
 1

 
 

 

 

 
 

 
 
 
 

 
The Architecture for Context Management of m-

Commerce Applications 
Technical Report TR-SSDBL-11-001 
Poulcheria Benou, Costas Vassilakis 

pbenou@ethnodata.gr, costas@uop.gr 
 
 
 
 
 

 

 

 

 

December 2011 

Tripoli, Greece 

 

University of Peloponnese 

Faculty of Science and technology 

Department of Computer Science and Technology 

Software and Database Systems Laboratory  



 2

Abstract 
This document describes the architectural design and the detailed module design of a context management system 
for m-commerce applications. 



 3

1 Introduction – Requirements and Overall Architecture 
In order to determine the context information needs of an m-commerce application a relevant methodology for 
extracting these needs should be employed. Benou and Vassilakis [1] have already proposed such a methodology. 
Since the context information of an m-commerce application has been identified (through Benou and Vassilakis’ 
methodology or any other suitable methodology) and properly modeled (through extended UML class diagrams), 
the next step for the realization of a context-aware application is the designing of the subsystem that will manage the 
context. 
The process of designing the system that will manage context information is common to all context-aware mobile 
commerce applications (CAMCA). Despite the fact that the context that different CAMCAs manage can be quite 
diverse, a well-defined context management architecture with standardized interfaces between its components and 
towards its clients, additionally being extensible in terms of (a) the context factors it is able to manage and (b) 
methods for context acquisition, may practically be used to support the context management requirements of any 
CAMCA. Such a standardized architecture will constitute a useful tool for speeding up the development of context-
aware applications [2] and minimizing the probability for errors or omissions; furthermore, it will increase the 
potential for reusability, since context components developed for some application will be able to be incorporated in 
other applications with few or no changes. 
 Both the international practice and the state-of-the-art [3][4][5] in the areas of pervasive and ubiquitous 
computing indicate that a context information management subsystem should be able to: 

 capture context information from its sources, which are physical and logical sensors, as well as the 
users. This includes the discovery of the context information sources within its vicinity. 

 store context information or parts of it, so that it can be exploited in subsequent situations. 
 interpret the context to a higher level of abstraction, which will be more meaningful (and useful) to 

the application that will use it. As an example, we can consider the interpretation of a (longitude, 
latitude) pair to a representation of the form “home,” “office” or “shopping mall”. 

 transit the context information to the application that will use it. Transition should be supported in two 
modes, i.e. with the initiative being either on the application (request/response or pull paradigm) or on 
the context management system (pub/sub or push paradigm), since both these modes are considered 
useful in CAMCAs [6]. 

 

m-commerce 
application 

 
 
 
            Context Wrapper 
 
 

Context Gatherer 

Context Interpreter 

Explicit Context Sensed Context 

Context 
Storage 

Context Distributor 

Context Discovery 
Agency 

Adaptation 
Manager 

Context Manager 
 

Fig 1 The Context Manager 
 
 In accordance with the above requirements, we will present below the design of the Context Manager 
module (Fig 1), which is further decomposed into the following components: i) the Context Gatherer, ii) the Context 
Interpreter, iii) the Context Storage, iv) the Context Distributor and iv) the Context Discovery Agency. The Context 
Gatherer is responsible for gathering the context information from the various sources of the application 
environment. The Context Interpreter is responsible for interpreting the context information to a higher level of 
abstraction. The Context Storage is responsible for storing the context information for subsequent use. The Context 
Distributor is responsible for distributing the context information to the applications that need it. The Context 
Discovery Agency is responsible for discovering the context information that can be made available to the interested 
parties. The interested parties are essentially the components responsible for performing adaptation within various 
information systems (frequently termed as adaptation managers); these components will use the information 
provided by the Context Manager to perform the adaptation of the application they provide. 
 In the following subsections we will describe in detail each of the functional components that comprise the 
Context Manager, as well as the interactions between these components and between the context manager and the 
adaptation manager component of the m-commerce applications requesting its services. 



 4

1.1 Context Wrappers: Gathering and Distributing Context 

The Context Gatherer is the subsystem which is responsible for collecting the context information from its 
sources. Context information may be gathered from physical sensors (e.g. location sensors such as GPS, 
identification sensors such as smartcard or fingerprint readers, motion sensors, etc) [7] or from logical sensors (e.g. 
APIs provided by the operating systems which allow the retrieval of information regarding the processing power, 
the available software and hardware components, the current time and so forth). Logical sensors include the 
software modules that retrieve information from the main application database, (e.g. which user is currently logged 
in, which has been his/her observed behavior up to now, etc). An additional source of context information is the 
user, who is the source of explicitly provided context information, (i.e. information directly entered by the user, such 
as gender, date of birth and so on; some of this information may, of course, be stored into the main application 
database and from then on extracted from there). Depending on the source of the context information (physical 
sensors, logical sensors or users), the mechanisms that will capture it will be designed. 

Physical sensors typically react to some environmental stimulus and generate numerical outputs which can be 
retrieved using low-level, device-specific protocols. Logical sensors are realized through software APIs, which the 
interested party may invoke to obtain the desired context information; logical sensors may read the context 
information values from a single physical sensor or combine values from multiple physical sensors [8]. Context 
information is made available from logical sensors either through a periodic monitoring process (polling) or through 
an available notification mechanism (e.g. an operating system API which provides notifications when additional 
storage space is made available). Finally, user information sensors - i.e. sensors delivering context information 
provided by the user (explicitly provided context information, e.g. information about the age or the likings of the 
user) - is not retrieved through sensing mechanisms, but is made available through graphical interfaces or through 
information integration procedures (e.g. parsing and processing of XML files, retrieval of information from smart 
cards and so forth). 

Direct incorporation of sensor-dependent code data into applications, usually necessitates low-level coding and 
leads to tightly-coupled applications with low portability and components with limited reusability [9]. Therefore, in 
order to decouple the applications from the details of the sensing process, we adopt the context wrapper approach, 
i.e. we introduce a software module that undertakes the responsibility of reading context information from its 
source, encapsulating the peculiarities and idiosyncrasies of the particular context source and making the context 
information available for exploitation through a standardized interface, common for all kinds of context information. 
Fig 2 illustrates the concept of the context wrapper through a UML diagram. Naturally, context wrappers will 
include source-dependent software, therefore a distinct context wrapper is required for each different context source; 
the presence of the context wrapper, however, enables us to handle introductions of new context sources or 
modifications of existing ones by correspondingly creating a new context wrapper or modifying the existing one, 
leaving the rest of the CAMCA and the context manager system intact. 

 
Context 
Source 

Context source-
specific interface/API 
for context retrieval 

Context 
Wrapper 

Context source-
independent interface/API 
for context management 

ContextSourceAPI ContextWrapperAPI 

 

Fig 2 A Context Wrapper 
 
As part of their internal operation, context wrappers may cache the last value obtained from the managed sensor 

in local memory to speed up the processing of the requests posed to them. 
Regarding their cooperation with other components, context wrappers provide the following functionalities: 

1. they allow external entities, (e.g. adaptation managers of CAMCAs), to retrieve the values produced by 
the context source they manage, thus implementing the pull paradigm. As a response to such queries, 
the wrapper may probe the context source for a new value, use the last one retrieved from the context 
source and cached, if it is deemed valid or even retrieve a value previously stored in the context store. 

2. they allow external entities to subscribe to notifications provided by the wrapper. These notifications 
allow interested applications to be informed about changes on the values of the context information 
sensed by some particular wrapper. They are sent whenever a subscriber-specified condition is met – 
e.g. for a wrapper managing a GPS device, a relevant condition could be “the location has changed by 
200m or more”. The subscription mechanism effectively implements the pub/sub paradigm. 

3. they store the values obtained in the context store for later usage. 
4. they offer reflection capabilities, through which a context wrapper may be queried regarding the context 

properties it “measures” (e.g. user identity or user location; in the following, this information will be 
termed), which metadata are pertinent to each specific property (e.g. if a wrapper “measures” 



 5

temperature, an indication whether temperature is measured in Centigrade or Fahrenheit degrees) and 
the list of the notifications it provides (e.g. for a wrapper measuring temperature, “temperature 
increased,” “temperature dropped,” “temperature changed,” “temperature above threshold” and so 
forth). 

5. they register themselves with the Context Information Discovery Agency. This registration allows the 
wrapper to be discovered by other software components (context information aggregation wrappers, 
adaptation managers, etc), as described in section 1.4, below. They also unregister themselves from the 
Context Information Discovery Agency when they cease their operation. 

6. they enable their detection from the Discovery Agency, thus allowing the Context Information 
Discovery Agency to populate its context provider repository. This may be practically implemented by 
having the Discovery Agency periodically broadcast requests for the specific service and automatically 
register to its repository those context wrappers that will respond to the broadcast. These broadcasts 
also allow the Context Information Discovery Agency to determine which wrappers remain operational 
and which have ceased functioning. 

According to the above list of offered functionalities, the context wrapper interface depicted in Fig 2 can be 
refined as shown in Fig 3.  
Essentially, context wrappers implement the context gatherer and the context distributor of the architecture 
depicted in Fig 1, with the code liaising with the context source interface (cf. Fig 2, Fig 3) implementing the 
context gatherer and the code realizing the context source-independent interface/API (and more specifically the 
ContextQuery and ContextNotification interfaces of Fig 3) being the context distributor. More specifically, the 
ContextQuery and ContextNotification interfaces of Fig 3 implement the distribution of context information to 
interested parties, while interfaces ContextReflection, ContextDiscoverable and ContextDataStoreCom facilitate 
aspects of the context distributor’s operation in the overall architecture. 

 

ContextSource Context 
Wrapper 

ContextSourceAPI 

ContextQuery 

ContextNotification 

ContextReflection 

ContextDiscoverable 

ContextDataStoreCom 

 

Fig 3 Refined Context Wrapper Interface 
 
According to the design specification presented above, in order to define a context wrapper, its designer should 

specify the following: 
i) its properties 
ii) the metadata of its properties 
iii) the notifications it provides 
iv) the mechanisms through which the wrapper will obtain the values from the context source 
v) the conditions under which the obtained values will be stored in the context store. This is needed to avoid 

over-populating the context store with unneeded values. For example, a GPS sensor may store the value in 
the context store, if it has changed more than 0.5 km from the last value stored in the context store or if no 
other value has been stored in the last hour. 

vi) the algorithm through which the wrapper will decide if an incoming query will be honored by using a value 
from the local cache, from the context store or a fresh value obtained from the context source. 

The details of the interfaces through which the wrappers communicate with external software entities (i.e. details 
on the request response dialogues and notification messages) are described in section 1.2 below. We must note here 
that the design presented above directly supports configurations where the context wrapper is not located on the 
same machine as the context source it manages. This is important for cases where some sensor is an embedded 
device with limited CPU power, communication capabilities or increased needs for energy preservation. In such 
cases, the sensor only needs to make available the data using a prominent mode (e.g. through an RS-232 connection 
or via Bluetooth), while the context wrapper will run on suitable hardware and undertake the tasks of context 
information gathering and distribution. 

A context wrapper provides information originating from a particular context source, i.e. physical or logical 
sensor, or the user. In many cases, however, the information required for an entity (person, location or object) is 
essentially an aggregation of the data elements provided by multiple context information wrappers, which may also 
need to be combined with additional information from the context information store. Therefore, it is necessary to 
introduce software components that implement this form of aggregation and which are called context information 
aggregators. Their functionality is similar to that of context wrappers, in the sense that they can respond to queries, 
produce notifications and store the context information they acquire. These software components can in turn query 
or subscribe to other context information wrappers so as to obtain the elements of context information they are 
interested in. Furthermore, they can retrieve information from the context information store, which may be used 



 6

together with the data obtained through queries or incoming notifications to produce aggregated context 
information; the latter will be made available to interested parties for further perusal. Context aggregators are similar 
to logical sensors, differing only in the aspect that context information is retrieved from context wrappers instead of 
context source-dependent APIs. 

1.2 The Context Information Distributor: Interface Details and Messages 
Exchanged 

The context distributor (i.e. the ContextQuery and ContextNotification interfaces of the context wrapper) 
undertakes the task of making the context information available to the interested parties (notably the adaptation 
managers of CACMs) in a standardized and uniform manner. More specifically, it allows for the distribution of the 
context information according to both the request-response and the event-triggered paradigm [10], corresponding to 
the “pull” and “push” context information distribution [6]. According to the request-response (pull) paradigm, 
context information is given as a response to explicit requests, while according to the event-triggered (push) 
paradigm, the context distributor arranges for sending context information to subscribers when certain events occur. 
The context information distributor is implemented through the query and notification mechanisms built in the 
context information wrappers and realized by the ContextQuery and ContextNotification interfaces, respectively, 
while, as noted above, these interfaces are complemented with interfaces ContextReflection, ContextDiscoverable 
and ContextDataStoreCom, with the latter three facilitate aspects of the context distributor’s operation in the overall 
architecture. The query mechanism serves the need for on-demand provision of context information, with the 
initiative being on the side of the interested application. The notification mechanism (also referred to as 
publish/subscribe) is suitable for repeating requests for context information where the interested application merely 
states the conditions under which it wishes to be notified of changes regarding the context information values. Under 
this scheme, the context consumer (i.e. the adaptation manager module of an m-commerce application) needs to be 
coded in a manner that can asynchronously receive and process incoming notification messages. Context 
information wrappers implement both the query and the notification mechanisms through interfaces that are uniform 
for all wrappers. Uniformity is a key requirement, since in this way applications may easily communicate with the 
wrappers, regardless of the wrapper implementation details. 

1.2.1 The ContextQuery interface 

The interface to the query mechanism has the form: 
queryContext(timeSpecificaion, attributeList) 

attributeList designates which attributes provided by the sensor are requested. This is required since context 
wrappers may be attached to context sources (physical sensors, logical sensors or users) that provide numerous 
attributes, only few of which are needed (e.g. a meteorological data sensor may provide information about 
temperature, humidity, etc., and we need only obtain information regarding temperature). Since timeliness is an 
important aspect of context information [11], the query mechanism allows the querying party to specify how “fresh” 
the context information is required to be through the timeSpecification designation. The available options for this 
designation are as follows: 

 QueryCurrent: this specification instructs the wrapper to obtain a fresh value from the context source and 
return it. In some cases, obtaining a fresh value may not be pertinent (e.g. the name/surname of a user is 
not bound to change) and then the wrapper simply returns an appropriate value (as in the Query Any 
case). 

 QueryRecent: this specification instructs the wrapper to either (a) obtain a fresh value from the context 
source and return it or (b) return the last value it has already read from the context source and cached into 
its local memory. The wrapper should thus implement an algorithm for deciding which the optimal choice 
is. 

 QueryAny: this specification instructs the wrapper to either (a) obtain a fresh value from the sensor and 
return it or (b) return the last value it has already read from the sensor and cached into its local memory 
or (c) retrieve a value from the context information store and return it. Similarly to the QueryRecent 
specification, the wrapper should implement an algorithm for deciding which the optimal choice is. 

In all types of requests described above, the client defines to the wrapper the attributes it requires and the 
wrapper returns an appropriate reply, such as the one depicted in Fig 4. This scheme decouples the querying 
mechanism from the context value obtainment implementation details, (e.g. interfacing to an RFID scanner, a floor 
sensor or a video image processor to detect the presence of an individual) and thus allows the application to be 
designed independently of the actual implementation of the sensing devices. 

 



 7

<ContextItem> 
 <ContextAttributeName>Temperature</ContextAttributeName> 
 <value>24.8</value> 
 <metadata> 
  <units>CelciusDegrees</units> 
  <lastSensedTime>2010-04-08 12:32:11 EET</lastSensedTime> 
 </metadata> 
</ContextItem> 

Fig 4 Reply to a queryContext request 

1.2.2 The ContextNotification interface 

The notification mechanism of context information wrappers is activated when the software component, which 
is interested in receiving notifications regarding a particular piece of context information, places a subscription for a 
notification produced by a context wrapper (flow 1 in Fig 5). Each such subscription is complemented with a 
notification condition which specifies the circumstances under which the particular subscriber wishes to receive 
notifications. Besides the current value of the context information element, the condition may refer to the previously 
observed value, useful for producing notifications when the change has exceeded a certain threshold (e.g. 
temperature – previousNotificationTemperature > 0.5); it may also refer to temporal information (e.g. produce a 
notification every hour, regardless of whether the value has changed) or to context information element metadata 
(e.g. check whether temperature is measured in Celsius or Fahrenheit degrees to set accordingly the notification 
threshold within the condition). 

 

Context Wrapper Context consumer 

1. Subscribe to notification 

2, 3, 4…n-1. Event notifications 

n. Unsubscribe from notification 
 

Fig 5. Publish/subscribe paradigm 

Every time the wrapper detects that a notification condition is satisfied, it will send a notification to the 
consumer that has placed the relevant subscription (flows 2 to n-1 in Fig 5). Finally, the context consumer may 
cancel its subscription through an unsubscribe request (flow n in Fig 5). 

A notification service is therefore fully defined through the following elements: (i) the notification service 
name, (ii) the attributes it monitors and their types and (iii) the elements that can be used to form notification 
conditions, as well as the types of these attributes. According to this description, a notification service which relates 
to the user location may be as shown in Fig 6. 

 
<Notification> 
 <name>LocationUpdateNotification</name> 
 <attributes> 
  <attribute name=”location” type=”String”/> 
  < attribute name=”identity” type=”integer”/> 
 </attributes > 
 <conditionElements> 
  <conditionElement name=”location” type=”String”/> 
  <conditionElement name=”previousNotificationLocation” type=”String”/> 
  <conditionElement name=”identity” type=”integer”/> 
  <conditionElement name=”currentTimestamp” type=”datetime”/> 
  <conditionElement name=”previousNotificationTimestamp” ”type=”datetime”/> 
 </conditionElements> 
</Notification> 

Fig 6 Example of location update notification 
 
The interface of a notification service implements the publish-subscribe paradigm through the following operations 
[12]: 

 subscribe(n): allows a client to subscribe to notification n. 
 unsubscribe(n): allows a client to unsubscribe from a notification n, to which it has already subscribed. 



 8

 advertise(n): publicizes the availability of a notification type n, making it available for subscription to 
interested parties. 

 unadvertise(n): revokes the publication of notification n’s availability, making it unavailable for further 
subscriptions. 

 sendNotification(n): checks the active subscriptions to notification n and sends the notification to all 
subscribers for which the respective condition evaluates to true. 

When an interested party wants to register as a subscriber to a context information wrapper, it must specify (i) 
its identity (ii) and its location, i.e. the address at which notifications should be sent, (iii) the notification to which it 
subscribes, (iv) the attributes and the respective metadata which it wants to receive with each notification, and (v) 
the condition under which a notification should be sent to it. A simple condition includes (a) the property or the 
metadata name, (b) the comparison operator, and (c) the value against which the property or the metadata name will 
be compared. A condition may be either a simple condition or a number of conditions combined through logical 
operators (AND/OR/NOT). A condition specification may also involve arithmetic expressions. An example of a 
notification subscription condition is listed below: 

 
<NotificationCondition> 
 <attribute name=”identity”/> 
 <operator comp=”=”/> 
 <value val=”14”/> <!-- user id for user to be notified --> 
</NotificationCondition> 
 
Fig 7. Notification condition example 

1.2.3 The ContextReflection interface 

The ContextReflection interface allows context wrappers to be queried regarding the capabilities they offer and 
more specifically: 

1. which context attributes it provides information on. For each attribute, a list of pertinent metadata is given, 
describing the attribute (e.g. a human-readable description), the value (e.g. units of measurement) and 
characteristics specific to the acquisition method (e.g. accuracy, period of value refreshment, minimum and 
maximum supported values). Context attributes may be queried through the queryContextAttributes method 
of the ContextReflection interface. 

2. which notifications it publishes. For each notification, the information depicted in Fig 6 is returned. 
Notifications may be queried through the queryNotifications of the ContextReflection interface.  

1.2.4 The ContextDataStoreCom interface 

The ContextDataStoreCom interface includes all provisions for communicating with the data store for 
storing values obtained by the context source for further perusal or for querying already stored values when the 
algorithm employed by the QueryAny method indicates that such a value should be returned. In more detail, the 
ContextDataStoreCom interface encompasses the following methods: 

1. storeContextItemValue, which accepts a context item value together with its respective metadata (cf. Fig 
4) and stores it in the data store. 

2. retrieveContextItemValue, which accepts a specification of the context item that needs to be retrieved 
(e.g. temperature, location etc) together with conditions on the attribute’s value and/or metadata that it 
must hold (similarly to the NotificationCondition example in Fig 7). The method formulates and places 
the respective request to the context data store and returns the context data store’s reply, which contains 
the attribute value and the respective metadata (cf. Fig 4). 

The ContextDataStoreCom interface also encompasses methods for discovering the context data store and 
connecting to it. These methods are used internally by the storeContextItemValue and retrieveContextItemValue 
methods. 

1.2.5 The ContextDiscoverable interface 

The ContextDiscoverable interface allows for the context wrapper to be dynamically discovered by the 
respective modules within the context management architecture, and thus be subsequently used by interested context 
consumers. The ContextDiscoverable interface encompasses the following methods: 

1. registerToDiscoveryAgency, which sends a message to the discovery agency announcing the existence of 
the context wrapper. The message contains information on the address at which the context wrapper can 
be reached and the attributes it provides. Further information on the attributes (the available metadata) 
and the notifications offered by the context wrapper may be obtained by any interested party by 
contacting the ContextReflection interface of the particular wrapper. The discovery agency should insert 



 9

the information into its repository and include information regarding the particular context wrapper into 
replies for queries requesting sources of the attributes that the context wrapper provides. The registration 
message may additionally contain information regarding the discovery characteristics of the context 
wrapper; for example, it may designate that a low frequency of respondToContextConsumer requests (see 
item 3, below) is desired to save energy and bandwidth. 

2. unregisterFromDiscoveryAgency, which sends a message to the discovery agency, announcing that the 
particular context wrapper ceases its operation. The discovery agency should withdraw the information 
regarding the particular context wrapper from its repository and refrain from including information 
regarding the context wrapper into subsequent replies. 

3. respondToContextConsumer, which supports the automated discovery of the context wrapper by the 
discovery agency. This method accepts and processes a null request (only the method name is specified) 
and responds to the message by a message containing only its address. With this information, the 
discovery agency may then examine if the context wrapper is already registered in its repository and if 
not, initiate a registration procedure through the requestRegistration method. The discovery agency may 
use the respondToContextConsumer request to detect context wrappers that have ceased their operation or 
are no longer reachable without having performed the respective unregistration. 

4. requestRegistration. This method is called by the discovery agency to trigger the execution of the 
registerToDiscoveryAgency method. This method will be invoked by the discovery agency when it 
receives a response from a context wrapper that is not recorded into its registry. 

1.3 The Context Interpreter 

The context interpreter is the module that produces context information of higher level of abstraction, as opposed 
to context wrappers which only produce low-level context data. More specifically, it collects “primitive” 
information elements from the context distributor and the data store and applies to them inference procedures 
according to rules that have been defined. For instance, it may retrieve the GPS coordinates corresponding to the 
user’s location to map it to a position on a specific road (e.g. “Motorway 5, 3rd kilometer”) or determine if the user’s 
location is “home,” “office” or “on the move.” The inference procedure may be performed using simple if/then rules 
or through more elaborate algorithms and techniques. The more widespread techniques involve ontology reasoning 
and machine learning. Ontology reasoning mainly comprises of producing new facts based on the already known 
facts and the information stored in the ontology in the form of classes, instances and relationships [13]. Machine 
learning techniques (e.g. Bayesian networks, decision trees) may be used for constructing static forecast models, 
which use low-level context information elements, in order to predict, for example, the user behaviour and 
automatically determine the user intention [14]. 

Context interpreters adhere to the context wrapper specifications. They consume context from context sources 
(context distributor and the data store) and make it available to other context consumers. However, since the input 
data is gathered from standardized sources, context interpreters’ implementation may be greatly simplified since 
there is no need to write context-source specific code; instead, data gathering may be specified declaratively by 
simply listing the context sources some pertinent parameters (e.g. whether data will be retrieved according to the 
push or pull paradigm, what the polling frequency for the pull paradigm is). 

According to the specification above, the full definition of a context interpreter includes (i) the information that 
will be interpreted (e.g. specific attributes) (ii) the context attributes that will be produced as output of the 
interpretation procedure and (iii) the procedure that will perform the interpretation and (iv) the notifications 
provided, if any. 

Context interpreters implement the ContextQuery, ContextNotification, ContextReflection, 
ContextDataStoreCom and ContextDiscoverable interfaces, thus being ContextDistributor themselves and providing 
the services described in section 1.4. 

1.4 The Context Information Discovery Agency 

The context information discovery agency implements facilities for storing information about the context 
providers (context information wrappers, context information aggregators, context information interpreters), for 
locating them and for informing interested parties of how they can be contacted Additionally, it offers information 
about itself in order to be detectable from context providers. This functionality is accessible through the following 
operations: 

 addDiscoveredContextObject: it adds information about a context information provider to the context 
information discovery agency’s registry. 

 registerContextProvider: this method intercepts the message sent by the registerToDiscoveryAgency 
operation of the context wrapper’s ContextDiscoverable interface. As a response to receiving this 
message, the registerContextProvider method invokes the queryContextAttributes and queryNotifications 
operations of the context wrapper’s ContextReflection Interface to gather information regarding the 



 10

attributes and notifications provided by the context wrapper and the pertinent metadata. When all this 
information has been collected, the addDiscoveredContextObject is invoked to insert the information in 
the agency’s repository. 

 removeDiscoveredContextObject: it removes the registered entry of a context information provider from 
the context information discovery agency’s registry. 

 unregisterContextProvider: this method intercepts the message sent by the 
unregisterFromDiscoveryAgency method of the context wrapper’s ContextDiscoverable interface. As a 
response to receiving this message, the unregisterContextProvider method invokes the 
removeDiscoveredContextObject operation to remove the specific context provider from the agency’s 
repository. 

 queryForDiscoveredContextObjects: it allows interested parties to query the context information 
discovery agency about information regarding the context information providers in its registry. 

 respondToContextProvider: this operation allows context information providers to locate the context 
information discovery agency (and subsequently register to it). 

When a context information provider becomes active, it searches for the context information discovery agency 
(by broadcasting a query for the respondToContextProvider service) and then registers to it by invoking the 
registerToDiscoveryAgency operation. The details sent with the registration are (i) its ID, (ii) the address it can be 
reached at (e.g. if the communication is TCP/IP socket-based, the address will include the IP address and the port 
number), (iii) the attributes it provides and the related metadata and (iv) the notification services it offers. The 
context information discovery agency can itself invoke the addDiscoveredContextObject operation to register 
context information providers that have been discovered through a broadcast for the respondToContextConsumer 
service, which is implemented by context information providers. 

When a context information provider terminates its operation, it should invoke the 
unregisterFromDiscoveryAgency operation of the context information discovery agency to remove itself from the 
context information discovery agency’s registry. Context information providers may however terminate their 
operation abruptly (e.g. due to battery failure) and in these cases they cannot contact the context information 
discovery agency to perform the registry removal operation. In order to maintain its registry in an up-to-date state, 
the context information discovery agency periodically checks for the availability of the registered agents by 
broadcasting a respondToContextConsumer request and automatically unregisters context information providers that 
fail to respond to it. 

 
Discovery 

Agency 

1. The context wrapper 
address is determined 2. A subscription to the 

context wrapper is placed

2. A subscription to the 
context wrapper is placed 

4. A notification is sent if the new 
context data satisfy the subscription 
conditions 

4. A notification is sent if the new 
context data satisfy the subscription 
conditions 

Context  
wrapper 

Communication 
Mechanism 

Sensor 

Context  
wrapper 

Communication 
Mechanism 

Sensor 

Communication
Mechanism 

ADAPTATION MANAGER 

Context 
Consumer 

3. New context 
data 

0. The context wrapper registers to the discovery
agent, either with own initiative or after being 
discovered (responds to a received probe) 

3. New context 
data 

 

Fig 8 Example of an adaptation manager subscribing to multiple context wrappers 



 11

 
Discovery 

Agency 

1. The context wrapper 
address is determined 

2. Query context
wrapper 

3. New context 
data 

0. The context wrapper registers to the discovery
agent, either with own initiative or after being 
discovered (responds to a received probe) 

Context 
wrapper 

Communication
Mechanism 

Sensor 

Communication
Mechanism 

ADAPTATION MANAGER 

Context 
Consumer 

4. Response from
context wrapper  

Fig 9 Example of an adaptation manager querying a context wrapper 
 
Finally, context information consumers (adaptation managers, context information aggregators and context 

information interpreters) may invoke the queryForDiscoveredContextObjects interface of the context information 
discovery agency to locate the context information providers which make available some particular context 
information. Fig 8 illustrates the complete message sequence from the point that an adaptation manager of a context 
consumer queries the discovery agency for a context wrapper’s address, up to the point that it receives the requested 
notifications (note that messages 3 and 4 may repeat multiple times). Fig 9 depicts the respective message sequence 
for the query/response paradigm (in this case, messages 2, 3 and 4 may be repeated multiple times). 

1.5 The Context Information Store 

The context information store allows for long-term storage of context information; this may be produced by any 
context information provider and once stored in the context information store may be later retrieved by context 
consumers. In this sense, the context information store plays the role of a buffer between context producers and 
context consumers, decoupling the context production from the context consumption time, while it also offers the 
potential to store large amounts of context data, which would be infeasible to do in other components. More 
specifically, the following uses are envisioned from the context information store: 

1. context producers (context wrappers, information aggregators and context information interpreters) may 
store the information they gather from the sensors in the context information store and context consumers 
(adaptation managers, context information aggregators and context information interpreters) may retrieve it 
from there, in case the context producer is unreachable when the context data from it is required. 

2. context wrappers may store the information they gather from the sensors in the context information store 
and retrieve it from there later to use it as a response to context queries, instead of querying the sensor 
again. This will be useful in a number of cases, such as the unavailability of the sensor (e.g. due to 
communication problems or battery failure), an attempt to implement a power-saving policy for the sensor, 
etc. 

3. the context information store is a natural place to store large amounts of context information for performing 
tasks such as user behavior mining in order to optimize the CAMCA and/or deliver new services to the 
users. 

The implementation details of the context information store, including storage format, policies for purging past 
information and query language (e.g. SQL or SPARQL) are beyond the scope of this paper. 

1.6 Implementation Issues 

Mobile commerce applications may be distinguished into three categories according to their architecture [15]. The 
first category includes applications that run exclusively on mobile devices and exchange data with a remote server 
(e.g. J2ME and Windows CE applications). The second category includes applications that run on some server and 
exchange only messages with the mobile device (typically SMS and MMS applications). The third category includes 
applications that run within a browser and exchange data with a remote server using a web protocol (HTTP, WAP, 
etc). According to Quah and Seet [16], the adaptation of these applications essentially comprises of taking into 
account the values of the context information elements to i) customize the data presented to the user (content 
adaptation) and/or ii) tailor the application’s presentation properties (presentation adaptation) and/or iii) make the 
suitable modification of the application’s functionality (functional adaptation). In order to achieve presentation and 
functional adaptation, context information must be available either when the application interface is generated (for 
browser-based applications or message-based applications) or at the location where the application is run (for 
“desktop-like” applications). 

Regarding the first category of m-commerce applications (i.e. applications that run exclusively on the mobile 
devices), the interface is created at application development time, while the application is run later on the mobile 
device. On the contrary, for applications falling into the second and third category (message-based and browser-



 12

based, respectively), both the application interface generation and the application logic are hosted at the remote 
server and performed at run-time. Taking into account, however, the resource limitations of current mobile devices, 
the full-scale management and exploitation of context information at mobile device-side seems infeasible. 
Especially if numerous context information elements need to be taken into account and advanced interpretation 
techniques are required; the need for constantly updating the volatile elements of context information also implies 
increased communication costs and battery consumption, which are two additional deterring factors for adopting the 
mobile device-side adaptation. Therefore, the architecture presented here is primarily suitable for mobile 
applications of the second and third categories, where the remote server is mainly responsible for most tasks and the 
mobile device serves mostly as a presentation/user interaction apparatus. The proposed architecture can also be 
employed in applications falling in the first m-commerce application category, provided that the context information 
elements managed are few and the adaptation tasks do not require extensive resources. 

It has to be noted here that context wrappers, which are responsible for capturing and delivering context 
information, may be hosted in mobile devices, in all three application categories. Thus, context information 
providers that supply information regarding the user (e.g. identity, location) or the mobile device (screen size, input 
capabilities etc) will naturally be accommodated in the mobile device. The mobile device may also host context 
information aggregators that capture data from context wrappers in its proximity (e.g. weather or traffic sensors). 
Context information from providers hosted in the mobile device will be transmitted to the central server, which will 
feed it accordingly to the relevant adaptation modules or deposit it in the context information store. 

2 References 
[1] Benou P., Vassilakis C. (2010) The Conceptual Model of Context for Mobile Commerce Applications. J 
ELECTRON COMM RES, Vol. 10, Vo. 2, pp. 130-165, Springer-Verlag. 
[2] Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S. (2005) Middleware for Distributed Context-
Aware Systems. On the Move to Meaningful Internet Systems, Springer, LNCS 3760, pp. 846-863. 
[3] Devaraju, A., Hoh S., Hartley M. (2007) A context gathering framework for context-aware mobile solutions .In 
Proceedings of the 4th international Conference on Mobile Technology, Applications, and Systems and the 1st 
international Symposium on Computer Human interaction in Mobile Technology, pp. 39-46. 
[4] Di Zheng, Jun Wang, Yan Jia, Wei-Hong Han, Peng Zou, (2007) Middleware Based Context Management for 
the Component-Based Pervasive Computing. LECT NOTES COMPUT SC, Vol. 4610/2007, pp. 71-81. 
[5] Kranenburg, H., Bargh, M.S., Iacob, S., Peddemors, A. (2006) A context management framework for supporting 
context-aware distributed applications. Communications Magazine IEEE, Vol. 44, Issue 8, pp. 67-74. 
[6] Ceri, S., Daniel, F., Matera, M. (2007) Model-Driven Development of context-aware web applications. ACM 
Transactions of Internet Technology, Vol. 7, No. 1. 
[7] Gellersen, H., Schmidt, A., Beigl, M. (2002) Multi-Sensor Context-Awareness in Mobile Devices and Smart 
Artifacts. ACM J MOB NETW APPL, Vol. 7, No. 5, pp. 341 –351. 
[8] Hoh, S., Devaraju, A., Wong, C. (2008) A Context Aware Framework for User Centered Services. 21st 
International Symposium Human Factors in Telecommunication. 
[9] Kaikkonen, A., Kallio, T., Kekäläinen, A., Kankainen, A., Cankar, E. (2005) Usability Testing of Mobile 
Applications: A Comparison between Laboratory and Field Testing. Journal of Usability Studies, Issue 1, Vol. 1, pp. 
4-16. 
[10] Biegel, G., Cahill, V. (2004) A framework for developing mobile, context-aware applications. Proceedings of 
the 2nd IEEE Conference on Pervasive Computing and Communication, pp.361–365. 
[11] Benou, P., Bitos, V. (2008) Developing Mobile Commerce Applications. J ELECTRON COMM ORGAN , 
Vol. 6, No.1, pp. 63-78. 
[12] Mühl, G., Fiege, L., Pietzuch, P. (2006) Distributed Event-Based Systems. Springer, 1st edition. 
[13] Ye, J., Coyle, L., Dobson, S., Nixon, P. (2007) Ontology – based models in pervasive computing systems. The 
Knowledge Engineering Review, Vol. Issue 4, pp. 315-347. 
[14] Frank, K., Rockl, M., Nadales, V., Robertson, P., Pfeifer, T. (2010) Comparison of exact static and dynamic 
Bayesian context inference methods for activity recognition. In Proceedings of Pervasive Computing and 
Communications Workshops, 2010 8th IEEE International Conference, pp. 189-195. 
 


