
An Active Ontology-based Blackboard Architecture for Web Service
Interoperability

George Lepouras1, Costas Vassilakis1, Anya Sotiropoulou1, Dimitrios Theotokis1, Akrivi Katifori2
1Department of Computer Science and Technology, University of Peloponnese

{gl, costas, anya, dtheo}@uop.gr

2Department of Informatics and Telecommunications, University of Athens
vivi@mm.di.uoa.gr

Abstract—Web services are functional, independent
components that can be called over the web to perform a task.
Web services are provided by organizations to enable others to
perform tasks the organization offers online. However, with an
ever increasing number of web services, finding the web service
that performs a certain task is not always easy. Furthermore,
adopting an end-user point of view what is needed is the actual
result and not the service per se. It is often the case that more
than one service have to be combined to produce the
anticipated outcome, e.g. in the case of life-events. To this end,
we propose an active, ontology-based blackboard architecture
that aims at tackling the problems inherent in dynamic
synthesis of composite web services and at facilitating user
interaction with complex e-government transactions.

Keywords: Web service synthesis, active blackboard
architecture; ontology-based architecture

1. INTRODUCTION
In the early days of the Web the new medium was mainly

used for disseminating information to users. Soon it was
realized that the new medium could be used for selling
products and services to users. Starting with books and cds
users can nowadays find and buy almost anything. The
private sector was the first to use the Web for reaching new
potential customers and the public sector followed.

Electronic government employs the Web as a medium that
can help citizens perform actions online without the need for
their physical presence. Electronic services can be used for
this purpose, with citizens accessing them from the ease of
their home. Although at first governments aimed at
implementing and getting online as many services as
possible, it was soon realized that this would not be enough
if electronic services were to be used as an effective means
for fighting bureaucracy. The reason for this was twofold:
• Citizens were often unaware of the availability of an

electronic service reverting to the traditional methods.
• More than one service had to be invoked in order to

complete a citizen’s task, invalidating the advantages
of performing actions online.

The first problem could be solved by creating central
locations (portals) for publicizing available electronic
services. The second problem can ideally be solved by
creating a new, ‘meta’-service that will invoke all necessary

services on behalf of the user. In such a case the intermediate
services that are being invoked have to have a known
method of interaction. This is the notion of a web service.

Although a web service is an electronic service the inverse
is not necessarily true. A Web service denotes a functional
component that has a published interface for invoking it in a
standardized manner. Web services do not have a graphical
user interface for users to interact with. A web service uses a
standardized interface to offer data and processes through
the web. If a user needs to access a web service a developer
can write a web page or a program that calls that service and
provides the front end.

A web service can be called from different applications,
each written in different programming languages and
residing in different operating environments. Basic
communication is established with protocols based on XML
as explained in the next section.

In order to be able to find a particular web service,
developers have to know its location. Although browsing
tools exist, finding the appropriate web service is not easy,
especially when the same service is provided by more than
one administration.

To this end we propose an architecture that enables
through the use of an active, ontology-based blackboard the
registration and interoperability between web services; the
architecture also provides facilities for the users to locate
and invoke these web services either individually or through
their dynamic composition.

The rest of the paper is structured as follows: the next
section describes web service composition issues, the third
section offers an overview of the proposed approach while
the fourth section elaborates on technical issues. The final
two sections illustrate the architecture with a usage scenario
and conclude with general considerations and future research
topics.

2. WEB SERVICE SYNTHESIS
In order to assemble a new service from other web

services the developer has to be able to find the appropriate
web services and to know how to invoke them. To this end
the UDDI [1] initiative was formed. UDDI is an open
industry initiative (sponsored by OASIS) enabling web
service providers to find each other and define how they
interact over the Internet. UDDI stands for Universal

mailto:@uop.gr
mailto:vivi@mm.di.uoa.gr

Description, Discovery, and Integration. UDDI describes a
registry where service providers can register themselves.
UDDI is XML-based, platform-independent standard for
web services and it is designed to enable SOAP messages to
request information from it.

SOAP [1] is a XML-based protocol originally designed by
IBM and Microsoft, which allows the exchange of messages
between software components. SOAP is an acronym of
Simple Object Access Protocol, one of the basic protocols
for web services. SOAP is extensible and although is usually
executed over HTTP, it can be run on top of all the Internet
Protocols.

Apart from being able to respond to SOAP messages,
UDDI provides access to WSDL documents. WSDL [1]
stands for Web Services Description Language, an XML
format describing Web services. WSDL is used to describe
the binding and the message format a web service can
understand.

When a program needs to interact with a Web Service it
can first communicate with UDDI to find the web service
and the proper way to interact with it. With the help of these
protocols and standards web services can be called by other
programs synthesizing a new service for end-users.

Although web services can be synthesized together in any
order and combination to produce a new service this is not
done automatically. In eGov [2], an IST-funded EU project,
simple services can be combined to form new composite
electronic services. This task is carried out by the developer
who has to find the required web services, get the set of all
input necessary for the execution of the services, arrange for
the flow of execution and of alternative execution patterns
depending on the output of the services, the linking between
the output and input of services to create the composite
service. Similar approaches are taken by technological
frameworks, such as [3].

In [4] the strictness in the specification of the execution
path is relaxed allowing the predetermined execution path to
be altered in run time. This work additionally introduces
consistency rules, which are able to verify that changes that
have occurred either in the composite service schema or in
some constituent service have rendered the composite
service to be invalid; however still human intervention is
required to remedy these cases.

Sirin et al [5] describe a prototype which employs a semi-
automatic process to guide developers in the composition of
a new service. The prototype allows the developer to choose
from possible matches at each step of the composition
process, taking advantage of the semantic information
available.

All the approaches previously described do not tackle
efficiently the problem of dynamically composing a web
service. To be able to dynamically synthesize a composite
service from existing web services it is of the essence to
facilitate the process of finding a web service among many
possible alternatives. Klein and Bernstein [6] propose the
use of a process taxonomy approach, in contrast to ‘frame-

based’ approaches for ‘matchmaking’ between tasks and on-
line services. According to this, service retrieval can be
improved without sacrificing precision and increasing the
computational complexity. However, this approach helps
retrieve potentially 'right' web services it still cannot be
employed in the automatic composition of services from the
web services retrieved.

In this paper, we propose an ontology-based approach
employing an active blackboard which can facilitate the
automatic composition of services, based on the input and
output parameters of the web services. Ontologies offer on
the one hand high-level semantics, allowing humans to
easily search and manipulate the modeled information, and
on the other hand formalism and standardization, which
facilitate mechanical processing. In this respect, ontologies
can serve well all tasks related to automatic synthesis of
composite services.

3. OVERVIEW OF THE ACTIVE
BLACKBOARD ARCHITECTURE

The notion of a blackboard [7] [8] is similar to that of a
real world blackboard. On a blackboard everyone can write
something and other people will be able to access that
information. Similarly on an electronic service blackboard
service providers can register their services. Once a service
is registered it can be made available to service consumers.
Data passed to services as input parameters or results
produced by the services are also written on the blackboard
for future reference and use. In contrast to a real blackboard
its electronic counterpart can be active. In a real-world
blackboard when a user writes something other users have to
look at it (possibly by polling) to view that new information
is available. In an electronic blackboard, users can be
automatically notified of new information depending on
their preferences. Therefore, by registering a web service
with the blackboard other users can be notified of the
existence of a new service; modifications to the data may
also trigger activities on behalf of the blackboard, e.g. the
invocation of some service. Consequently, a web service can
be invoked either directly or indirectly. A service is invoked
directly if a consumer asks explicitly for it; indirect
execution occurs when a service consumer requests service
A and this needs an input produced by service B, or when
the effects of the execution of some service A necessitate the
execution of service B (e.g. the announcement of move
service triggers the incorporation of the change to each PA
database).

In order to implement the concept of the active
blackboard, an architecture is required that will enable the
registration of web services by service providers and their
invocation by users. Fundamental in this architecture is the
ability to correctly categorize web services to allow the
effortless retrieval of the correct service. This can be
achieved by employing an ontology that will cover both
services and data managed by them. Figure 1 depicts the
proposed architecture of the active, ontology-based

blackboard.

Figure 1 – The active blackboard, ontology-based

architecture

As depicted in the figure, the ontology is central to this

architecture, since it supports all the other modules. An
ontology can be considered to be a simplified view of a
domain containing the objects, concepts and other entities
that exist in this domain along with the relations that connect
them together.

A more mathematical definition can be the following [9]:
An ontology is a triple O = (C, R, isa) defined as follows:
1. C = {c1, c2,…, cn} is a set of concepts, where each

concept ci refers to a set of real world objects (concept
instances),

2. R = {r1, r2,…, rm} is a set of binary typed roles between
concepts.

3. isa is a set of inheritance relationships defined between
concepts. Inheritance relationships carry subset semantics
and define a partial order over concepts.

The ontology models the basic concepts related to
services as viewed from a user perspective. In such a view
the domain is modeled starting with the public
administration, its ministries, local authorities, their
departments and agencies, the services provided by them to
the citizens or business, their inputs and outputs. Central
concepts in this ontology are the services provided to the
users, the organizations that provide services to users and the
data passed to parameters or produced by them as results.
This abstract model is instantiated for each web service
producer. From an architectural point of view an ontology
registrar is responsible for managing the service and data
ontology. This component allows the categorization of
services, their retrieval and provides all the information
necessary for their interoperability.

When a service producer wants to provide a new service
the service registrar will link the semantic representation of
the service with the actual implementation of the service.
The service producer will indicate which abstract service
type the web service implements, data required for its

execution and how the service can be called.
Once a service is registered it can be executed. The

service execution module enables service consumers (end
users or other web services) to request the service. The
service consumer will provide the appropriate data needed
for the execution of the service. The blackboard will
-transparently to the end-user- invoke the service along with
any other services that produce intermediate results or
transformations upon them and will return the results to the
user.

Transformations are generally simple functions that are
applied to the data, such as database lookups and filling-in of
default values, e.g. mapping social security numbers to VAT
registration numbers or pre-pending a country prefix to a
license plate no to turn a “national” vehicle identification to
an international one. Transformation definitions are provided
through the transformation registrar and are automatically
used by the service execution module, when appropriate.

4. TECHNICAL CONSIDERATIONS
In this section we will provide a technical description of

the design of the proposed system. The description is
focused more on the user's side, the user being either the
developer registering the service, maintaining the ontology,
and transformations or the user being the end-user of the
composite service.

A. Ontology Registration
The basis of the architecture is the ontology registrar and

the underlying ontology. The ontology describes the public
administration agencies, the services and data managed by
them and the relationships between all these concepts.
Possible relationships between concepts include is-a, is-
instance-of, has-a, offered-by, managed-by, consists-of,
produced-by, implementation-of and is-related-to. Is-a and
is-instance-of are probably the simplest relationship. For
example, Ministry of Finance is-instance-of Ministry is-a
Public Administration. Tax Certificate is-instance-of
Document is-a Data is managed-by Ministry of Finance. It
has to be noted that before new web services are registered
through the service registrar as implementations of existing
ontology service instances, data managed by administrations
and their instances consumed and/or produced by the
respective web services have to be already modeled in the
ontology.

The offered-by relationship links a service instance with
an organization concept or instance, and dictates which
organization or class of organizations has the authority to
offer the specific kind of service. A service instance should
not be confused with the actual implementation of the
service. Since the same service can be offered by different
public administrations when a new web service is registered
relations of type implementation-of are created as described
in more detail in the Service Registration subsection.
Although managed-by and offered-by seem to be identical
this is not the case. A public administration can be the

administratively responsible for a service, but it may decide
that the service can be provided by other administrations as
well (e.g. the ministry of Internal affairs is administratively
responsible for the “Birth Certificate” document, but permits
municipalities offer the birth certificate issuance service to
their citizens).

Figures 2, 3 and 4 depict part of the service and data
ontology, as modeled using the KAON tool [10]. These are
translated versions of the original ontology in order to be
accessible to an international audience. The rectangle nodes
are concepts, which are used to model classes of objects,
while the rounded rectangle nodes are instances of concepts,
which map to individual objects. For clarity reasons figures
show only the is-a relationships between concepts and is-
instance-of relationships between concepts and instances.

Figure 2 – Overall view of the ontology with part of the

service branch extended

Figure 3 – Part of the organization branch

Figure 4 – Part of the data branch

Each node in the ontology has a number of attributes that

describe various aspects of it. An instance of a data sub-
concept has attributes dictating the valid format(s) for this
element, a list of allowable values (e.g. the “Day of Week”
node will list the days from Sunday to Saturday), minimum
and maximum bounds (or more complex validation checks),
the confidentiality level of the datum (e.g. publicly known
vs. strictly personal), multilingual labels for its description
etc. Attributes for organizations include descriptive data (e.g.
physical location, phone and fax numbers) and identification
credentials (user names and passwords, IP addresses, SSL
keys etc) which are used by the registrar services to validate
that connecting entities as acting on behalf of the specific
organization. Finally, attributes for sub-concepts and
instances of the “Service” concept include the confidentiality
level, a time to live – i.e. for how long after its issuance by
the respective service its result remains valid and an
indication whether the service result is reusable, that is
whether results of the specific service may be retained and
used as input in a subsequent service invocation. The latter
two properties can be exploited by caching mechanisms to
improve execution time and reduce server load, by storing
service results and reusing them instead of running the
services anew.

To model the output of services the produced-by
relationship type is used to link a single service to the data it
produces. As discussed earlier this can be a value or a
document.

B. Service Registration
When a developer creates a new web service the first step

that has to be taken is its registration. In order to register the
web service the developer has to provide the following
information:

 First the developer selects the public administration,
which provides the service to the public, the service that is
being implemented, the input and output data, the invocation
method and the constraints that may govern the execution of
the web service.

This process is supported by the ontology registrar, which
holds not only the model of the domain but also the
instantiation of the services and the necessary information
for calling the web services. Input and output data can be
simple values or documents necessitating the distinction
between them. The system transparently to the user creates
instances of the "Data" concept and relates them to the input
and output data of the web service. In cases where there exist
alternative data that can be given as input to the web service,
a new container concept is instantiated as a child of the
"Data" concept, and the alternative input types are linked
under it. Then, the service is linked with the container
concept, to denote that any of its children can be used as
input to the service. For example, if the execution of a web
service requires either the provision of the social security
number or the passport number, the container concept
'Identification Data' is created, which then is linked to social
security number and passport number. The web service is

then linked to the 'Identification Data' container, rather than
the individual instances, denoting that any of the data inputs
can be used. Since the data used and produced by each
administration are entered in the ontology before any
services manipulating them are defined, the developer will
select the input and output data types from the list of the
existing types, securing thus the consistency of data types
between different services.

Constraints for the execution of the web service in the
values of the input data can also be set to limit the range of
acceptable values. These constraints are set as attributes to
the service implementations and can also dictate the
conditions under which the service can be executed. For
example, if a web service is offered by more than one public
administration, each for a different user group, by setting a
constraint such as Zip_code =”165*” the user group that can
execute the service can be limited to those with the specified
range of zip codes. Finally, the invocation method specifies
how the web service can be called. The actual calling
method depends on the service implementation: for services
implemented as web services [1], a WSDL specification can
be provided; for services delivered through RMI [11] the
name of the remote object, the interface name and method
should be listed etc.

C. Transformation Registration
The transformation registrar manages the transformation

method repository, whose entries specify how certain
descendants of the “Data” concept in the ontology can be
transformed to some other descendants of the “Data”
concept. These transformations generally include database
lookups and filling-in of default values, and are provided for
the convenience of the end users of services. Consider for
example the case that some service of the Ministry of Health
requires the social security number of the citizen, for
identification purposes, however the citizen only has the
driver license at hand. In the presence of a suitable
transformation method, the service user could enter the
driver license number and this would be mapped to the
social security number, thus the service would proceed.
Similarly, the citizen’s identity number and country could be
derived from the passport number, while an Austrian VAT
number can be transformed to a European VAT number by
prepending the constant string “AT”. Such transformations
can be automatically performed by the service execution
module.

D. Service Execution
When a service consumer wants to execute a web service

the entry point is to query the ontology registrar. This can be
done by either navigating through the ontology aiming to
locate the appropriate result, that being a document or data
or by searching using keywords. Once the result is found the
service execution module can search for a service that
produces the requested result and when found the service
consumer can request the execution of the service.

The service execution module can automatically create a
list of the input necessary to invoke the web service(s). In
the simplest case there will be one web service that can be
invoked. In such a case the service consumer will provide
the values for the input data.

If the requested result needs the synthesis of a composite
service (because the selected service needs as input a
document that some other service produces) the service
execution module will query the ontology to find the
services needed to complete intermediate steps. One such
case can be when the service that produces the desired result
requests as input one or more documents. Through the
ontology the service execution module will retrieve the
services that produce the documents and create a union of all
the input parameters needed.

Once the set of the required input (including possible
alternative input) is collected the end-user can execute the
service. One issue that has to be tackled is that of the end-
user interface. As mentioned earlier web services have an
interface that allows them to be called, usually by other
services rather than end-users. Therefore, for the proposed
architecture to be complete, it has to cater for the interaction
between end-users and the active blackboard. This can be
achieved by dynamically creating a form for the end-user.
For the creation of this form, the blackboard exploits the
attributes that have been defined for the data within the
ontology, such as value lists and validation checks. Data
elements with value lists can for example be rendered as
closed-selection combo boxes, while validation checks can
be translated to code for the appropriate service delivery
environment, such as Javascript for web browsers, XForms
constraints [12] for native XForms interfaces and so forth.

Since the necessary input has been established, a cue-card
paradigm can be used to guide the user to fill-in the input
fields. According to it the user can be asked to provide
values for input fields or to skip fields and give alternative
input. If for example, the user wants a tax certificate this can
be issued by providing the VAT number. If however, the
user does not remember the number alternative input can be
given such as the personal identification number. Values for
fields participating in the service implementation constraints
are also collected, since the execution engine will exploit
these values to determine which particular service
implementation can be invoked to satisfy the user request.
Finally to improve the efficiency of the service execution
module caching mechanisms for dynamic objects (e.g. [13]
[14]) may be employed. In general, documents and
certificates produced by public authorities have a period of
validity, within which they may be used in transactions. For
example, a tax clearance certificate, attesting that the citizen
has no due taxation debts, may be valid for three months
after being issued and within this time period it may be used
in the context of any transaction with the government. The
blackboard exploits this property of the documents, in order
to re-use documents issued by services, avoiding thus
service re-execution and obtaining benefits both in terms of

reducing overall system load and minimizing total service
delivery time.

5. USAGE SCENARIO
To better illustrate how the architecture will work we will

present a usage scenario for a real world service. Consider
the case of a European citizen requiring health service in a
European country different than that of her origin. Health
authorities can retrieve through the blackboard the necessary
web service, which provides the citizen's health record. The
service registrar will help retrieve the appropriate service by
means of the ontology registrar. Through the ontology, the
instantiation of the health administration and the
implemented services provided by it can be found.
Alternatively, the end-user may select the “Health record
retrieval” generic service (independently of the offering
administration) and delegate the responsibility for choosing
the appropriate concrete implementation to the execution
engine, which will base its decision on the value of the
“Nationality” input, which will be provided by the service
end-user. Once the service has been chosen, the service
execution engine can formulate the appropriate web page to
send to the client, through which the user input will be
collected. The web page may offer options to the end-user
regarding the data that have to be provided, exploiting the
input alternatives declared in the ontology registrar and/or
the available transformation methods. For instance, if the
service designer has designated the passport number and the
social security number as alternatives for identifying the
requested health record, the end user may provide either
piece of information; moreover, if a transformation that
maps driver license numbers to social security numbers (or
passport numbers) exists, then the driver license number will
also be a plausible input. In the latter case, the execution
engine will firstly employ (transparently to the service end-
user) the transformation to map the driver license number to
the respective social security number, and will afterwards
invoke the service, providing to it the result of the mapping
as input.

6. CONCLUSIONS
In this paper the basic architectural components that form

an active, ontology based electronic blackboard were
presented. The architecture allows interoperability between
the registered services and offers service consumers a smart
method for service invocation. The ontology employed in
this architecture incorporates rich semantics to model
different aspects of electronic service provision, including
public authority entities, data and documents, abstract
services and concrete service implementations, as well as the
relationships between them. The ontology can be used by
end-users, to locate the services they need to execute and by
the service execution engine to satisfy user requests through
simple service invocation or by dynamic service
composition and service workflow execution. The active
blackboard also undertakes the responsibility for formulating

appropriate user interfaces for the services it publishes.
According to the scheme presented above, the blackboard

is a centralized entity, undertaking a number of tasks; thus
the blackboard is both a potential bottleneck and a single
point of failure. Replication of the blackboard and the
associated repositories can be used for addressing these
problems, however repository consistency has to be sought
after. Request execution handover, to dynamically balance
system load and exploit the network proximity of resources
are also issues that will be addressed in the context of future
research.

REFERENCES
[1] Newcomer E. Understanding Web Services: XML, WSDL, SOAP,

and UDDI, Addison Wesley Professional, 2002. ISBN: 0201750813
[2] Tambouris E. “An Integrated platform for Realising Online One-Stop

Government: The eGov Projet”, in: Proceedings of the DEXA
International Workshop “On the Way to Electronic Government”,
IEEE Computer Socity Press, Los Alamitos, CA, 2001, pp. 359-363

[3] Bunting D. et al. Web Services Composite Application Framework
(WS-CAF), Ver1.0, 2003, Available:
http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf

[4] Casati, F., Ilnicki, S., Jin L.J., Krishnamoorthy V., Shan M.C.
“Adaptive and Dynamic Service Composition in eFlow”. Proceedings
of Advanced Information Systems Engineering: 12th International
Conference, CAiSE 2000, Stockholm, Sweden, 2000. pp. 13-31.

[5] Evren Sirin, James Hendler, and Bijan Parsia. “Semi-automatic
composition of web services using semantic descriptions”. In Web
Services: Modeling, Architecture and Infrastructure workshop in
ICEIS 2003, Angers, France, April 2003

[6] M. Klein, A. Bernstein. “Searching for services on the semantic web
using process ontologies", The Emerging Semantic Web - Selected
papers from the first Semantic Web Working Symposium, Editor(s):
Cruz, Decker, Euzenat, McGuinness; 2002, IOS press, Amsterdam,
pp. 159-172

[7] Erman, L., London, P., Fickas, F. “The Design and an Example Use of
HEARSAY-III”. Proceedings of the 7th International Joint
Conference on Artificail Intelligence, 1981. pp. 409- 415.

[8] Carver, N., Lesser, V. “Evolution of Blackboard Control
Architectures”. Expert System with Applications, Vol. 7, 1994, pp. 1-
30

[9] B. Amann, I. Fundulaki, “Integrating Ontologies and Thesauri to
Build RDF Schemas”, Proceedings of the Third European Conference
on Research and Advanced Technology for Digital Libraries, 1999,
pp. 234 –253.

[10] KAON development team. KAON web site, 2004. Available:
http://kaon.semanticweb.org/

[11] Sun Microsystems. JavaTM Remote Method Invocation, 1999.
Available: http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html

[12] W3C. XForms - The Next Generation of Web Forms, 2004. Available:
http://www.w3.org/MarkUp/Forms/

[13] Zhu H., Yang T. “Class-based Cache Management for Dynamic Web
Content”, IEEE INFOCOM, 2001, pp. 1215-1224

[14] Vassilakis C., Lepouras G.. “Controlled Caching of Dynamic WWW
Pages”. Proceedings of the DEXA 2002 conference, , 2002, pp. 9-18.

http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf
http://kaon.semanticweb.org/
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html
http://www.w3.org/MarkUp/Forms/

