
Enhancing BPEL scenarios with Dynamic Relevance-Based Exception
Handling

Kareliotis Christos
Phd Candidate,

Department of Informatics
and Telecommunications,

University of Athens
ckar@di.uoa.gr

Dr. Vassilakis Costas,
Assistant Professor,

Department of Computer
Science and Technology,

University of Peloponnese,
costas@uop.gr

Dr. Georgiadis Panayiotis,
Associate Professor,

Department of Informatics
and Telecommunicaions,

University of Athens,
georgiad@di.uoa.gr

Abstract

Web services have become the key technology in
business processes management. Business processes
can be self-contained or be composed from sub-
processes; the latter category is typically specified
using the Web Services Business Process Execution
Language (WS-BPEL) and executed by a Web Services
Orchestrator (WSO). During the execution however of
such a composite service, a number of faults stemming
from the distributed nature of the SOA architecture,
e.g. network or server failures may occur. WS-BPEL
includes provisions for exception handling, which can
be exploited for detecting such failures; once detected,
a failure can be resolved by invoking alternate web
service implementations that perform the same
business task as the failed one. However, the inclusion
of such provisions is a tedious assignment for the
business process designer, while additional effort
would be required to maintain the BPEL scenarios in
cases that some alternate WS implementations cease to
exist or new ones are introduced. In our research we
are developing a framework for automating handling
of that kind of exceptions. The proposed solution
employs a pre-processor that enhances BPEL
scenarios with code that detects failures, discovers
alternate WS implementations and invokes them, fully
thus resolving the exception. Alternate WS
implementation discovery is based on service
relevance, which takes into account both functional
and qualitative properties of web services.

Keywords: WS-Orchestration, Exception Handling,
BPEL enhancement, Dynamic Service Discovery,
Semantic Web, SWS, Service Relevance, Qualitative
Attributes.

1. Introduction

Web services are unanimously supported by major

software vendors of middleware technology [1]. The
main objective of web service technology and related
research [2] is to provide the means for enterprises to
do business with each other and provide joint services
to their customers under specified Quality of Service
(QoS) levels. BPM addresses how organizations can
identify, model, develop, deploy, and manage their
business process, including processes that involve IT
systems and human interaction. An important aspect of
business processes is the definition of a binding
agreement or contract between the two suppliers and
customers, specifying QoS items such as deadlines,
quality of products, and cost of services.

Business processes can be composed from sub-
processes that act as atomic processes in the execution
scenario. Composite services include two or more
distinct services and are frequently specified using the
Web Services Business Process Execution Language
(WS-BPEL) and executed by a Web Services
Orchestration (WSO) platform. If multiple, possibly
cross-organization, business processes need to
collaborate, their interaction can be modeled using the
Web Services Choreography Description Language
(WS-CDL).

Due to their distributed, heterogeneous and highly
volatile nature, services-based systems are inherently
vulnerable to exceptions: software, machine or
communication link failures may render certain sub-
process of composite services unavailable, precluding
thus the successful execution of the business process.
In addition to these transient failures, certain web
services may be permanently withdrawn and/or
alternatives to some services may be offered by
different providers. In these cases, a replacement
component should be identified and substituted for the

failed one. The replacement component should have
the “same skills” with the failed one i.e. to have same
functionality and QoS [3]. Note that the dynamic and
volatile nature of the execution environment implies
that it is infeasible to list all possible alternatives in the
BPEL execution scenario; instead, a dynamic approach
should be adopted, where service selection is
undertaken by a distinct module, which has access to a
registry listing all pertinent functional and qualitative
characteristics of available services, as illustrated in
Figure 1. Component replacement should respect
Service Level Agreement signed between the
consumer and the provider; moreover, when a service
selection succeeds a hot-swapper takes over in order to
replace at run-time the corrupted service with the
working one.

Figure 1. Replacing a failed component with one

having "same skills"

The Service Relevance and Replacement Framework
(SRRF) has been introduced in [4]; this framework is
responsible of resolving execution exceptions occurred
by a web service that becomes unavailable. Our
approach is based on replacement of this web service
as business process flow is performed. In this paper we
refine the SRRF architecture, presenting the
underpinnings that make such an approach possible to
implement and feasible to maintain. As we shall
present latter in this paper, no additional burdens are
placed on the BPEL designer, since failure-handling
code is automatically provided by the SRRF processor,
which takes as input already designed BPEL scenarios
and injects into them code for failure detection and hot-
swapping; an additional SRRF component, the
Alternate WS Locator Module is responsible for
finding services that are functionally equivalent to the
failed one, so as to be used in the hot-swapping
procedure.
The rest of the paper is organized as follows: section 2
presents related work, while section 3 briefly presents
the SOA and BPEL provisions used for our purposes.
Sections 4 and 5 present the overall architecture and
the specific components of the SRRF framework.
Finally, in section 6 conclusions are drawn and future
work is outlined.

2. Related Work

In orchestration, which is usually used in private
business processes, a central process (which can be
another web service) takes control of the involved web
services and coordinates the execution of different
operations on the web services involved in the
operation. The involved web services do not "know"
(and do not need to know) that they are involved in a
composition process and that they are taking part in a
higher-level business process. Only the central
coordinator of the orchestration is aware of this goal,
so the orchestration is centralized with explicit
definitions of operations and the order of invocation of
web services (see Figure 2).

Figure 2. Composition of web services with
orchestration

A BPEL process specifies the exact order in which
participating web services should be invoked, either
sequentially or in parallel. BPEL allows the expression
of conditional behaviors; for example, an invocation of
a web service can depend on the value of a previous
invocation. The designer can also create loops, declare
variables, copy and assign values, define fault
handlers, and so on. By combining all these constructs,
complex business processes can be specified in an
algorithmic manner.
A BPEL processor is responsible for executing the
BPEL scenario. There are many tools that provide
BPEL execution environments and UML-like BPEL
design environments such as ActiveBPEL [5], Oracle
BPEL Process Manager in Oracle Application Server
[6], Eclipse [7] and so forth.
While executing business processes, especially long-
running ones, exceptions may occur. BPEL provides
constructs to enable handling of exceptions (or faults,
as termed in BPEL specifications), and our approach
exploits exactly these constructs, thus no modification
to BPEL itself or BPEL designer and orchestrator tools
is needed. In order to better present the interaction
between the SRRF and BPEL orchestrator, we first
present briefly the fault handling capabilities of BPEL,
and afterwards present how we take advantage of them
to provide automatic replacement of some failed
service with a functionally equivalent one in BPEL

processes.
The BPEL orchestrator handles exceptions occurred in
the BPEL process runtime. As we shall see latter in this
paper the logical faults in the business process
execution are resolved through code explicitly
provided by the BPEL designer for this purpose.
Exceptions that occurred due to network, server or
other system-related problems (system faults) are
handled either by the failover and retry features of
BPEL or in an execution environment-dependent
fashion –e.g. while working with Oracle Process
Manager, by sending an exception message in a JMS
Dead Letter Queue. In our approach, we extend the
simple “failover and retry” system fault resolution
mechanisms of BPEL by introducing the dynamic
discovery of “functionally equivalent” web services
and using hot-swapping to substitute them for the
failed one. The proposed approach is based on
enhancing the BPEL scenario with code which
intercepts system faults and invokes the Alternate WS
Locator Module web service (an SRRF component).
 In the past few years, the issue of exception resolution
in composite web services has drawn the researchers’
attention. A noteworthy approach to exception
handling is the one undertaken by METEOR-S project
[8], [9] in cooperation with WSMX (Web Services
Execution Environment) [10]. WSMX contains the
discovery component, which undertakes the role of
locating the services that fulfill a specific user request.
This task is based on the WSMO conceptual
framework for discovery [11]. WSMO includes a
Selection component that applies different techniques
ranging from simple "always the first" to multi-criteria
selection of variants (e.g., web services non-functional
properties as reliability, security, etc.) and interactions
with the service requestor. Both in the METEOR-S and
other approaches, functional and non-functional
properties are represented using shared ontologies,
typically expressed using DAML+OIL and the latter
OWL-S. Such annotations enable the semantically-
based discovery of relevant web services and can
contribute towards the goal of locating services with
“same skills” [3] in order to replace a failed service in
the process flow.
The main difference of our research with the one
referenced above is that selection of replacements to
services that have failed within an execution plan is
made dynamically, instead of using pre-determined
exception resolution scenarios. Replacement service
selection is based on both functional equivalence
(performed through semantic matching) and qualitative
replaceability (considering non-functional attributes).
Furthermore, qualitative replaceability criteria may be
defined by the composite service invoker, to more
accurately specify which replacement service is the

most suitable one in the context of the current
execution.

3. SOA provisions for fault handling

3.1 Logical versus System Faults

Business processes specified in BPEL will interact
with partner processes through operation invocations
on web services. Web services usually communicate
over internet connections that are not highly reliable.
Web services can also raise faults due to logical and
execution errors. Therefore, BPEL business processes
need to handle faults appropriately and may also need
to signal faults themselves.
There are two kinds of faults that may occur in a BPEL
process: logical and system. The first category includes
those faults deliberately raised by constituent services
to indicate that some form of special handling is
required. For example, an InsufficientCredit exception
thrown by some CreditCardPayment service indicates
that payment through the credit card is impossible
because the credit limit has been exceeded; the BPEL
scenario designer may catch this fault type and either
end the scenario or attempt to use alternative payment
methods, such as direct withdrawal from a savings
account or cash payment, if applicable. In such cases,
there is no reason to try other implementations of the
CreditCardPayment service with the same inputs, since
they are bound to fail as well (the failure reason is
independent of the specific invocation).
The second category, namely system faults, includes
faults not directly raised by constituent services but
rather detected by the execution environment.
Examples of such faults are the inability to
communicate with the hosting server (server down or
network partitioning), system-generated responses
indicating that the service is not offered at the specific
address, parameter number or type mismatches (service
has been altered) and timeouts in receiving replies. If a
system fault occurs while executing a BPEL scenario,
it is possible to remedy the situation by invoking some
alternate implementation, since the fact that the
particular invocation failed does not imply that other
implementations will fail as well (the failure reason is
directly bound to the particular invocation).
To make this distinction more clear and illustrate the
SOA provisions for performing fault classification,
consider the example of the Book Purchase composite
web service that consists of a Book Rating Service and
a Credit Approval Service. The first one ranks the
offerings for the book that the client wants to purchase,
with the cheapest one coming first. The second one,
checks whether or not the client’s credit card has
sufficient credit for paying the book price.

In a WSDL description, logical faults can be specified
through the fault constructs, which may in turn include
any message elements further describing the error.
Listing 1 presents an excerpt of the
CreditApprovalService’s WSDL, in which the
exception deliberately raised by the service’s business
logic (InsufficientCredit) is defined (the pertinent
WSDL sections are included in boxes for reader
convenience). For more information on these WSDL
constructs, the interested reader is referred to [12].
As we shall show later in this paper, logical faults can
be encountered by the BPEL process scenario. BPEL
catches the fault and then sends a callback message to
the client, since the services that comprise the
composite web service have the appropriate code that
handles the logical errors specified in the WSDL of
Credit Card Approval service (Listing 1).

3.2 Fault handling in BPEL

The BPEL specification provides fault handling
capabilities via the faultHandler construct. BPEL
programmers are able to deal with different faults in
catch-and-handle fashion. Sometimes faults, especially
ones raised while executing an invoke activity, occur
due to network instability or configuration changes that
have not been reflected in the BPEL scenario. It would
be tedious for the programmer to handle these kind of
faults at the level of each and every invoke activity.
The BPEL specification provides the following
features to assist developer in dealing with these errors:
• failover: Allows multiple service implementations

to be configured for a given partnerLink. If a
retryable runtime fault (discussed in the following
section) occurs, the BPEL orchestrator will try
other implementations.

• retry: The BPEL orchestrator retries the
invocation, using a user-specified retry interval
and retry count.

Listing 2 shows how alternate implementations of a
web service can be specified, while
 illustrates the BPEL definitions needed in order to
perform the retry error handling features. We need to
add within the properties element of Book Rating
service all the services for the same functional
requirements, which in this case is the booking service.
If the first service fails, the alternate services declared
are tried. It suffices for the BPEL designer to specify
the address of the service description (WSDL). Note
however that whether alternate implementation
specifications are exploited as well as the specific way
in which fallback is performed is dependent on the
particular implementation of the BPEL orchestrator.

<definitions name=”CreditApprovalService”
targetNamespace=”http://myservices.com”
 Xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:tns=http://myservices.com”

Xmlns:plnk=”http://schemas.xmlsoap.org/ws/2003/05/partne
r-link/”
 xmlns:soap=http://schemas.xmlsoap.org/ws/wsdl/soap/>
 <types>
 <schema attributeFormDefault="qualified"
elementFormDefault="qualified"
 targetNamespace="http://myservices.com"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="ssn" type="int" />
 <element name="approval" type="string" />
 <element name="error" type="string" />
 </schema>
 </types>
 <message
name="CreditApprovalServiceResponseMessage">
 <part name="approval" element="tns:approval" />
 </message>
 <message name="CreditApprovalServiceFaultMessage">
 <part name="approval" element="tns:error" />
 </message>
 <message
name="CreditApprovalServiceRequestMessage">
 <part name="approval" element="tns:ssn" />
 </message>
 <portType name="CreditApprovalService">
 <operation name="process">
 <input
message="tns:CreditApprovalServiceRequestMessage" />
 <output message=

 "tns:CreditApprovalServiceResponseMessage" />
 <fault name="InsufficientCredit"
message="tns:CreditApprovalServiceFaultMessage" />
 </operation>
 </portType>
 <binding name="CreditApprovalServiceBinding"
type="tns:CreditApprovalService">
 <service name="CreditApprovalService">
 <plnk:partnerLinkType name="CreditApprovalService">
 <plnk:role name="CreditApprovalServiceProvider">
 <plnk:portType
name="tns:CreditApprovalService" />
 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

Listing 1. WSDL error type messages

<properties id="RatingService">
 <property name="wsdlLocation">
 http://localhost:8080/axis/services/RatingService1?wsdl
 http://localhost:8080/axis/services/RatingService2?wsdl
 </property>
</properties>

Listing 2. Providing alternate implementations for a
web service

There are, however, other runtime faults that the above
two mechanisms cannot handle, for example, if a
remote service has upgraded and the interface has
changed. This kind of fault is called ”binding fault” or
“system fault” and the usual strategies adopted by

BPEL tools for dealing with a binding fault is either to
delegate its handling to a human administrator via the
built-in Task Manager service, or to place the
exception in a dead letter queue via a JMS service [13].
Moreover, it is necessary for the BPELprocess
designer to continuously maintain the BPEL scenarios,
keeping the alternate service specifications up-to-
date.whenever new such services are introduced or
existing ones are withdrawn.

<properties id="RatingService">
 <property name="wsdlLocation">
http://localhost:8080/axis/servicesRatingService?wsdl</prope
rty>
 <property name="location">
http://localhost:2222/services/axis/RatingService
</property>
 <property name="retryCount">2</property>
 <property name="retryInterval">60</property>
</properties>

Listing 3. BPEL specification for automatic retry

Finally, as shown in Listing 3, execution faults not
handled by BPEL with failover or retry, are not
dynamically resolved. The Oracle BPEL Process
Manager deals with them by sending a message to JMS
Dead Letter queue.

4. SRRF Architecture

The overall architecture of the Service Relevance and
Replacement Framework is illustrated in Listing 3. The
client installation is complemented with an additional
module, namely the SRRF preprocessor. The SRRF
preprocessor accepts as input a BPEL scenario
(typically created by an expert using a BPEL editor)
describing a business process; The preprocessor
produces as output an SRRF-aware BPEL scenario,
which includes logic for detecting execution faults (e.g.
server unavailabilities or network problems) and
resolving them by locating and invoking service
implementations with “same capabilities” as the ones
that failed. The SRRF-aware BPEL scenario produced
by the preprocessor can then be submitted to any WS-
BPEL orchestrator (Oracle BPEL Process Manager, [7,
14], ActiveBPEL [5]).
During the execution of the SRRF-aware BPEL
scenario, it is possible that the invocation of some web
service fails, due to a system fault. In this case, the
code inserted by the SRRF preprocessor will trap the
fault and invoke the Alternate WS Locator module,
which is an integral part of SRRF. The Alternate WS
Locator module can be invoked as a regular web
service accepting as input a specification of the web
service that failed and possibly a replacement policy
(explained later in the paper). The result of the

Alternate WS Locator module is a list of web services
that have the “same capabilities” as the service that
failed. This result is returned to the SRRF-aware BPEL
scenario, which arranges for invoking the alternate
service implementations designated therein, until some
of them succeeds or the list is exhausted; in the latter
case, the BPEL scenario will fail since no further
remedial actions can be taken.
Internally, the Alternate Service Locator Module
comprises of four components, namely the Request
Interceptor, the Dynamic Discovery Module, the Task
Relevance Module and the Task Priority Module.
Further information about SRRF can be found in [5]
The Task Priority Module sorts the list according to the
policy specification (e.g. cheapest service first). The
result of this step is returned to the SRRF-aware BPEL
scenario, which may then proceed to the invocation of
the services designated in the reply in order to fully
resolve the original execution exception.
The SRRF architecture has been formulated to ensure
viability in its implementation, guarantee privacy in the
communication of the orchestrator with the web
service implementations and not raise any issues with
security enforcement mechanisms. In particular:
• the Alternate WS Locator Module is a completely

distinct module, which can either be installed and
maintained by the organization running the BPEL
orchestrator, or be offered by some third-party.
Small enterprises are not expected to develop and
maintain task ontologies since this is inherently a
resource-consuming operation, and will probably
thus resort to using publicly accessible alternate
WS Locators, provided either for free (e.g. built
and maintained with community contribution
with each WS provider registering own services)
or offered on a fee-basis in the form of a value-
added service. This is analogous to the operation
of telephone directories and yellow pages
services.

• when the Alternate WS Locator needs to be
invoked, only the name/WSDL location of the
failed WS is sent to the locator service; thus,
parameters passed to individual web services as
well as results are never disclosed outside the
organization running the orchestrator. Note that
parameters and results may include authentication
credentials, authorization information, or
sensitive and confidential data, thus non-
disclosure of these elements is of particular
importance.

• finally, hot-swapping arrangements are included
in the SRRF-aware BPEL scenario and performed
by the BPEL orchestrator. The alternative of
delegating hot-swapping to some entity outside
the organization -besides disclosure of the

parameters- might lead to failed invocations, due
to security arrangements: for instance, a WS
provider may employ IP-based authentication for
WS invocations, thus requests not directly
arriving from accredited partners may be rejected.

5. The SRRF modules

5.1 The SRRF preprocessor

The SRRF pre-processor analyzes its input BPEL
scenario to identify invocations of web services and
arranges for complementing each such invocation with
code that (a) intercepts system faults (b) invokes as
necessary the Alternate WS Locator to determine
possible substitutes for the failed service and (c)
invokes the substitute services until one of them
succeeds.
The first action thus taken by the SRRF pre-processor
is the syntactic analysis of the BPEL scenario to locate
WS invocations. Error-handling activities provided by
the scenario designer for the invocation are identified
as well, since these typically include elaborate
strategies for addressing runtime exceptions,
proficiently crafted by the BPEL designer. Thus any
exception resolution effort should first try the methods
designated by the BPEL designer and then resort to any
fallback strategies that will be supplemented by the
SRRF.
For each such invocation, the invoked service’s WSDL
is retrieved and analyzed to locate fault declarations
(c.f. section 3.1). The names of the faults declared
therein correspond to logical faults and should thus be
excluded from handling through alternate
implementation invocation.
Having collected the necessary information, the SRRF
pre-processor may proceed in the creation of the

SRRF-aware BPEL scenario. First, the pre-processor
adds the appropriate declaration of partnerLinkType in
BPEL for the new Alternate WS Service Locator
binding within partnerLinks construct (Listing 4). Thus
the Alternate WS Service Locator is now known to the
BPEL script and can be invoked by the fault handlers
(discussed afterwards).

<plnk:partnerLinkType name="WSLocator">
 <role name="AlternateService" />
 <portType name="AltSRV" />
</plnk:partnerLinkType>

Listing 4. Declaring the Alternate WS locator
service

Then, the preprocessor uses a scope construct to
provide the appropriate fault handlers for each service
invocation within the BPEL scenario. Scopes are
employed to enable the definition of different fault
handlers for different activities (or sets of activities
gathered under a common structured activity such as
<sequence> or <flow>). Additionally scopes may
include local variable declarations, local correlation
sets, compensation handlers, and event handlers,
capabilities that are useful for the formulation of the
pre-processor’s output. For more information on
scopes, the interested reader is referred to [15]. Fault
handler definition for the inserted scopes must be
performed in a way guaranteeing that:
• existing fault handlers provided by the scenario

designer are preserved and take precedence over
fallback operations.

• logical faults raised by the invoked web service are
not retried but rather propagated to the invoking
client.

• when system faults occur, the equivalent services
are located and invoked until one of them succeeds

BPEL
scenario

SRRF
Preprocessor

SRRF-aware
BPEL scenario

Web Services
Platform

WS-BPEL Orchestrator

WS-1 WS-n...

WS-1 alt WS-n alt 2

WS-2

WS-n alt 1

Web service providers

W
S W

SDL

Request
Interceptor

Dynamic
Discovery

Module

Task
ontology

UDDI
registry

Policy &
Task
List

Task
Relevance

Module

Task
Priority
Module

1
2

3

4

5

Al
te

rn
at

e
W

S
Lo

ca
to

r M
od

ul
e

C
lie

nt
 in

st
al

la
tio

n

Figure 4. Architecture of the Service Relevance and Replacement Framework

or the list is exhausted.
In order to achieve these goals, for each service
invocation an arrangement with two nested scope
constructs is formulated, as illustrated in listing 5. The
inner scope contains the invocation of the web service
together with the BPEL designer-provided fault
handlers. The outer scope includes fault handlers
generated by the preprocessor, which are created as
follows:
1. for each logical fault name declared in the WSDL

file, a separate catch construct is generated. The
code in the catch construct invokes a fault callback
in the invoking client (if one is provided) and
rethrows the fault, to terminate the BPEL scenario.

2. following all logical fault-specific handlers, a
catchAll handler is inserted, which is normally
entered in the event of a system fault. The code in
this handler invokes the alternate WS locator
module to retrieve the web services which can be
substituted for the failed one. Once the list is
retrieved, the fault handler attempts to invoke the
first alternate service specified therein. If the
attempt is successful or a logical fault is raised,
fault handling is assumed to have concluded;
otherwise, the next alternate service in the list is
tried.

Note that alternate service invocations within the
catchAll handler are again protected using a nested
scope construct with the necessary fault handlers (this
is not shown in Listing 5 for brevity reasons). This is
required since otherwise a fault (logical or system)
occurring in the invocation of an alternate service
would cause the BPEL scenario to fail.

5.2 The Alternate WS locator module

When a system fault occurs, the handlers generated by
the SRRF preprocessor invoke the alternate WS locator
module to retrieve a list of services which can be
substituted for the failed one. For a service to be
considered as possible substitute, it must be found to
have the same skills as the failed one. The same skills
relation between two services is determined by
comparing task attributes, which define both functional
and qualitative aspects of each service. For example,
we consider a task that receives as input a date of birth,
a nationality specification and a social security
number, and produces a birth certificate as output data.
Inputs and outputs are functional attributes of the task.
Note here that descriptions of inputs and outputs go
beyond the specifications employed in a WSDL
specification, since the latter are machine-oriented
types, whereas the former include higher-level
semantics.

<scope name="OuterScope">

 <scope name="InnerScope">
 <!-- service invocation -->
 <invoke partnerLink="..." />
 <!-- fault handlers written by the BPEL designer -->
 </scope>

<faultHandlers>
 <!-- fault handler generated by the pre-processor>
 <!-- for each LogicalFaultName listed in the service WSDL --
>
 <catch faultName="LogicalFaultName">
 <!-- Notify the invoking client -->
 <assign>
 <copy>
 <from expression=”string(‘LogicalFaultName)”>
 <to variable=”Fault” part=”error”>
 </copy>
 </assign>
 <invoke partnerLink="Client"
 portType="ClientCallbackPT"
 operation="ClientCallbackFault"
 inputVariable="Fault" />
 <!-- Rethrow the fault to terminate the scenario -->
 <throw faultName="LogicalFaultName"/>
 </catch>
 <!-- System faults enter the following handler -->
 <catchAll>
 <!-- Invoke alternate WS locator module to determine
alternate services that may be invoked -->
 <sequence>
 <assign>
 <copy>
 <from expression=
 "string(‘WSDLLocation of Service,
Other useful info - BPEL location…‘)" />
 <to variable="failedService" part="info" />
 </copy>
 </assign>
 <invoke partnerLink="WSLocator"
 portType="AltSRV"
 operation="AlternateService"
 inputVariable="failedService" />
 <!-- for each possible substitute identified, invoke the
service, and if the invocation is successful or a logical fault is
raised, the effort is concluded. If a system fault occurs, the
next possible substitute in the list is tried -->
 </sequence>
 </catchAll>
</faultHandlers>
</scope>

Listing 5. Using nested scope elements for exception
handling

To formally model these semantics, domain ontologies
or domain taxonomies can be employed; for example,
in the e-government domain, the ontology presented in
[16]. Adopting high-level semantics is indispensable,
since if machine-oriented types are employed,
comparison of functional attributes will be imprecise.
For instance, a task modelling an application for a
green card might accept as input an application date, a
nationality specification and a social security number
and produce a green card certificate as output. At
machine-type level, the birth certificate and the green
card task are indistinguishable since both the input
types (date, string, number) and the output type (byte

array) are identical; at a higher level of semantics
though, it can be easily determined that the tasks are
not functionally equivalent.
Task response time, availability, reliability, cost,
encryption, reputation and authentication are the
qualitative attributes of tasks, complementing the
functional attributes. Domain ontologies-taxonomies
(for high-level type semantics) along with the task
attributes constitute the task ontology which is used in
the process of selecting same skilled tasks.
Both functional and quantitative attributes of tasks are
stored in the task ontology, populated and maintained
by the organization offering the Alternate WS Locator
service. An RDF schema for this ontology can be
found in [4]. A necessary condition for two services to
be considered as having same skills is that all their
functional attributes must be identical. Quantitative
attributes, on the other hand, need not be identical: for
instance, a service having all attributes equal to those
of the failed one but smaller cost can be definitely
considered as a replacement candidate. In some cases,
even services with higher cost could be considered
(e.g. if the transaction should be completed anywise),
or some tradeoffs between services could be allowed
(e.g. a longer response time could be accepted if the
cost were lowered). In overall, for the comparison of
quantitative attributes the Alternate WS Locator
service should be supplied with a policy specifying the
rules that should apply to this process. The exact form
and contents of such a policy designation is currently
being elaborated on.

6. Conclusion and Future Work

In this paper we have presented an approach for
resolving exceptions in BPEL scenarios, by locating
and invoking web services having the same skills as the
failed ones. The code for intercepting faults and
invoking alternate web services is automatically
generated and injected into the BPEL scenario by a
preprocessor. Identification of same skilled web
services is based on both functional and qualitative
attributes, where functional attributes are required to be
equivalent, while the comparison between quantitative
attributes is policy-driven. The proposed approach
exploits the exception handling mechanisms of BPEL
and can thus be used with any available BPEL
orchestrator.
Our future work includes the optimization of the
algorithms used for determining “same skilled”
services, as well as the optimization of the hot-
swapping procedure, since the time needed to replace
the failed service and to reconstruct the BPEL process
is considerable. Further elaboration on the replacement
policy specifications and semantics is also required,

while and a thorough evaluation of the performance of
the overall system will be also conducted.

7. References

[1] F. Leymann, D. Roller,M.-T. Schmidt, “Web services and
business process management“, IBM Systems Journal, Vol
41, 198 No2, 2002
[2] Eric Newcomer, Greg Lomow, “Understanding SOA with
Web Services”, Addison-Wesley, Copyright 2005 Pearson
Education, Inc.
[3] Dellarocas, C. and M. Klein, "A knowledge-based
approach for handling exceptions in business processes",
Information Technology and Management 2000.
[4] Kareliotis Christos, Vassilakis Costas, Georgiadis
Panayiotis, “Towards Dynamic, Relevance-Driven Exception
Resolution in Composite Web Services”, 4th International
Workshop on SOA & Web Services Best Practices, Portland,
Oregon, USA at OOPSLA, 2006
[5] http://www.active-endpoints.com/active-bpel-engine-
overview.htm
[6] http://www.eclipse.org/bpel/
[7] http://www.oracle.com/technology/bpel/
[8] Kochut, K. J.: METEOR Model version 3. Athens, GA,
Large Scale Distributed Information Systems Lab,
Department of Computer Science, University of Georgia
(1999)
[9] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S.
Oundhakar, and J. Miller, METEOR-S WSDI: A Scalable
Infrastructure of Registries for Semantic Publication and
Discovery of Web services. Journal of Information
Technology and Management, Special Issue on Universal
Global Integration, Vol. 6, No. 1 (2005) 17-39
[10] E. Cimpian, M. Moran, E. Oren , T. Vitvar, , M.
Zaremba,: Overview and Scope of WSMX. Technical report,
WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.0/v0.2/
[11] C. Feier, D.Roman,, A. Polleres, J Domingue, M.
Stollberg, D. Fensel: Towards Intelligent Web Services: Web
Service Modeling Ontology, In Proc. of the International
Conf on Intelligent Computing (2005)
[12] http://www.w3.org/Submission/wsdl11soap12/#fault-
element
[13] Oracle BPEL Knowledge Base - Technical Note #007
Managing BPEL Run-time Exceptions,
http://www.oracle.com/technology/products/ias/bpel/htdocs/d
ev_support.html#notes
[14]http://www.oracle.com/technology/products/ias/bpel/inde
x.html
[15] M. Juric, Business Process Execution Language for Web
Services BPEL and BPEL4WS (2nd Edition), Packt
Publishing, 2006, ISBN-10: 1904811817
[16] DIP consortium: Data, Information and Process
Integration with Semantic Web Services, WP 9: Case Study
eGovernment, D9.3, e-Government ontology, with Annex1
eGovernment Ontology (OCML), Annex2 SeamlessUK
taxonomy (XML)

