
����������	
����������
�������
��������������
�
���������
��������

D. Theotokis, G.-D. Kapos, C. Vassilakis, A. Sotiropoulou, G. Gyftodimos
����������	
�	���
������

��������	
�	������
{dtheo,gdkapos,costas,anya,geogyf}@di.uoa.gr

��������
���������	�
������	�������	����	�
	��
���	���
����	�

���	������������	�����������	
�	����	����	����	�����
�
������	 ��������	 ���
������	 ���	 ��	 �������	 �	 �����

�	 �
��
����	 �
�������	 ��
��	 ���	 �
�������	 ���	 ����
�
��������	
�	 ���	 �����	 ������
� !	 ���	 ���	 ������
��
� �	 �
�	 ���������	 ���
�����	 �
��
����������
�
������	 ��������	"����	�
��������	���	��	�
�������	��
����������	 ������!	 ����	 �
��������	 �	 �����	
�!
�����������!	 �
�����
��	 ����	 ���	 ����������	 ��	 ����
���!	 ����	 �
����	 �����	 �
��������	 ������
���
������	 ���	 �� �	 �����	 ��	 ��
	 �������	 ��	 ���	 �����
���
������	��
��	�����	
�	 ���	 �����
�����	
�	 �	 ������!
�����������	��	������!	���	��	�������	�	
����	�
	��
���
���	�����
������	��	�	�
���	�����!	���	���
������	
�	��
�����	�����!	 ����	�	 ���	���
������	
�	 ��	 �����
�����!	 �
�������	 ���
���	 �	 ���#���	 ������	 ������
����������
�	�
�	����������	����
�	��
���
��

��
�����	������

Information systems consist of parts that co-operate in
order to fulfil the users’, system’s and contexts’
requirements. These requirements may change during the
lifetime of a system. New ones may emerge, old ones may
become obsolete or require modification in order to
conform with the evolving nature of the contexts they
describe. Called context-dependent variations, these
modifications are a desirable and, in many cases, a
necessary factor of information systems, particularly
when the parts of an information system are distributed.

For instance, consider an application where entities
representing people and their behavioural characteristics,
that is roles they play in time, are modelled. It is desirable
for a person entity to acquire or abandon several roles
dynamically, either in conjunction or independently of
each other, thus reflecting a person’s behaviour within
one or more contexts. It is therefore necessary to provide

and accommodate in a dynamic manner multiple facets of
an entity with their corresponding implementations.

In such a case, the following factors need to be taken
under consideration. Firstly, in what way new entities and
roles can be incrementally added in the application
spaces; secondly, how is the modification of existing
entities and roles achieved, so that they can be altered to
reflect new behavioural aspects. Thirdly, how the entities’
behaviour may be tailored, both at the end users’ side and
at the implementors’ side. In all cases the important issue
is to do so in a dynamic manner [14].

All along the evolution of software engineering
methodologies and programming languages, the main
concern has been the, so-called, separation of concerns
principle [5]. The basic idea underlying this principle is
the partition of the state space, so that it becomes possible
to put the focus on the resulting parts, individually. Once
partitioned, the separated pieces must somehow be
“connected” to each other, preferably by a “loose”
connection that maintains their autonomy as much as
possible. The high degree of cohesion combined with the
loose coupling of such pieces renders a system more
manageable, with respect to maintainability, modifiability
and extensibility, particularly when such a system is
distributed [10].

We consider system tailorability as the dynamic
accommodation of context-dependent behavioural
variations in an existing software system. Consequently,
during system development the possibility that
unanticipated behavioural variations relevant to a
system’s parts may occur must be taken into account.

In order to deliver the features presented above, we
adopt a scheme based on ��
�� and �
������� (described
in detail in the next section) and a rule-based flexible
service implementation mapping. Atoma, and molecules
facilitate dynamic role assignment and tailorability at the
end users’ side, whereas flexible service implementation
mapping provides the means for customisation at the
implementors’ side [12]. The overall architecture is
illustrated in the following figure:

Role Role Role

User User User

Facets (tailorability at user side)

Atoms/Molecules

Requests/Replies

Implementations

Implementation mapping (tailorability at implementor’s side)

Agent functionality

Figure 1. Overall architecture.

The elements of this figure are described in detail in the
following sections

��
���������
�������

Key to distributed tailorable information systems are
components, the building units of such systems. In
Theotokis et al. [16] components are defined as follows:
"An atom (the proposed term for components) is an
independent, standalone, customisable, executable
software unit of independent production, acquisition, and
deployment, that fulfils some specific requirements of a
given system." Given this definition, an atom can be
thought of as an agent and subsequently the
implementation of an IS is a multi-agent system, where
agents may be distributed. The combination of atoms, at
run-time, results in the formation of molecules, that is,
agent communities. Customisability and tailorability are
achieved in terms of establishing or abolishing
connections between agents and agent communities.
Roles, atoms and molecules are the fundamental
structures of a framework for component software, called
ATOMA, presented in [6,16, 17].

���
�����

A role is a structure that provides a new facet to an
entity, i.e. an atom, in terms of additional behaviour. This
means that when an atom obtains a new role, it
immediately attains the role’s context. Roles are not self-
existent entities. They can only exist if they are assigned
to atoms or other roles (a role can also be assigned to
another role, as a new sub-facet of the facet specified by
the parent role). An atom (or a role) may have more than
one roles of different types or even the same type
(qualified roles). Thus, underneath an atom there may
exist a whole tree structure of roles. Each of them
provides a facet of different context and varying level of
detail to the atom. Within this work, we approach the
concept of roles, as it is defined in the Component
Focused Role Model. A detailed description of the model
in question can be found in [6].

����
�����

From a conceptual perspective, an atom, as a loosely
coupled and highly cohesed executable software unit,
realises the behavioural aspects (functionality) of a
system's part. One could consider atoms and molecules as
being the objects in a UML collaboration diagram.
Although, the interactions between two objects are made
explicit when constructing the diagram, in the ATOMA
framework such "interactions" become explicit only when
atoms are connected to each other. The behavioural
aspects encapsulated by an atom are modelled in terms of
the mechanisms provided by the object-oriented
programming paradigm (i.e. classes, interfaces,
inheritance, etc.) [2,3,13].

In practice, an atom is a wrapper class that
encapsulates the behavioural aspects, of a part of the
system being modelled, as a component, according to the
aforementioned atom definition. A wrapper class realises
a wrapper function taking two objects as parameters and
returning a new one. The first object is the parameter for
the self reference. The second object is the parameter for
the super reference. The notion of a wrapper class is
depicted in figure 2, where the ⊕ operator is the left-
referential combination of records defined, as follows:

Figure 2.Wrapper Class

We assume that a class can be represented as a record
as follows: A record is a finite mapping from a set of
labels to a set of values. A record is denoted by

→

→

�� �#

�#
���

11

with labels xi and values vi. Labels not present in the list
are mapped to ⊥. The empty record where all labels are
mapped to ⊥ is denoted by []. Atoms communicate with
each other by exchanging messages. Modelling a system
in terms of atoms requires its separation into well defined
parts that describe a concrete behavioural aspect of the
system that can exist independently of, but needs to co-
operate with, the remaining parts.

The structure of an atom is presented in figure 3. The
thick thunder-like lines (a and g in figure 3) represent the

}{

⊥
⊥≠=

−∈
∈

=⊕

otherwise
m(x)|xdom(m)where

dom(m),dom(n)xifn(x)
dom(m)xifm(x)

n)(x)(m

virtual pins (virtual connection points) of an atom. An
atom in reality does not have any such pins. Instead, an
atom defines the abstract data types on which the methods
of the public interface of its constituent parts operate, as
well as the data types of the messages it receives (boxes 1
and 2). Based on this information an atom accepts or
rejects the messages it receives. Rejection of messages
can only take place when an atom becomes momentarily
unavailable due to behavioural changes.

An atom declares also an initially empty list of other
atoms that may eventually be the recipients of the atom’s
messages (box 3 in figure 3). The irregular shapes within
the atom represent the roles describing the behavioural
aspects of the atom (the self references of roles are passed
as parameters). There is no limit as to the number of roles
encompassed by an atom. The solid bi-directional lines (d
in figure 3) represent the interaction between an atom’s
constituent parts. Dotted lines (c and e in figure 3)
indicate the communication channels that exist between
the atom and its roles.

Assuming that atom X is being connected to atom Y,
atom Y is the receiver of X’s messages. Given a message
�� ����� ��� 	�
��� ���������� �������� �� ��� �������� �
(phase a). The dispatcher then searches inside the data
type and event type structures (boxes 1 and 2
respectively) to determine which of its constituent roles
will be the receiver of the message (phase b). Once the
recipient is determined, the message is forwarded to it
(phase c). The receiver evaluates the message while it is
possible to interact with other roles of the atom (phase d).
Once processing is completed the recipient dispatches the
outcome of the evaluation to the dispatcher (phase e),
which in turn determines the recipient(s) of this new
message by searching the list of receivers (phase f).
Finally, the message is dispatched to the recipient(s)
(phase g). Determining the recipients of the message is
again based on which atoms are able to process the data
type(s) encapsulated in the message. Consequently, an
atom’s virtual pins can be seen as channels of information
flow, entry and exit points. For reasons of efficiency
atoms under the ATOMA framework are multi-threaded
entities.

Figure 3: The structure of an atom

Within an atom the self and super references of its
constituent parts are bound during construction time, at
source code level. This is not however the case with the
contents of its list of recipients. An atom is added to

another atom’s list of recipients when the two of them are
connected together at run-time. An important point to
make is that apart from their original super reference
(their superclass) an atom’s constituent parts define yet
another super reference, namely wrapped-by, which is
bound at an atom’s instantiation time to the wrapper class,
that acts as their wrapper.

�� �
!��������

The composition of atoms at run-time results in the
construction of molecules: an aggregation of the
participating atoms. It must be noted that the term
customisation does not only refer to the static properties
of an atom, e.g. the value of one of its fields or the
background colour of its Graphical User Interface (GUI),
if such a GUI exists, but also takes under consideration its
behavioural aspects that may vary, that is the context-
dependent behavioural variations that may take place
during an atom's lifetime. Such variations are modelled as
roles. A role is an atom whose purpose is to define the
behavioural aspects of a context-dependent variation that
may take place for a given atom. The association between
atoms and roles is established via the variation-of
relationship that assigns roles to atoms.

Molecules are containers. Their constituent parts are
atom instances and/or other molecules. These are added to
a molecule once they are connected together during run-
time. The structure of a molecule is the same as that of an
atom. In fact, a molecule is an variation of an atom, the
variation being that a molecule’s contents and their
intercommunication as well as their communication with
other atoms and/or molecules is determined after a
molecule is generated at run-time. This is achieved
through reflection, that is the data and event types of its
constituent parts are acquired dynamically during run-
time and the structure underlying box 1 and 2 in figure 3
are filled. The list of recipients, as well as the messaging
and intercommunications mechanisms, are the same as
those of an atom. Consequently, a molecule displays the
same structure as that of an atom. The difference is that a
molecule’s dispatcher dispatches messages to the atoms
contained in the molecule.

 �
 ����
 ��	
 ��������
 ��������������
 ��	
�������������
��������

Atoms and molecules communicate by exchanging
messages once connections between them are established.
Such connections can occur at run-time only, by means of
scripting techniques (visual and script code based
scripting). The important point to notice is that atom and
molecule connectivity is not an ad-hoc process. There are
three rules governing how atoms and molecules are
connected.

 ���
!����"�
��	
	���
����
�������������

Given two atoms A and B, if any of the types of the
messages produced by atom A are the same as the types
of any of the messages accepted by atom B, then A and B
can be connected.

Since atoms are considered as executable units that
exhibit some behaviour, it follows that this behaviour
operates on some input data and produces some output
data. Given two atoms A and B, these can be connected to
each other if the data types of any of the output data
produced by atom A are the same as the data types of any
of the input data that atom B expects.

 ���
!����	
������"

Atoms may become connected by explicitly mapping
the implementation of some behavioural aspect (method)
of atom A to the implementation of some behavioural
aspect (method) of atom B. Mapping refers to the direct
association between two methods belonging to two
different atoms. What this really means is that a method
or behavioural aspect of an atom may invoke another
atom’s method without having to encompass such
information in either atom during their construction.
Method mapping is achieved by generating, at run-time,
what we call adjustment units, that is software units
similar to adapter classes, that provide the desired
association in terms of an invocation mechanism.

The order of these three rules is ascending by the
degree of abstraction they embody and is descending by
the degree of flexibility they provide. That is, messages’
compatibility provides a more abstract and thus generic
way to connect atoms, while method based connections is
far more flexible, but requires a thorough understanding
of an atom's behavioural aspects.

The development of applications that can adapt to their
evolving requirements, in other words that can
incorporate context-dependent behavioural variations,
requires a framework under which such applications may
be built in terms of atoms, molecules and roles. In this
section we provide the fundamental architectural elements
of the atoma framework. In order to establish the
requirements for this architecture we provide a more
detailed description of what an atom, molecule and role
is.

 � �
����
��	
��������
�������������

As already mentioned, there are three ways for
establishing such connections. At the moment let us
consider the ones that involve message and data type
compatibility. Under the object-oriented paradigm, two
objects communicate with each other by exchanging
messages. In standard object-oriented programming, an
object delegates a message to another object requesting

from the latter to perform some action. In doing so, the
message source (the object that delegates the message)
needs to know the recipients’ types at its creation time[7].
In class-based systems, in particular, this has to be
explicitly defined at class definition. This however, leaves
little or no room for dynamically altering a source's
recipients. An alternative to this approach is that of
broadcasting [4, 9, 15], were the message source
broadcasts, i.e. makes public for all other objects in the
object space, its message. Any interested recipients pick
this message up. The details on how broadcasting is
realised are beyond the scope of this discussion. The use
of this approach permits unanticipated recipients of a
message to acquire it, although they were never defined as
such during the construction of an object, at the expense
however of system performance. Broadcasting poses an
overhead on the system. Every object in the object space
of such a system, apart from performing its behavioural
aspects (intrinsic functionality), has to determine whether
a message relevant to its functionality has been
broadcasted.

In the atoma model we proposed a message passing
technique where messages are delivered to specific
recipients, the ones contained in an atom's list of
recipients, not known at design or development time.
Selective forwarding, as we call this technique, enables
atoms to exchange messages without having to have prior
knowledge of each other. In doing so atoms are divided
into two categories: Event listeners and Event sources.

Event listeners are capable of processing any messages
they may receive, when they do so, from the atoms they
are connected to, provided that the connections were
established in accordance to the rules presented above.
Event sources are responsible for generating messages
and forwarding them to their event listeners which are
established during run-time via connections. It may be the
case that an atom is both an event source and an event
listener at the same time. Under the atoma model, each
atom, when constructed, defines an empty list of event
listeners, that is message recipients. During its lifetime,
event listeners may be added or removed from this list
according to the required functionality and behavioural
variation that may occur.

Moreover, atoms are also characterised as observers
and observables. An observer is an atom that "monitors"
behavioural changes (e.g. addition of roles) performed on
an observable. When a modification on the behavioural
aspects of an observable takes place its observers are
notified. Embodied in the structure of an observer is a
mechanism through which it can “veto” a given
modification, in which case the modification does not
take place. Furthermore, if an alteration in an observer's
behavioural aspects occur its observables are notified. The
semantics of observers and observables in this context are
beyond the scope of this paper. What is important to note

though is that, unlike event listeners and sources, an atom
cannot be an observer of itself.

#�
$�������
�
���
��%!�
�������������

The realisation of tailorable applications is carried out
using the ATOMA development system. This system
provides the necessary architectural elements for creating,
loading, installing atoms and composing molecules and
applications. The architecture of this system is illustrated
in figure 4. There are two main parts in this architecture.
The registry, and the atom-molecule loader.

#���
���
��"�����
��	
�������
�������
���&��
������

The registry is the main component of the system. It
consists of three special purpose lookup tables (a1, a2,
a3), the adapter class module (a4), the script code parser
(a5) and finally the method pool used by the rule
processing system.

Figure 4 The ATOMA architecture

Special purpose lookup tables (SPLT) are used to store
information regarding the atoms and molecules an
application consists off, when the application is
constructed. The first lookup table, the atom and molecule
lookup table, stores the names and references to the
classes of the atoms and molecules used in the
application. This table’s key is the class’s name,
represented as a string.

The second lookup table, the instance lookup table,
contains all atom and molecule instances in the
application space. The key here is the class reference. The
instance of each class is stored in a skip list [11].

The third lookup table, the data and event type lookup
table, exhibits a more complex structure. As its name
implies it is used to store information about data and
event types supported by atoms and molecules in the
application space. This table’s key is again the reference
to the atom or molecule classes. Its contents are arrays of
two elements each holding a skip list. The first skip list is
used to store the data types and the other one the event
types.

#���
 �	�����
 �������
 ��	���
 ��	
 ������
 ��	�
������

The adapter classes module (ACM) contains all
adapter classes created by the mapping of methods. These
too are organised in terms of special purpose lookup
tables, so that efficient indexing and searching can be
achieved.

The script code parser’s (SCP) purpose is to validate
and evaluate script code, used to connect atoms and
molecules together. Script code is used to achieve “lazy”
evaluation and active/temporal functionality.

#� �
����'��������
���	��

The atom-molecule loader (AML) is the part of the
system responsible for loading into the registry the
bytecodes of the atoms and molecules. The bytecodes are
retrieved either from the local store or the network space
of the application. The latter realises some form of
mobility. The AML consists of three parts, the bytecode
loader (BL), the temporary area (TA) and the cache (CH).

(�
)��*����
���+���
��������������
������"

Agent-specific functionality is realised by means of
rule-based method invocation mechanism. Within each
registry there exists a container of methods. When the
functionality of an agent’s method changes, the original
method is not removed. Instead, the new method is placed
in the method container and a “hook” from the original
method to its replacement is made.

A services’ administrator provides the ability to offer
different facets of the IS-provided services, in order to
tailor these services to the specialised needs of user
groups or situations, facilitating thus end-user
customisation. The flexible service implementation
mapping, on the other hand, offers customisation facilities
at the side of the service provider. Through flexible
service implementation mapping, service implementors
may develop independently multiple code fragments that
realise the service, and service administrators may
designate which code fragment will be executed in reply
to each request, depending on the request context. The
realisations of the service may differ in the quality
delivered, in the processes they model etc.

For example, a trading company may provide the order
service to its customers, which is advertised as follows:
int order(Item item, int amount) raises
sales_denied, not_approved;

Through this service, the company’s customers may
order an amount of some item and be informed of the
final price. The company wants to deny any sales to
designated customers, while orders worth more than
$100.000 must be approved by the manager; thus these

three different cases of ordering, model different business
processes, that must be followed. The three different
business processes may be coded independently within
the following methods:
int deny_sales(void) raises sales_denied;
int order(Item item, int amount);
int order_with_approval(Employee authoriser,
Item item, int amount) raises not_approved;

The flexible service implementation mapping scheme
provides the means to map each call to the advertised (or
external) interface to the appropriate code fragment,
within the actual (or internal) interface. The separation of
an object’s interfaces resembles, in some aspects, to that
employed by Sena and composition filters [1]. In order to
determine which code fragment must be invoked, the
flexible service implementation mapping scheme employs
a rule-base and a rule processing system. Each rule has
the following form:
$
�%���&����!	��
 ��&����
�&��������!	�
���
�!
�#������&����
�&��������'
where:
1)
�%���&���� is the type of the receiver object.

Inheritance rules apply as usual , i.e. methods defined
for a supertype are eligible for invocation from
instances of its subtypes.

2) ��
 ��&����
�&�������� is comprised of the
method name, the names and types of the formal
parameters to the method invocation.

3) �
���
� is a Boolean expression which may
reference:
i) ���	
�%���	�����, i.e. the values of the receiving

object’s instance properties. For instance, the
algorithm used to compute an employee’s
payroll check may depend on the date of hiring.
The receiving object may also be asked to
execute some method that returns a result.
Normally, such a method should be “read-only”;
however, this is not mandatory, and if the
method has side effects, these are considered as
part of the object’s response to the invocation.
Any part of the object’s state or behavior may be
referenced using the notation ���������&����.

ii) ���	������	������	
�	���	��
���
�	����������.
Any such value may be referenced using the
name of the respective formal parameter,
included in the ��
 ��&����
�&��������. In
the example presented above, ��� and ��
���
may be used to reference the ordered item and
the ordered quantity, respectively.

iii) ����
�������	����, such as user credentials,
connection security level etc. Each such piece of
information may be obtained by supplying the
appropriate parameter to the ���&��
 function,
which is supported by the rule processing
system. For example, in a weather forecasting
system certain users may be allowed to use a
highly accurate -but computationally expensive-

method for weather forecasting only during the
night or when the machine is idle, whereas in all
other cases they are forced to use a less accurate
method that saves machine resources.

4) �#������&����
�&�������� is the signature of the
method that will actually be executed. Besides the
method name, this signature may include parameters
whose values are results of expressions. These
expressions are allowed to reference all information
available to the third part of the rule (the condition).

All method invocations are intercepted by the rule
processing system. Upon receiving a method invocation
request of the form object.method(param1, param2, ...),
the rule processing system scans the portion of the rule
database pertaining to the type of the object and its
supertypes to locate a rule for the specific method, having
a compatible invoked method signature. When such a rule
is located, the condition field of the rule is evaluated and,
if the result of the evaluation is “true”, the method
designated in the executed_method_signature rule field is
invoked. Failure to locate a rule for the specific method
having a compatible signature and a condition evaluating
to true results in an exception, that is forwarded to the
requesting object. During rule scanning, the rules defined
in subclasses are considered before superclass rules, so a
class may override the rules defined by its parents.
Additionally, the order in which the rules are listed is
significant, since rule processing stops when a matching
rule with a condition evaluating to true is found. Rule lists
pertaining to a specific method may contain a rule with a
true condition as their last element, in order to catch all
requests that will not be handled by the preceding rules.
Figure 55 presents a sample rule base for the order
method.
/* Cut off user "Scott" */
(company, order(Item item, int amount),

env_info("USER") = "Scott",
deny_sales());

/* Get the necessary permission for orders above
100000 */
(company, order(Item item, int amount),
item.price * amount > 100000,

order_with_approval(self.manager,
item, amount));

/* Pass through all other orders, using a "true"
condition */
(company, order(Item item, int amount), true,
order(item, amount));

Figure 5 – Sample rule base

The proposed scheme may be employed to implement
security (requests that shouldn’t be honoured may be
mapped to a method that raises an appropriate exception),
and user profiles (different code fragments may be
available to different users). Moreover, it eases service
development, since programmers may focus only on the
aspects related to the implementation of the services –
staying in line with the aspect-oriented programming
paradigm [8]– limits the need for recompilation only to
the cases that the modelled processes themselves change,

and facilitates service administration, given that changes
to code fragment selection policies require simply the
modification of the rule database.

,�
�����������
��	
�����
���&

The ATOMA architecture with the extensions described in
this work provides a flexible and effective approach
towards the tailorability of distributed software systems.
Roles, atoms, and molecules enable variations-oriented
programming, which in turn provides the means for
altering a system’s functionality at runtime. Considered as
agents, atoms and molecules, when connected together
form agent communities that allow a system to be
modelled as independent, yet co-operating parts. Agent
functionality can be customised through the use of rule
based method invocation.

Evolution of some part (e.g. some atoms) can result to
the evolution of the whole system (the molecule using
these atoms). Thus, it is an easy, flexible way for the
developer to produce new versions of the software.

The rule processing system is an area, which requires
further investigation so that method selection can be
achieved in a more intelligent way. In particular fuzzy
logic may be employed in order to enhance the rule
processing system’s capabilities. Mobility of atoms and
molecules is also an important matter that requires further
research. Finally, persistency needs also to be considered
in order to track the behavioural changes that a software
system undergoes.

-�
���������

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A.
Yonezawa, “Abstracting Objects Interactions Using
Composition Filters”, vol. 791 of ()*�, Springer-Verlag, R.
Guerraoui, O. Nierstrasz, and M. Riveill edition, 1993, chapter
Object-Based Distributed Processing, pp. 152-184.

[2] G. Booch, +�%����+������	 �����	 ���	 �������
��, The
Benjamin-Cummings Company, 1992.

[3] G. Booch, +�%����+������	 �������	 ���	 �����	 ���
�������
��, Addison-Wesley, 1994.

[4] G. F. Coulouris, and J. Dollimore!	 ���������	 �������
*
������	���	�����, Addison-Wesley, 1988.

[5] D. O. Dijkstra, and C. A. R. Hoare, ����������
,�
�������, Academic Press, London, 1972

[6] N. Dragios, G.-D. Kapos, S. Mantzouranis, D. Theotokis, G.
Gyftodimos, “Designing Tailorable Information Systems Using
a Component Focused Role Model”, in ,�
��	
�	���	-��	.������
*
��������	
�	 ���
������, D. I. Fotiadis, and S. D.
Nikolopoulos, The University of Ioannina, Ioannina, Greece,
August 1999, pp. III.20-III.28.
[7] A. Eliens!	 ,�������	
�	 +�%����+������	 �
������
�����
�����, Addison-Wesley, 1995.
[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-Oriented
Programming”, invited talk in M. Aksit, and S. Matsuoka, Proc.
of the //��	 0��
����	 *
��������	
�	 +�%����+������
,�
�������	 $0*++,	 �1-', vol. 1241 of LNCS, Springer-
Verlag, 1997, pp. 220-243.

[9] M. Mezini, “Supporting evolving objects without giving up
classes”, in Proc. of the /2��	"++(�	*
��������, B. Meyer, C.
Minings, and R. Duke, eds., Prentice-Hall, 1995, pp. 183-197.

[10] O. Nierstrasz, and D. Tsichritzis, +�%����+������	�
������
*
��
��
�, The Object Oriented Series, Prentice-Hall, 1995.

[11] W. Pugh, “Skip Lists: A Probabilistic Alternative to
Balanced Trees”, *
�������
��	
�	 ���	�*3, 33(6) pp. 668-
676, 1990.

[12] T. Reenskaug, E. P. Andersen, A. J. Berre, A. Hurlen, A.
Landmark, A. O. Lehne, E. Nordhagen, E. Neww-Ulsteth, G.
Oftedal, A. L. Skaar, and P. Stenslet, “OORASS: Seamless
Support for the Creation and Maintenance of Object-Oriented
Systems”, 4
�����	
�	 +�%����+������	 ,�
�������, October
1992.

[13] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen!	 +�%����+������	 3
������	 ���	 �����, Prentice-
Hall, 1991.

[14] C. Szyperski, *
��
����	 �
�������	 5��
��	 +�%����
+������	,�
�������, ACM Press – Addison-Wesley, 1998.

[15] A. S. Tanenbaum, 3
����	 +�������	 �������, Prentice-
Hall, 1992.

[16] D. Theotokis, G. Gyftodimos, and P. Georgiadis,
“ATOMS: A Methodology for Component Object Oriented
Software Development in the Education Context”, in Proc.
��������
���	 *
��������	
�	 +�%���	 +������	 ���
����
�
�������	 ++��	 16, Springer-Verlag, South Bank University,
London, UK, December 1996, pp. 226-242.

[17] D. Theotokis, G. Gyftodimos, P. Georgiadis, and G.
Philokyprou, “ATOMA: A Component Object-Oriented
Framework for Computer Based Learning”, in Proc. Of the 7��

��������
���	 *
��������	
�	 *
������	 5����	 (������	 �
������	 $*5(��	 �1-', De Montford University, Leicester, UK,
June 1997, pp. G5-G15

