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Abstract— Contemporary networks support multiple 
priorities, aiming to differentiate the QoS levels offered to 
individual traffic classes. Support for multiple priorities 
necessitates the introduction of a scheduling algorithm, to 
select each time the next packet to transmit over the data link. 
Class-based Weighted Fair Queuing (CBWFQ) scheduling and 
its variations, is widely used as a scheduling technique, since it 
is easy to implement and prevents the low-priority queues from 
starvation, i.e. receiving no service during periods of high-
priority traffic. CBWFQ effectively thus offers low-priority 
queues the opportunity to transmit packets even though the 
high-priority queues are not empty. In this paper, we present 
the modeling and performance evaluation of a single-buffered, 
four-priority multistage interconnection network (MIN) 
operating under the CBWFQ scheduling policy. Performance 
evaluation is conducted through simulation, and the 
performance metrics obtained can be used by MIN designers 
to set the appropriate queue weights according to the expected 
traffic and the desired QoS levels for each priority class, 
delivering efficient thus systems. 

Keywords-Multistage Interconnection Networks; Delta 
Netwoks; Performance Evaluation 

I. INTRODUCTION 

During the last two decades, technology has offered the 
potential for a dramatic increase in network speeds, whiles 
the explosion of content availability and the introduction of 
new services, such as streaming media and file sharing, has 
multiplied the amount of network traffic. In contemporary 
networks, not all packets are treated equally: different 
priorities are assigned to packets entering the networks, and 
subsequently the network employs scheduling algorithms 
which take into account packet priorities in the process of 
selecting each time the next packet to transmit over the data 
link, offering thus different quality-of-service (QoS) levels 
to packets of different priority classes. 

In this context, a number of packet scheduling algorithms 
have been proposed and used in networks, with the most 
widespread ones being strict priority queuing [43], round-
robin [63] and its variations (e.g. weighted round-robin [17] 
[31], deficit round-robin [46], smoothed round-robin [22]), 

generalized processor sharing (GPS) [18], weighted fair 
queuing (P-GPS) [15], class-based weighted fair queuing 
(CBWFQ) [45], virtual clock [64] and self-clocked fair 
queuing [21]. 

The selection of the packet scheduling algorithm can 
radically affect both the QoS offered to packets transmitted 
through the network and the overall performance of the 
network. This is due to the fact that different algorithms aim 
to optimize different aspects of packet QoS and network 
behavior, such as throughput, delay, delay jitter, 
prioritization and fairness. Besides these high-level goals, 
when choosing the packet scheduling algorithm that will be 
used in a network, implementation-level characteristics of 
candidate algorithms are also taken into account: for 
instance, [22] reports that two important factors are the 
algorithms’ space and time complexity (since they affect the 
amount of memory and the processing power required to 
implement the algorithm, respectively) and the ease of 
implementation (since more complex algorithms are 
generally more demanding in space and time, while their 
implementations are more error-prone). 

In the commercial product domain, among the algorithms 
listed above, strict priority queuing (i.e. first servicing high 
priority packets and examining lower priority ones only 
when higher priority ones are not waiting to be serviced), 
weighted round robin (i.e. dividing the available bandwidth 
into –possibly unequal- portions and assigning one portion 
to each priority queue) and class-based weighted fair 
queuing [i.e. in the presence of N currently active data flows 
with respective weights w1,w2...wN, data flow i will achieve 
an average data rate of R*wi/(w1+w2+...+wN), where R is the 
data link rate] [45] have been adopted by the industry and 
implemented in most commercial products (e.g. [7], [25], 
[41], [4], [14], [8], [26]). These algorithms are preferred 
since they exhibit the following desirable characteristics (a) 
ease of implementation and verification (b) good 
exploitation of the available network bandwidth (c) limited 
processing power and memory requirements and (d) 



network administrators find them easy to understand and 
configure. 

Regarding the communication infrastructure internal 
architecture, multistage interconnection networks (MINs) 
with crossbar switching elements (SEs) are frequently used 
for implementing the interconnection between processors 
and memory modules in parallel multiprocessor systems [1], 
[13], [51], and are also considered to be a very efficient 
means for implementing network communication devices 
such as gigabit Ethernet switches, terabit routers and ATM 
switches [5], [47], [52]. MIN technology offers the 
significant advantages of a low cost/performance ratio and 
has the potential to route multiple communication tasks 
concurrently, resulting in good exploitation of the available 
hardware. MINs with the Banyan [20] property are 
generally preferred against non-Banyan MINs, since the 
latter have found to be more expensive than Banyan 
networks and more complex to control. 

Insofar, the performance of multi-priority MINs 
operating under the strict priority queuing algorithm has 
been studied extensively, through both analytical methods 
and simulation experiments (e.g. [56], [57], [58], [32], [6], 
[35], [53]), considering various buffer sizes (mainly buffer 
lengths 1, 2 and 4), schemes for allocating available buffer 
space to different priority classes (symmetric vs. 
asymmetric [57]), arrival processes (e.g. uniform vs. bursty 
[23]), traffic patterns (e.g. uniform vs. hotspot 
[59],[60],[31]; unicast vs. multicast [24],[48]) and internal 
MIN architectures (e.g. single-layer vs. multi-layer [54]). 
These studies have shown that when network load increases 
(and more specifically, when the packet arrival probability λ 
increases beyond 0.6), the QoS offered to low priority 
packets sharply drops, with throughput significantly 
deteriorating and delay sharply rising.  

In order to rectify this situation, class-based weighted fair 
queuing (CBWFQ) can be used as a packet scheduling 
algorithm instead of strict priority queuing; this stems from 
the fact that one of the design goals of CBWFQ is to 
increase fairness, giving lower-priority queues the 
opportunity to transmit packets even in cases that higher-
priority queues are not empty. As compared to using 
weighted round-robin, CBWFQ has the advantages of being 
able to guarantee fair link sharing, while it doesn’t pose the 
requirement of knowing the mean packet size of each 
connection in advance [38]. Insofar, however, no studies 
have been conducted to quantify (a) the gains obtained for 
low-priority packets (and conversely the losses incurred for 
high-priority packets) by the introduction of the CBWFQ 
packet scheduling algorithm and (b) how queue weight 
assignment affects the overall performance of the MIN 
network and the QoS offered to individual priority classes. 
Note that the performance of CBWFQ has been studied for 
other network classes, notably torus-based networks and 
mesh networks, the results obtained from these studies 

cannot be directly used for the case of MINS: indeed, in 
both torus and mesh networks, multiple paths exist between 
network elements [12] (contrary to Banyan MINs 
considered in this paper), and hence routing algorithms are 
adapted to exploit this feature for both performance and 
fault tolerance. Additionally, many studies regarding mesh 
networks have been made in the context of wireless 
networks including ad-hoc ones [3], in which cases (a) 
routers typically are also destination nodes themselves and 
(b) the topology of the network constantly changes, due to 
mobility. 

Taking the above facts into account, in this paper, we 
present a simulation-based performance evaluation for 
single-buffered MINs natively supporting four priority 
classes and employing the CBWFQ packet scheduling 
algorithm. In this performance evaluation, we calculate the 
QoS offered to packets of different priority classes, focusing 
in the areas of high network loads (in which, under the strict 
priority algorithm, the QoS offered to lower-priority packets 
deteriorates) and under different ratios of packets in the 
distinct priority classes. We also study the effect of queue 
weight assignment in the QoS offered to packets of different 
priorities. The performance metrics obtained can be used by 
MIN designers to set the appropriate queue weights 
according to the expected traffic and the desired QoS levels 
for each priority class, delivering efficient thus systems. 

While the 802.1D standard [28] specifies eight priority 
levels and the Diffserv standard [40] specifies six “class 
selectors”, it has been anticipated that few switches will 
actually provide support for eight priority classes [19], and 
hence IEEE 802.1Q provides recommended mappings from 
the eight priority classes specified in 802.1D to fewer 
queues [29]. Many contemporary switches prioritize packets 
through a process involving the steps of classification, 
marking and queuing (with a policing step also appearing in 
some cases) [39][9], and the outcome of this process is the 
placement of the packets in a maximum of four queues (e.g. 
[27][16][10]), with eight queues being supported only by 
few high-end switches (e.g. [9], [11]). Thus, in this paper we 
focus on studying MINs that natively support four priority 
levels. 

The rest of this paper is organized as follows: in section 
 II we present the quad-priority MIN and give details on its 
operation and the class-based weighted fair queuing packet 
scheduling algorithm. In sections III and I IV we present the 
performance metrics and the simulation results, 
respectively, while in section  V conclusions are drawn and 
future work is outlined. 

II. QUAD-PRIORITY MIN AND THE CLASS-BASED 

WEIGHTED FAIR QUEUING SCHEDULING ALGORITHM 

Multistage Interconnection Networks (MINs) are used to 
interconnect a group of N inputs to a group of M outputs 
using several stages of small size Switching Elements (SEs) 



followed (or preceded) by link. Its main characteristics are 
its topology, routing algorithm, switching strategy and flow 
control mechanism.  

All types of blocking Multistage Interconnection 
Networks (Delta Networks [42], Omega Networks [33] and 
Generalized Cube Networks [2]) with the Banyan property 
which is defined in [20] are characterized by the fact that 
there is exactly one path from each source (input) to each 
sink (output). Banyan MINs are multistage self-routing 
switching fabrics. Consequently, each SE of kth stage, where 
k=1...n can decide in which output port to route a packet, 
depending only on the corresponding kth bit of the 
destination address. 

 
Figure 1. A 3-stage Delta Network 

An (N X N) MIN can be constructed by n=logcN stages of 
(cxc) SEs, where c is the degree of the SEs. At each stage 
there are exactly N/c SEs. Consequently, the total number of 
SEs of a MIN is (N/c)*logcN. Thus, there are O(N*logN) 
interconnections among all stages, as opposed to the 
crossbar network which requires O(N2) links. A typical 
configuration of a (N X N) Delta Network is depicted in 
figure 1. Regarding priority handling, each SE is modelled 
by as an array of p non-shared buffer queue pairs, where p is 
the number of distinct priority classes supported by the 
network, with the ith element of the array being dedicated to 
packets of priority class i. Within each pair, one buffer 
queue is dedicated for the upper queuing bank and the other 
for the lower bank. In this paper, we consider a quad-
priority Delta Network that operates under the following 
assumptions: 

 The network clock cycle consists of two phases. In 
each time slot two phases take place. In the first 
phase, control information passes via the network 
from the last stage to the first one. In the second 
phase, packets flow from the first stage towards the 
last, in accordance to the flow control information. 

 At each input of every switch of the MIN only one 
packet can be accepted within a time slot which is 
marked by a priority tag, and it is routed to the 
appropriate class queue (figure 2). The domain value 
for this special priority tag in the header field of the 
packet determines its i-class priority, where i=1…p. 
Notably, provisions for packet priorities can be 
found in early protocol specifications, such as the 
case of TCP out-of-band/expedited data, which are 
normally prioritized against normal connection data 
[49], while more recent specifications such as 
802.1D [28] and Diffserv [40] have increased the 
number of available priority classes. 

 
Figure 2. Class-based weighted fair queuing algorithm 

 The arrival process of each input of the network is a 
simple Bernoulli process, i.e. the probability that a 
packet arrives within a clock cycle is constant and 
the arrivals are independent of each other.We will 
denote this probability as λ. This probability can be 
further broken down to λi probabilities, which one 
represents the arrival probability for i-priority 

packets, where i=1...p.  It holds that 



p

i
i

1

  

 An i-class priority packet arriving at the first stage is 
discarded if the corresponding i-class priority buffer 
of the SE is full, where i=1...p. This is indicated 
through a control signal to the source of the packet 
(typically, network protocol software running in a 
host or a network apparatus connected to the input 
port), and the source will arrange for the packet 
retransmission, according to the rules of the 
employed protocol. The responsibility for handling 
cases that such discardings/retransmissions result 
into expiration of the packet’s TTL (and therefore its 
elimination from the network) is assumed by higher-
layer network protocols. 

 A backpressure blocking mechanism is used, 
according to which an i-class priority packet is 
blocked at a stage if the destination of the 



corresponding i-class priority buffer at the next stage 
is full, where i=1...p.  

 All i-class priority packets are uniformly distributed 
across all the destinations and each i-class priority 
queue uses a FIFO policy for all output ports, where 
i=1...p. 

 Each packet priority queue is statically assigned a 
weight, which specifies the bandwidth ratio that will 
be dedicated to the particular queue. Naturally, the 
sum of all weights must be equal to 1. 

 Regarding the strict priority scheduling algorithm the 
lower-priority queues are only serviced if the higher-
priority queues contains no packets. On the other 

hand, at each network cycle, the class-based 
weighted fair queuing algorithm examines the 
priority queues to select the packet to be forwarded 
through the output link, always observing the 
bandwidth ratio that has been assigned to each 
queue. A prominent method for achieving this is to 
determine the set S of non-empty queues in the 
system and choosing a queue among them with 

probability
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assigned to queue k [45]. This is analogous to lottery 
scheduling used in operating systems [62]. We note 
here that the class-based weighted fair queuing 
algorithm considered in this paper is work 
conserving, i.e. a packet is always transmitted when 
there is traffic waiting, as opposed to non-work 
conserving algorithms which do not transmit a 
packet if the queue whose turn is to transmit a packet 
is found to be empty [34]. If a queue does not use its 
bandwidth ratio within a time window, this 
bandwidth is divided among the queues that do have 
packets to transmit, proportionally to their weights. 
Figures 3 and 4 illustrate the operation of the class-
based weighted fair queuing algorithm as 
implemented in the simulation, with the code in 
Figure 3 being the initialization, and the code in 
Figure 4 being executed each time a packet is 
forwarded. The initialization step includes the 
computation of cumulative probability distributions 
and their storage into arrays, in order to speed up the 
packet selection step that is repeatedly executed. 

 The contention is solved randomly with equal 
probabilities. Thus, when two packets at a stage 
contend for a buffer at the next stage and there is no 
adequate free space for both of them to be stored (i.e. 
only one buffer position is available at the next 

/* Simulation cycle. Select the packet to forward */ 
 
/* First, determine non-empty queues & select the appropriate index */ 
index = 0; 
for (i = 3; i >= 0; i--) { 
 index = index << 1; /* shift bits left */ 
 if (! isEmpty(queue[i])) 
  index = index | 1; /* set rightmost bit */ 
} 
if (index > 0) { /* at least one queue has packets, select queue and 
forward packet */ 
 packetProb = random(); /* 0 <= packetProb < 1 */ 
 for (i = 0; i < 4; i++) 
  if (probabilities[index][i] > packetProb) 
   break; 
 } 
 /* now i holds the queue to transmit from */ 
 forward_packet_from_queue(i); 
 
} 
 
Figure 4. Packet selection and forwarding in the the class-based 
weighted fair queuing algorithm 

/* Simulation initialization. 
 entry: qw[4] --> queue weights 
 exit: probabilities[16][4] --> probabilities for all possible queue 
 state combinations. Index is a 4-bit quantity with each bit being 
 1 if the corresponding queue is full and 0 if the corresponding 
 queue is empty (its bits are read right to left). For example: 
 index = 3  --> 0011 binary --> queues 0 and 1 have packets  
 index = 13 --> 1101 binary --> queues 0, 2 and 3 have packets 
 index = 15 --> 1111 binary --> all queues have packets 
 index 0 (no queue has packets) is unused 
 
e.g. qw[] = {40%, 30%, 20%, 10%} 
 
probabilities[1] = {1, -1, -1, -1} -- only 1 queue has packets, gets 100%  
probabilities[5] = {2/3, -1, 1, -1} -- 3rd element is 1 because 
   probabilities are cumulative 
probabilities[13] = {4/7, -1, 6/7, 1} 
probabilities[15] = {4/10, 7/10, 9/10, 1} 
*/ 
 
for (i = 1; i < 15; i++) { 
 /* find total weight of non-empty queues */ 
 totWeight = 0; 
 index = i; 
 for (j = 0; j < 4; j++) { 
  if (index & 1 == 1) { /* test rightmost bit */ 
   totWeight += qw[j]; 
   index = index >> 1; /* shift bits right */ 
  } 
 } 
 /* find proportions and compute cumulative distribution */ 
 totalProbs = 0; 
 lastNonEmpty = 0; 
 index = i; 
 for (j = 0; j < 4; j++) { 
  if (index & 1 == 1) { /* test rightmost bit */ 
   lastNonEmpty = j; 
   totalProbs += qw[j] / totalWeight; 
   probabilities[i][j] = totalProbs; 
  } 
  else 
   probabilities[i][j] = -1; 
  index = index >> 1; /* shift bits right */ 
 } 
 /* set the cumulative probability of the last queue to 1 to fix 
  arithmetic rounding errors */ 
 probabilities[i][lastNonEmpty] = 1; 
} 
  
/* end initialize */ 
 
Figure 3. Initialization of the class-based weighted fair queuing algorithm 



stage), one packet will be accepted at random and 
the other will be blocked by means of upstream 
control signals. Note that since packets of different 
priorities are stored in different queues, the 
contention for buffer space always occurs between 
packets of the same priority. 

 All SEs have deterministic service time. 
 Finally, all packets in input ports contain both the 

data to be transferred and the routing tag. In order to 
achieve synchronously operating SEs, the MIN is 
internally clocked. As soon as packets reach a 
destination port they are removed from the MIN, so, 
packets cannot be blocked at the last stage. 

III. PERFORMANCE EVALUATION METRICS FOR QUAD-
PRIORITY MINS 

In this section the two most important network 
performance factors, namely packet throughput and delay 
are analyzed and modelled for the case of Quad-Priority 
MINs. The universal performance factor introduced in [55], 
which combines the above two metrics into a single one is 
also considered.  

In order to evaluate the performance of multi-priority 
(NXN) MIN the following metrics are used. Let Τhavg and 
Davg be the average throughput (bandwidth) and average 
delay of a MIN respectively. 

 
Normalized throughput Th [30] is the ratio of the 

average throughput Τhavg to number of network outputs N. 
Formally, Th can be expressed by 

N

Th
Th avg  (1) 

and reflects how effectively network capacity is used. 
 
Relative normalized throughput RTh(i) of i-class 

priority traffic, where i=1..p is the normalized throughput 
Th(i) of i-class priority packets divided by the 
corresponding-class offered load λ(i) of such packets. 
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)(
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This extra normalization of each class-priority traffic 
leads to a common value domain needed for comparing their 
absolute performance values in all configuration setups. 

 
Normalized packet delay D(i) of i-class priority traffic, 

where i=1..p is the ratio of the Davg(i) to the minimum 
packet delay which is simply the transmission delay n*nc 
(i.e. zero queuing delay), where n=log2N is the number of 
intermediate stages and nc is the network cycle. Formally, 
D(i) can be defined as 

ncn

iD
iD avg

*

)(
)(   (3) 

The definition of normalized delay D(i) effectively extends 
the definition of normalized delay in [30] to consider the 

different priority classes. 
 

Universal performance factor Upf(i) of i-class priority 
traffic, where i=1..p is defined by a relation involving the 
two major above normalized factors, D(i) and Th(i): the 
performance of a MIN is considered optimal when D(i) is 
minimized and Th(i) is maximized, thus the formula for 
computing the universal performance factor arranges so that 
the overall performance metric follows that rule. Formally, 
Upf(i) can be expressed by 

2
2

)(

1
*)(*)(

iTh
wiDwiUpf thd   (4) 

where wd  and  wth  denote the corresponding weights for each 
factor participating in the U, designating thus its importance 
for the corporate environment. Consequently, the 
performance of a MIN can be expressed in a single metric 
that is tailored to the needs that a specific MIN setup will 
serve. It is obvious that, when the packet delay factor 
becomes smaller or/and throughput factor becomes larger 
the Upf becomes smaller, thus smaller Upf values indicate 
better overall MIN performance. Because the above factors 
(parameters) have different measurement units and scaling, 
we normalize them to obtain a reference value domain. 
Normalization is performed by dividing the value of each 
factor by the (algebraic) minimum or maximum value that 
this factor may attain. Thus, equation (4) can be replaced 
by: 
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where D(i)min is the minimum value of normalized packet 
delay D(i) and RTh(i)max is the maximum value of Relative 
normalized throughput RTh(i). Consistently to equation (4), 
when the universal performance factor Upf(i), as computed 
by equation (5) is close to 0, the performance a MIN is 
considered optimal whereas, when the value of Upf(i) 
increases, its performance deteriorates. Finally, taking into 
account that the values of both delay and throughput 
appearing in equation (5) are normalized, D(i)min = RTh(i)max 
= 1, thus the equation can be simplified to: 
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The definition of universal performance Upf(i) effectively 
extends the definition of universal performance factor in 
[55] to consider the different priority classes. 

In this study, when calculating the value of the above 
combined factor Upf, we have considered the individual 
performance factors (packet throughput and delay) to be of 
equal importance (wd = wth =1). This is not necessarily true 
for all application classes, e.g. for batch data transfers 
throughput is more important, whereas for streaming media 
the delay must be optimized.  



Finally, we list the major parameters affecting the 
performance of examining quad-priority MIN. 

 
Buffer-size b(i) of an i-class priority queue, where i=1..p 

is the maximum number of such packets that the 
corresponding i-class input buffer of a SE can hold. In this 
paper we consider symmetric-sized single-buffered b(i)=1 
MINs, where i=1..4. It is worth noting that a buffer size of 
b(i)=1 is being considered since under this setting each SE 
egress link is effectively equipped with four buffer positions 
(one buffer space for each distinct priority). Studies on 
single-priority architectures have shown that increasing the 
buffer size beyond four would lead to excessive delays [55], 
hence in this study we have fixed the per priority buffer size 
to 1. 

 
     Offered load λ(i) of i-class priority traffic, where i=1..p is 
the steady-state fixed probability of such arriving packets at 
each queue on inputs. It holds that  


p

i
i

1
)( , where λ 

represents the total arrival probability of all packets. In our 
simulation λ is assumed to be λ = 0.1, 0.2… 0.9, 1.  
 
      Ratio of i-class priority offered load r(i), where i=1..p 
expressed by r(i)=λ(i)/λ. It is obvious that 
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this paper the ratios of high, medium, normal and low 
priority packets are assumed to be r(4)=0.20, r(3)=0.25, 
r(2)=0.25 and r(1)=0.30 respectively. 
 
       Weight of i-class priority queues w(i) is the percentage 
rate of processor dedicated to i-class priority packets in each 
queue by the applied scheduling algorithm. In the case of 
CBWFQ discipline the weight of a class-priority expresses 
the probability that a particular class queue is examined first; 
this probabilistic mechanism applied individually in each SE 
for every cycle repeatedly. In this paper we consider two 
different case studies. In the first scenario the weights of 
higher priority-classes are considered to be greater than those 
of lower ones [w(4)=0.40, w(3)=0.30, w(2)=0.20 and 
w(1)=0.10 ], while at the second configuration all priority 
classes are assumed to have equal weights w[i]=0.25, where 
i=1..4. 
 

Network size n, where n=log2N, is the number of stages 
of an (N X N) MIN. In our simulation n is assumed to be 
n=6. 

IV.  SIMULATION AND PERFORMANCE RESULTS 

In this paper we developed a special simulator in C++, 
capable of handling quad-priority MINs using the class-
based weighted fair queuing. Each (2X2) SE was modeled 
by eight non-shared buffer queues, where buffer operation 
was based on the first come first serviced principle; each 

egress link of the SE (upper and lower) is provided with 
four buffer queues, corresponding to the four priority levels. 

Performance evaluation was conducted by using 
simulation experiments. Within the simulator several 
parameters such as the buffer-length, the number of input 
and output ports, the ratio of each class-priority offered 
load, the weight of each class-priority queue, and the traffic 
shape was considered.  

Finally, the simulations were performed at packet level, 
assuming fixed-length packets transmitted in equal-length 
time slots, while the number of simulation runs was again 
adjusted at 105 clock cycles with an initial stabilization 
process 103 network cycles, ensuring a steady-state 
operating condition. 

A. Simulator validation 

Since no other related works on simulators for multi-
priority MINs operating under class-based weighted fair 
queuing scheduling discipline have been reported insofar in 
the literature, we validated our simulator only against those 
that use strict priority scheduling. In the case of single-
priority traffic p=1, we noticed that all simulation 
experiments were in close agreement with the results 
reported in [56] (fig. 2 in [56]), and -notably- with 
Theimer’s model [50], which is considered to be the most 
accurate one in comparison with the other two classical 
models [37],[30]. In dual-priority MINs (p=2) we compared 
our measurements against those obtained from Shabtai's 
Model reported in [44], and have found that both results are 
in close agreement (maximum difference was only 3.8%). 

B. Overall MIN performance 

Before examining the QoS offered to each priority class 
under different settings of the queue weights in CBWFQ, 
we will present the simulation results regarding the effect of 
queue weight setting to the overall performance of the MIN. 

Figure 5 depicts the total normalized throughput 
[th=th(h)+th(m)+th(n)+th(l)] of a MIN using a quad-priority 
scheme vs. the offered load, for different queue weight 
assignments. In Figure 5, curve PQ corresponds to the total 
normalized throughput of a 6-stage MIN operating under 
the strict priority queue scheduling algorithm, while curves 
CBWFQ[H,M,N,L] indicate the total normalized 
throughput of the same MIN operating under the CBWFQ 
scheduling policy and having the weights of its high, 
medium, normal and low packets set to H, M, N and L, 
respectively. In all cases, the ratio of high, medium, normal 
and low packets against the overall network load is set to 
20%, 25%, 25% and 30% correspondingly. Under this load 
mixture, the queue weight setting 25/25/25/25 roughly 
corresponds to a setup with no priorities (the 
correspondence is not exact because the load ratios for 
different priority classes are not equal), while queue weight 
setting 40/30/20/10 corresponds to a “mild prioritization” 



scheme where e.g. a high-priority packet has approximately 
double probability to be transmitted as compared to a 
medium-priority packet, when they contend for the same 
output link (high-priority packets have a 40% ratio of the 
bandwidth being the 20% of the overall traffic, while 
medium-priority packets have a 30% ratio of the bandwidth 
being the 25% of the overall traffic). 

We can notice here that by employing the CBWFQ 
algorithm, the overall MIN throughput increases, as 
compared to the PQ algorithm with the increment ranging 
from 0.9% (λ=0.6) to 2% (λ=1). This can be attributed to the 
fact that under CBWFQ, network resources are better 
exploited; this particularly applies to network buffers 
dedicated to lower-priority queues within the SEs: under the 
strict priority mechanism, these buffers have decreased 
probability of transmitting the packets they hold, which in 
turn leads to increased probability of blockings, in the event 
that new lower-priority packets arrive at the corresponding 
SE. Nevertheless, the primary goal of classifying the 
packets into four priority classes is to provide better QoS to 
higher priority ones. This goal can be also achieved under 
the CBWFQ algorithm, by setting the weight of the higher-
priority queues to a value greater than the anticipated load 
of packets with the corresponding priorities. The exact 
setting of this parameter can be determined by balancing 
between the factors of achieving optimal overall network 
performance and delivering better QoS to higher-priority 
packets. 
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Figure 5. Overall MIN throughput under varying scheduling algorithms and 
queue weight settings 

In Figure 5 we can also notice that the overall MIN 
performance is practically not affected at all when shifting 
from the “no priorities” scheme (queue weight setting: 
25/25/25/25) to the “mild prioritization” scheme (queue 
weight setting: 40/30/20/10). 

In the following paragraphs, we discuss the QoS level 
delivered to packets of different priority classes under the 
above queue weight settings when the CBWFQ algorithm is 
employed. 

C. Quad-Priority MINs Performance under High Network 
Load 

In this subsection we examine the effect of queue weight 
setting on the QoS offered to packets of different priority 
classes under the CBWFQ algorithm, and we also compare 
these QoS levels to the corresponding ones delivered by the 
strict priority queuing scheduling algorithm, 

Figures 6, 7, 8 and 9 depict the relative normalized 
throughput for packets belonging to the high, medium, 
normal and low priority classes, respectively. In these 
figures (and subsequent ones also), curves PQ correspond to 
the total normalized throughput of a 6-stage MIN operating 
under the strict priority queue scheduling algorithm, while 
curves CBWFQ[25,25,25,25] and CBWFQ[40,30,20,10] 
correspond to the “no priority” and “mild prioritization” 
scenarios described above. In all cases, the ratio of high, 
medium, normal and low packets against the overall 
network load is set to 20%, 25%, 25% and 30% 
respectively. 
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Figure 6. Relative normalized throughput for high-priority packets vs. 
offered load 

Figure 6 shows that, while under strict priority queuing 
the normalized throughput for high priority packets is close 
to optimal, under CBWFQ the respective normalized 
throughput (expectedly) drops. The deterioration ranges 
from 5.2% (λ=0.7) to 15.5% (λ=1) for the “mild 
prioritization” scenario, while in the “no priorities” scenario 
the corresponding drop ranges from 11.2% (λ=0.7) to 28.8% 
(λ=1). Similar observations hold for medium priority 



packets (Figure 7), which under the “mild prioritization” 
scenario exhibit a drop in normalized throughput varying 
from 6.8% (λ=0.7) to 16.9% (λ=1) and a drop in the same 
metric ranging from 12.4% (λ=0.7) to 27.5% (λ=1)  under 
the “no priorities” scenario. 
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Figure 7. Relative normalized throughput for medium-priority packets vs. 
offered load 

Figures 8 and 9 show that using the CBWFQ algorithm 
instead of the strict priority queuing one is beneficial for 
normal- and low-priority packets (especially for the latter). 
Indeed, under the “mild prioritization” scenario, the gains 
for normal- and low-priority packets scale up to 11.0% and 
101.7% respectively (in both cases for offered load λ=1), 
while under the “no priorities” scenario, the corresponding 
gains are 11.0% and 181.3%, again for λ=1. Interestingly, 
the relative normalized throughput for medium-priority 
packets appears to be higher under the strict priority queuing 
algorithm for loads 0.7  λ  0.8 as compared to the “mild 
prioritization” scheme (approximately by 2%), while the 
situation quickly reverses for higher loads. This can be 
explained by considering that under strict priority queuing, 
normal-priority packets are favored over low-priority ones, 
with the latter constituting the 30% of the overall network 
traffic. Thus, when the network operates under strict priority 
queuing, it appears to have amble resources to service high-, 
medium- and normal-priority packets, obviously at the 
expense of low-priority ones (cf. Figure 9). Beyond this load 
range however, the servicing of high- and medium-priority 
packets (which are now greater in numbers) consumes most 
network resources, resulting in degraded service being 
offered to medium-priority packets. Similarly we can 
explain the fact that the throughput offered to medium-
priority packets under the “mild prioritization” scheme is 
better than the one offered under the “no priorities” scheme: 

medium-priority packets (25% of the overall traffic) are 
offered twice the bandwidth allocated to low-priority 
packets (30% of the overall traffic) and the gains from this 
setting seem to surpass the losses incurred from giving 
higher bandwidth shares to high- and medium-priority 
packets. 
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Figure 8. Relative normalized throughput for normal-priority packets vs. 
offered load 

From the figures above we can conclude that the “mild 
prioritization” scenario offers considerable gains for low- 
and normal-priority packets, while the normalized 
throughput drops for high- and medium-priority packets can 
be considered tolerable.  

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ - offered load

R
T

h(
l)

 -
 R

el
at

iv
e 

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
  

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

 
Figure 9. Relative normalized throughput for low-priority packets vs. 
offered load 



Figure 10 illustrates the normalized delay for high-
priority packets. The strict priority queuing scheduling 
algorithm offers the best delay, using however the CBWFQ 
algorithm under the “mild prioritization” scenario increases 
the delay only by 3.8% (λ=0.7) to 6.6% (λ=1); under the “no 
priorities” scenario, the delay metric deteriorates further, 
ranging from 7.5% (λ=0.7) to 11.3% (λ=1). 
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Figure 10. Normalized delay for high-priority packets vs. offered load 
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Figure 11. Normalized delay for medium-priority packets vs. offered load 

For medium-priority packets (Figure 11), the 
deterioration of the normalized delay metric owing to the 
usage of the CBWFQ algorithm instead of strict priority 
queuing is even smaller: under the “mild prioritization” 
scenario the normalized delay increases by 0.8% (λ=0.7) to 

3.7% (λ=1), while under the “no priorities” scenario, the 
corresponding increments are 7.4% (λ=0.7) to 3.3% (λ=1). 
Noticeably, the deterioration at full network load is smaller 
than the normalized delay increment for load λ=0.7: this is 
due to the fact that, under the strict priority queuing 
algorithm, the normalized delay increases steeply beyond 
load λ=0.7, since at this load range the network contains a 
considerable number of high-priority packets and the 
network resources are not adequate to optimally serve both 
high-and medium-priority packets. 
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Figure 12. Normalized delay for normal-priority packets vs. offered load 

Figure 12 depicts the normalized delay for normal-
priority packets. We can notice than for load λ0.7 both 
CBWFQ scenarios offer significantly improved normalized 
delay for this priority class. In more detail, the “mild 
prioritization” scenario offers an improvement in the delay 
from 2.5% (λ=0.7) to 13.9% (λ=1), while in the “no 
priorities” scenario the improvement ranges from 3.3% 
(λ=0.7) to 15.2% (λ=1). Similar observations can be made 
for the normalized delay of low-priority packets (Figure 13), 
where under the “mild prioritization” scenario the 
normalized delay improves from 11.6% (λ=0.7) to 15.9% 
(λ=1), while under the “no priorities” scenario the 
improvements range from 18.4% (λ=0.7) to 23.3% (λ=1). 

In overall, from the figures above we can conclude that 
the “mild prioritization” scenario offers considerable gains 
for low- and normal-priority packets, while the normalized 
delay drops for high- and medium-priority packets can be 
considered small (in all cases less than 7.5%). 

Figures 14, 15, 16 and 17 illustrate the universal 
performance factor for packets belonging to the high, 
medium, normal and low priority classes, respectively. 
Recall that this metric combines the normalized throughput 
and normalized delay into a single metric, whose value 



tends to zero when the network approaches its optimum 
operation. 
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Figure 13. Normalized delay for low-priority packets vs. offered load 
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Figure 14. Universal performance factor for high-priority packets vs. 
offered load 

For high- and medium-priority packets (Figure 14 and 
Figure 15), we can observe that the universal performance 
factor increases when shifting from the strict priority 
queueing algorithm to the “mild prioritization” scheme 
under CBWFQ, indicating that the QoS offered to these 
packet classes degrades. This is expected since both 
performance factors considered for the calculation of the 
universal performance factor (i.e. relative normalized 
throughput and normalized delay) have been found to 

deteriorate for these packet priority classes under the “mild 
prioritization” scheme, as compared to strict priority 
queuing. Under the “no priority” scheme, we can observe 
that the QoS offered to these packet classes degrades 
further. 
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Figure 15. Universal performance factor for medium-priority packets vs. 
offered load 

Regarding normal- and low-priority packets (Figure 16 
and Figure 17), we can observe that switching from the 
strict priority queue algorithm to the “mild prioritization” 
scheme under CBWFQ leads to lower values of the 
universal performance factor, indicating that the QoS 
offered to packets of these priority classes increases. Again, 
this is expected since both the relative normalized 
throughput and normalized delay have been found to 
improve under the “mild prioritization” scheme. For load 
λ = 0.7 in particular, we can observe that for normal-priority 
packers the universal performance factor is smaller for strict 
priority queuing than CBWFQ/“mild prioritization”, owing 
to the better throughput achieved by strict priority in this 
particular case, as discussed above. For load λ = 0.8, while 
strict priority queuing offers better normalized throughput to 
medium-priority packets than CBWFQ/“mild 
prioritization”, strict priority queuing exhibits also 
considerably higher delays (cf. Figure 12); the final result is 
a (marginally) worse value for the strict priority queuing 
algorithm for the particular value of λ. Finally, the “no 
priorities” scheme yields even smaller values of the 
universal performance factor regarding low-priority 
packets, while for medium-priority packets the “no 
priorities” scheme results in higher values of the universal 
performance factor (i.e. worse QoS), owing to the fact that 
“mild prioritization” achieves better normalized throughput 
for normal-priority packets, as discussed above. 
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Figure 16. Universal performance factor for normal-priority packets vs. 
offered load 
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Figure 17. Universal performance factor for low-priority packets vs. 
offered load 

V. CONCLUSIONS 

In this paper we have addressed the performance 
evaluation of a quad-priority, single-buffered, 6-stage MIN, 
employing the class-based weighted fair queuing packet 
scheduling algorithm. We have evaluated through 
simulations the overall performance of the MIN and the 
quality of service offered to each priority class under 
different network loads and compared these results against 
the strict priority algorithm and the “no priority” scheme. 
The performance evaluation results show that the strict 

priority algorithm does offer the high- and medium-priority 
packets better quality of service, but on the other hand it 
degrades the overall MIN performance and significantly 
degrades the quality of service offered to normal- and low-
priority packets. Using a “mild prioritization” configuration, 
i.e. setting the high/medium/normal/low queue weights to 
0.4/0.3/0.2/0.1 under a traffic mixture of 0.2/0.25/0.25/0.3 
has been found to degrade the QoS offered to high- and 
medium-priority packets at a tolerable level, while it 
significantly improves the QoS offered to normal- and low-
priority packets. Queue weights could further be tuned to 
obtain the desired QoS for all packet priority classes, always 
considering the ratio of packets in each priority class. 

MIN designers and operators can use the results presented 
in this paper to optimally configure the weights of the 
queues, taking into account the QoS they want to offer to 
packets of different priorities and the overall MIN 
performance they want to achieve. 

Future work will focus on examining other network sizes 
and load configurations, including hot-spot and burst loads, 
as well as different buffer sizes and handling schemes. In 
our future work we also intend to develop a closed form 
solution, providing thus an analytical model for single-
buffered MINs incorporating the class-based weighted fair 
queuing algorithm on a quad-priority scheme. The provision 
of QoS with a reduced number of queues, as proposed in 
[36], [61] will be also considered. 
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