fees for the initial
medical examinations and the admission committee.

(4) Immediately after an operation, a patient’s temperature is expected to be high,
but it should progressively drop to normal levels. A history object gives the
maximum allowed temperature for each hour after the operation, and this his-
tory object is associated with the patient immediately after the operation, to
accommodate for severity and complication parameters. We would like to re-
trieve the patients whose temperature is abnormal, i.e. it exceeds the specified
value for any measurement performed on the patient.

In the following paragraphs we show how the proposed modelling constructs can be
used to fully satisfy the requirements of this example.

(1) Temperature measurements TM have the constraint constm that for each day
within the hospitalisation period HP at least one measurement must exist. The
hospitalisation period HP for a patient is an historical object, since it may
be updated either within a single hospitalisation (e.g. the patient’s stay is pro-
longed), or for multiple hospitalisations (the patient leaves the hospital and is
then readmitted). The current (most “up-to-date”) hospitalisation period for a
patient p will be denoted as hpp and can be defined as follows:

hpp = {x : (vtx, x) ∈ HP ∧ (∀(vti, xi) ∈ HP : max(vtx) ≥ max(vti))}.

The instants tmp at which the temperature of patient p is measured are given
by the expression:

tmp = {x : (vtx, x) ∈ HP}

whereas the days hdp during which patient p has stayed in the hospital are given
by the expression:

hdp = {x ∈ hpp : x < NOW}.

Using the definitions presented above, the constraint constm can be modelled
using the CMatch function:

CMatch(tmp, hdp) = true

This is a dynamic constraint since the definition of hdp depends on the NOW
quantity, which always evaluates to the current instant. This implies the need
for an implementation technique that will handle such conditions.

The additional requirement stating that for each temperature t,

lowerTempLimit ≤ upperTempLimit
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can be modelled using the CMatch function:

(CrossValUp(TM, temperature, upperTempLimit) = false) ∧

(CrossValUp(TM, - temperature, - lowerTempLimit) = false).

(2) Blood tests BT have a cardinality constraint as well, but this takes effect only
five days after the admission date. This constraint can be formally stated as:

|BT | ≥ 1 ∨ (NOW – ‘5 days’ < min(hpp)).

This is a dynamic constraint as well, since it contains the NOW quantity. The
constraint between the values of LDL and HDL cholesterol can be modelled
using the Vdomin function as follows:

Vdomin(BT, HDL, BT, LDL) =true.

(3) The treatment cost history TC has a cardinality constraint

|TC| ≥ 1

and a constraint that the overall cost should be always increasing. The latter
constraint can be modelled using the MonInc function:

MonInc(TC, cost) = true.

(4) The patient’s measured temperature should be dominated by the maximum
temperature specified after the operation. This can be tested using the Vdomin
function; however this function requires that both history lists are expressed in
the same calendar. This may be facilitated in various ways; in this example we
illustrate two approaches:

(a) Reducing both calendars to the chronon calendar, using the Normalise func-
tion.

(b) Using the M(H)(x) function, to convert the representation of the MaxTem-
perature history (which uses a granularity of hours) to the representation of
the Temperature history (which uses a granularity of minutes). This assumes
that the calendar of hours is based on the calendar of minutes, which is a
“normal” choice.

Moreover, we must ensure that only the patient’s measurements pertaining to
the designated period after the operation are taken into account and that measure-
ments not taken (either skipped or future ones) do not affect the result. Effectively
this corresponds to computing the intersection of the two calendars, or, equivalently,
filtering each calendar using the other one as a filter. Based on the above, the condi-
tion for selecting patients with abnormal temperature behaviour may be formulated
as follows:
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not(Vdomin(
filter(Normalise(Temperature), Dom(Normalise(MaxTemperature))),

temperature,
filter(Normalise(MaxTemperature), Dom(Normalise(Temperature))),

MaxTemperature))

if the Normalise function is used, or

not(Vdomin(
filter(Temperature, Dom(M(H)(MaxTemperature)), temperature,
filter(M(H)(MaxTemperature), Dom(Temperature)), MaxTemperature))

if the M(H)(x) function is used.
According to the above, a patient may be represented using the following com-

posite object:

Patient = Tuple<Id: String, Name: String,
Decision: Timestamped<Text, Instant, Day>,
HospitalisationPeriod: Historical<Period, Period, Day>,
Temperature: Historical: Historical<Float, Instant, Minute>,
MaxTemperature: Historical<Float, Instant, Hour>,
BloodTest: Historical<

Tuple<HDL: Float, LDL: Float, RedBloodCells: Integer>,
Instant, Day>,

Cost: Historical<Integer, Hour>>

We use the Tuple constructor to introduce a record-structured composite datum,
whereas the constructors Timestamped and Historical introduce single-valued and
version-based temporal data. Both constructors accept three parameters, being the
type of each history element, the timestamp type and timestamp granularity, respec-
tively. In this scheme, the Id field is the “primary key” of any patient collection, i.e.
there may not exist two distinct patients p1 and p2 such that p1.Id = p2.Id. Based
on this representation we will demonstrate the querying functionality of operators
presented in Sections 5.1 and 5.2:

(1) Project(BloodTest, <HDL, LDL>) may be used to construct a history list con-
taining only the cholesterol measurements.

(2) Join(Temperature, BloodTest) may be used to produce a combined history list
of temperature measurements and blood test results that were obtained within
the same day.

(3) Group(Temperature, DayCalendar, average) may be used to compute a history
list containing exactly one temperature value per day of hospitalisation. This
value will be the average of all temperature measurements that were performed
on the particular day.
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(4) GetCount(BloodTest) returns the number of blood tests performed on a specific
patient.

8 CONCLUSIONS

In this paper we have presented a a set oriented description of the calendars together
with a function oriented history concept with a history-algebra. The advantage of
this approach is that it allows calendar transformations with no information loss and
permits handling of calendars using standard set operators. The proposed model
is proved to be complete with respect to the reduced temporal algebra TA and
the expressive power of the proposed model has been demonstrated by a real-world
example.
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