
Class-Based Weighted Fair Queuing Scheduling on Quad-Priority Delta
Networks

D. C. Vasiliadisa,b, G. E. Rizosa,b, C. Vassilakisa
aDepartment of Computer Science and Technology

University of Peloponnese
Tripolis, Greece

bTechnological Educational Institute of Epirus,
Arta, Greece

dvas@uop.gr, georizos@uop.gr, costas@uop.gr

Abstract— Contemporary networks support multiple
priorities, aiming to differentiate the QoS levels offered to
individual traffic classes. Support for multiple priorities
necessitates the introduction of a scheduling algorithm, to
select each time the next packet to transmit over the data link.
Class-based Weighted Fair Queuing (CBWFQ) scheduling and
its variations, is widely used as a scheduling technique, since it
is easy to implement and prevents the low-priority queues from
starvation, i.e. receiving no service during periods of high-
priority traffic. CBWFQ effectively thus offers low-priority
queues the opportunity to transmit packets even though the
high-priority queues are not empty. In this paper, we present
the modeling and performance evaluation of a single-buffered,
four-priority multistage interconnection network (MIN)
operating under the CBWFQ scheduling policy. Performance
evaluation is conducted through simulation, and the
performance metrics obtained can be used by MIN designers
to set the appropriate queue weights according to the expected
traffic and the desired QoS levels for each priority class,
delivering efficient thus systems.

Keywords-Multistage Interconnection Networks; Delta
Netwoks; Performance Evaluation

I. INTRODUCTION

During the last two decades, technology has offered the
potential for a dramatic increase in network speeds, whiles
the explosion of content availability and the introduction of
new services, such as streaming media and file sharing, has
multiplied the amount of network traffic. In contemporary
networks, not all packets are treated equally: different
priorities are assigned to packets entering the networks, and
subsequently the network employs scheduling algorithms
which take into account packet priorities in the process of
selecting each time the next packet to transmit over the data
link, offering thus different quality-of-service (QoS) levels
to packets of different priority classes.

In this context, a number of packet scheduling algorithms
have been proposed and used in networks, with the most
widespread ones being strict priority queuing [43], round-
robin [63] and its variations (e.g. weighted round-robin [17]
[31], deficit round-robin [46], smoothed round-robin [22]),

generalized processor sharing (GPS) [18], weighted fair
queuing (P-GPS) [15], class-based weighted fair queuing
(CBWFQ) [45], virtual clock [64] and self-clocked fair
queuing [21].

The selection of the packet scheduling algorithm can
radically affect both the QoS offered to packets transmitted
through the network and the overall performance of the
network. This is due to the fact that different algorithms aim
to optimize different aspects of packet QoS and network
behavior, such as throughput, delay, delay jitter,
prioritization and fairness. Besides these high-level goals,
when choosing the packet scheduling algorithm that will be
used in a network, implementation-level characteristics of
candidate algorithms are also taken into account: for
instance, [22] reports that two important factors are the
algorithms’ space and time complexity (since they affect the
amount of memory and the processing power required to
implement the algorithm, respectively) and the ease of
implementation (since more complex algorithms are
generally more demanding in space and time, while their
implementations are more error-prone).

In the commercial product domain, among the algorithms
listed above, strict priority queuing (i.e. first servicing high
priority packets and examining lower priority ones only
when higher priority ones are not waiting to be serviced),
weighted round robin (i.e. dividing the available bandwidth
into –possibly unequal- portions and assigning one portion
to each priority queue) and class-based weighted fair
queuing [i.e. in the presence of N currently active data flows
with respective weights w1,w2...wN, data flow i will achieve
an average data rate of R*wi/(w1+w2+...+wN), where R is the
data link rate] [45] have been adopted by the industry and
implemented in most commercial products (e.g. [7], [25],
[41], [4], [14], [8], [26]). These algorithms are preferred
since they exhibit the following desirable characteristics (a)
ease of implementation and verification (b) good
exploitation of the available network bandwidth (c) limited
processing power and memory requirements and (d)

network administrators find them easy to understand and
configure.

Regarding the communication infrastructure internal
architecture, multistage interconnection networks (MINs)
with crossbar switching elements (SEs) are frequently used
for implementing the interconnection between processors
and memory modules in parallel multiprocessor systems [1],
[13], [51], and are also considered to be a very efficient
means for implementing network communication devices
such as gigabit Ethernet switches, terabit routers and ATM
switches [5], [47], [52]. MIN technology offers the
significant advantages of a low cost/performance ratio and
has the potential to route multiple communication tasks
concurrently, resulting in good exploitation of the available
hardware. MINs with the Banyan [20] property are
generally preferred against non-Banyan MINs, since the
latter have found to be more expensive than Banyan
networks and more complex to control.

Insofar, the performance of multi-priority MINs
operating under the strict priority queuing algorithm has
been studied extensively, through both analytical methods
and simulation experiments (e.g. [56], [57], [58], [32], [6],
[35], [53]), considering various buffer sizes (mainly buffer
lengths 1, 2 and 4), schemes for allocating available buffer
space to different priority classes (symmetric vs.
asymmetric [57]), arrival processes (e.g. uniform vs. bursty
[23]), traffic patterns (e.g. uniform vs. hotspot
[59],[60],[31]; unicast vs. multicast [24],[48]) and internal
MIN architectures (e.g. single-layer vs. multi-layer [54]).
These studies have shown that when network load increases
(and more specifically, when the packet arrival probability λ
increases beyond 0.6), the QoS offered to low priority
packets sharply drops, with throughput significantly
deteriorating and delay sharply rising.

In order to rectify this situation, class-based weighted fair
queuing (CBWFQ) can be used as a packet scheduling
algorithm instead of strict priority queuing; this stems from
the fact that one of the design goals of CBWFQ is to
increase fairness, giving lower-priority queues the
opportunity to transmit packets even in cases that higher-
priority queues are not empty. As compared to using
weighted round-robin, CBWFQ has the advantages of being
able to guarantee fair link sharing, while it doesn’t pose the
requirement of knowing the mean packet size of each
connection in advance [38]. Insofar, however, no studies
have been conducted to quantify (a) the gains obtained for
low-priority packets (and conversely the losses incurred for
high-priority packets) by the introduction of the CBWFQ
packet scheduling algorithm and (b) how queue weight
assignment affects the overall performance of the MIN
network and the QoS offered to individual priority classes.
Note that the performance of CBWFQ has been studied for
other network classes, notably torus-based networks and
mesh networks, the results obtained from these studies

cannot be directly used for the case of MINS: indeed, in
both torus and mesh networks, multiple paths exist between
network elements [12] (contrary to Banyan MINs
considered in this paper), and hence routing algorithms are
adapted to exploit this feature for both performance and
fault tolerance. Additionally, many studies regarding mesh
networks have been made in the context of wireless
networks including ad-hoc ones [3], in which cases (a)
routers typically are also destination nodes themselves and
(b) the topology of the network constantly changes, due to
mobility.

Taking the above facts into account, in this paper, we
present a simulation-based performance evaluation for
single-buffered MINs natively supporting four priority
classes and employing the CBWFQ packet scheduling
algorithm. In this performance evaluation, we calculate the
QoS offered to packets of different priority classes, focusing
in the areas of high network loads (in which, under the strict
priority algorithm, the QoS offered to lower-priority packets
deteriorates) and under different ratios of packets in the
distinct priority classes. We also study the effect of queue
weight assignment in the QoS offered to packets of different
priorities. The performance metrics obtained can be used by
MIN designers to set the appropriate queue weights
according to the expected traffic and the desired QoS levels
for each priority class, delivering efficient thus systems.

While the 802.1D standard [28] specifies eight priority
levels and the Diffserv standard [40] specifies six “class
selectors”, it has been anticipated that few switches will
actually provide support for eight priority classes [19], and
hence IEEE 802.1Q provides recommended mappings from
the eight priority classes specified in 802.1D to fewer
queues [29]. Many contemporary switches prioritize packets
through a process involving the steps of classification,
marking and queuing (with a policing step also appearing in
some cases) [39][9], and the outcome of this process is the
placement of the packets in a maximum of four queues (e.g.
[27][16][10]), with eight queues being supported only by
few high-end switches (e.g. [9], [11]). Thus, in this paper we
focus on studying MINs that natively support four priority
levels.

The rest of this paper is organized as follows: in section
 II we present the quad-priority MIN and give details on its
operation and the class-based weighted fair queuing packet
scheduling algorithm. In sections III and I IV we present the
performance metrics and the simulation results,
respectively, while in section V conclusions are drawn and
future work is outlined.

II. QUAD-PRIORITY MIN AND THE CLASS-BASED

WEIGHTED FAIR QUEUING SCHEDULING ALGORITHM

Multistage Interconnection Networks (MINs) are used to
interconnect a group of N inputs to a group of M outputs
using several stages of small size Switching Elements (SEs)

followed (or preceded) by link. Its main characteristics are
its topology, routing algorithm, switching strategy and flow
control mechanism.

All types of blocking Multistage Interconnection
Networks (Delta Networks [42], Omega Networks [33] and
Generalized Cube Networks [2]) with the Banyan property
which is defined in [20] are characterized by the fact that
there is exactly one path from each source (input) to each
sink (output). Banyan MINs are multistage self-routing
switching fabrics. Consequently, each SE of kth stage, where
k=1...n can decide in which output port to route a packet,
depending only on the corresponding kth bit of the
destination address.

Figure 1. A 3-stage Delta Network

An (N X N) MIN can be constructed by n=logcN stages of
(cxc) SEs, where c is the degree of the SEs. At each stage
there are exactly N/c SEs. Consequently, the total number of
SEs of a MIN is (N/c)*logcN. Thus, there are O(N*logN)
interconnections among all stages, as opposed to the
crossbar network which requires O(N2) links. A typical
configuration of a (N X N) Delta Network is depicted in
figure 1. Regarding priority handling, each SE is modelled
by as an array of p non-shared buffer queue pairs, where p is
the number of distinct priority classes supported by the
network, with the ith element of the array being dedicated to
packets of priority class i. Within each pair, one buffer
queue is dedicated for the upper queuing bank and the other
for the lower bank. In this paper, we consider a quad-
priority Delta Network that operates under the following
assumptions:

 The network clock cycle consists of two phases. In
each time slot two phases take place. In the first
phase, control information passes via the network
from the last stage to the first one. In the second
phase, packets flow from the first stage towards the
last, in accordance to the flow control information.

 At each input of every switch of the MIN only one
packet can be accepted within a time slot which is
marked by a priority tag, and it is routed to the
appropriate class queue (figure 2). The domain value
for this special priority tag in the header field of the
packet determines its i-class priority, where i=1…p.
Notably, provisions for packet priorities can be
found in early protocol specifications, such as the
case of TCP out-of-band/expedited data, which are
normally prioritized against normal connection data
[49], while more recent specifications such as
802.1D [28] and Diffserv [40] have increased the
number of available priority classes.

Figure 2. Class-based weighted fair queuing algorithm

 The arrival process of each input of the network is a
simple Bernoulli process, i.e. the probability that a
packet arrives within a clock cycle is constant and
the arrivals are independent of each other.We will
denote this probability as λ. This probability can be
further broken down to λi probabilities, which one
represents the arrival probability for i-priority

packets, where i=1...p. It holds that

p

i
i

1

 An i-class priority packet arriving at the first stage is
discarded if the corresponding i-class priority buffer
of the SE is full, where i=1...p. This is indicated
through a control signal to the source of the packet
(typically, network protocol software running in a
host or a network apparatus connected to the input
port), and the source will arrange for the packet
retransmission, according to the rules of the
employed protocol. The responsibility for handling
cases that such discardings/retransmissions result
into expiration of the packet’s TTL (and therefore its
elimination from the network) is assumed by higher-
layer network protocols.

 A backpressure blocking mechanism is used,
according to which an i-class priority packet is
blocked at a stage if the destination of the

corresponding i-class priority buffer at the next stage
is full, where i=1...p.

 All i-class priority packets are uniformly distributed
across all the destinations and each i-class priority
queue uses a FIFO policy for all output ports, where
i=1...p.

 Each packet priority queue is statically assigned a
weight, which specifies the bandwidth ratio that will
be dedicated to the particular queue. Naturally, the
sum of all weights must be equal to 1.

 Regarding the strict priority scheduling algorithm the
lower-priority queues are only serviced if the higher-
priority queues contains no packets. On the other

hand, at each network cycle, the class-based
weighted fair queuing algorithm examines the
priority queues to select the packet to be forwarded
through the output link, always observing the
bandwidth ratio that has been assigned to each
queue. A prominent method for achieving this is to
determine the set S of non-empty queues in the
system and choosing a queue among them with

probability

Sj
j

i
i w

w
qp)(, where wk is the weight

assigned to queue k [45]. This is analogous to lottery
scheduling used in operating systems [62]. We note
here that the class-based weighted fair queuing
algorithm considered in this paper is work
conserving, i.e. a packet is always transmitted when
there is traffic waiting, as opposed to non-work
conserving algorithms which do not transmit a
packet if the queue whose turn is to transmit a packet
is found to be empty [34]. If a queue does not use its
bandwidth ratio within a time window, this
bandwidth is divided among the queues that do have
packets to transmit, proportionally to their weights.
Figures 3 and 4 illustrate the operation of the class-
based weighted fair queuing algorithm as
implemented in the simulation, with the code in
Figure 3 being the initialization, and the code in
Figure 4 being executed each time a packet is
forwarded. The initialization step includes the
computation of cumulative probability distributions
and their storage into arrays, in order to speed up the
packet selection step that is repeatedly executed.

 The contention is solved randomly with equal
probabilities. Thus, when two packets at a stage
contend for a buffer at the next stage and there is no
adequate free space for both of them to be stored (i.e.
only one buffer position is available at the next

/* Simulation cycle. Select the packet to forward */

/* First, determine non-empty queues & select the appropriate index */
index = 0;
for (i = 3; i >= 0; i--) {
 index = index << 1; /* shift bits left */
 if (! isEmpty(queue[i]))
 index = index | 1; /* set rightmost bit */
}
if (index > 0) { /* at least one queue has packets, select queue and
forward packet */
 packetProb = random(); /* 0 <= packetProb < 1 */
 for (i = 0; i < 4; i++)
 if (probabilities[index][i] > packetProb)
 break;
 }
 /* now i holds the queue to transmit from */
 forward_packet_from_queue(i);

}

Figure 4. Packet selection and forwarding in the the class-based
weighted fair queuing algorithm

/* Simulation initialization.
 entry: qw[4] --> queue weights
 exit: probabilities[16][4] --> probabilities for all possible queue
 state combinations. Index is a 4-bit quantity with each bit being
 1 if the corresponding queue is full and 0 if the corresponding
 queue is empty (its bits are read right to left). For example:
 index = 3 --> 0011 binary --> queues 0 and 1 have packets
 index = 13 --> 1101 binary --> queues 0, 2 and 3 have packets
 index = 15 --> 1111 binary --> all queues have packets
 index 0 (no queue has packets) is unused

e.g. qw[] = {40%, 30%, 20%, 10%}

probabilities[1] = {1, -1, -1, -1} -- only 1 queue has packets, gets 100%
probabilities[5] = {2/3, -1, 1, -1} -- 3rd element is 1 because
 probabilities are cumulative
probabilities[13] = {4/7, -1, 6/7, 1}
probabilities[15] = {4/10, 7/10, 9/10, 1}
*/

for (i = 1; i < 15; i++) {
 /* find total weight of non-empty queues */
 totWeight = 0;
 index = i;
 for (j = 0; j < 4; j++) {
 if (index & 1 == 1) { /* test rightmost bit */
 totWeight += qw[j];
 index = index >> 1; /* shift bits right */
 }
 }
 /* find proportions and compute cumulative distribution */
 totalProbs = 0;
 lastNonEmpty = 0;
 index = i;
 for (j = 0; j < 4; j++) {
 if (index & 1 == 1) { /* test rightmost bit */
 lastNonEmpty = j;
 totalProbs += qw[j] / totalWeight;
 probabilities[i][j] = totalProbs;
 }
 else
 probabilities[i][j] = -1;
 index = index >> 1; /* shift bits right */
 }
 /* set the cumulative probability of the last queue to 1 to fix
 arithmetic rounding errors */
 probabilities[i][lastNonEmpty] = 1;
}

/* end initialize */

Figure 3. Initialization of the class-based weighted fair queuing algorithm

stage), one packet will be accepted at random and
the other will be blocked by means of upstream
control signals. Note that since packets of different
priorities are stored in different queues, the
contention for buffer space always occurs between
packets of the same priority.

 All SEs have deterministic service time.
 Finally, all packets in input ports contain both the

data to be transferred and the routing tag. In order to
achieve synchronously operating SEs, the MIN is
internally clocked. As soon as packets reach a
destination port they are removed from the MIN, so,
packets cannot be blocked at the last stage.

III. PERFORMANCE EVALUATION METRICS FOR QUAD-
PRIORITY MINS

In this section the two most important network
performance factors, namely packet throughput and delay
are analyzed and modelled for the case of Quad-Priority
MINs. The universal performance factor introduced in [55],
which combines the above two metrics into a single one is
also considered.

In order to evaluate the performance of multi-priority
(NXN) MIN the following metrics are used. Let Τhavg and
Davg be the average throughput (bandwidth) and average
delay of a MIN respectively.

Normalized throughput Th [30] is the ratio of the

average throughput Τhavg to number of network outputs N.
Formally, Th can be expressed by

N

Th
Th avg (1)

and reflects how effectively network capacity is used.

Relative normalized throughput RTh(i) of i-class

priority traffic, where i=1..p is the normalized throughput
Th(i) of i-class priority packets divided by the
corresponding-class offered load λ(i) of such packets.

)(

)(
)(

i

iTh
iRTh

 (2)

This extra normalization of each class-priority traffic
leads to a common value domain needed for comparing their
absolute performance values in all configuration setups.

Normalized packet delay D(i) of i-class priority traffic,

where i=1..p is the ratio of the Davg(i) to the minimum
packet delay which is simply the transmission delay n*nc
(i.e. zero queuing delay), where n=log2N is the number of
intermediate stages and nc is the network cycle. Formally,
D(i) can be defined as

ncn

iD
iD avg

*

)(
)((3)

The definition of normalized delay D(i) effectively extends
the definition of normalized delay in [30] to consider the

different priority classes.

Universal performance factor Upf(i) of i-class priority
traffic, where i=1..p is defined by a relation involving the
two major above normalized factors, D(i) and Th(i): the
performance of a MIN is considered optimal when D(i) is
minimized and Th(i) is maximized, thus the formula for
computing the universal performance factor arranges so that
the overall performance metric follows that rule. Formally,
Upf(i) can be expressed by

2
2

)(

1
)()(

iTh
wiDwiUpf thd (4)

where wd and wth denote the corresponding weights for each
factor participating in the U, designating thus its importance
for the corporate environment. Consequently, the
performance of a MIN can be expressed in a single metric
that is tailored to the needs that a specific MIN setup will
serve. It is obvious that, when the packet delay factor
becomes smaller or/and throughput factor becomes larger
the Upf becomes smaller, thus smaller Upf values indicate
better overall MIN performance. Because the above factors
(parameters) have different measurement units and scaling,
we normalize them to obtain a reference value domain.
Normalization is performed by dividing the value of each
factor by the (algebraic) minimum or maximum value that
this factor may attain. Thus, equation (4) can be replaced
by:

2max2

min

min

)(

)()(
*

)(

)()(
*)(

iRTh

iRThiRTh
w

iD

iDiD
wiUpf thd

(5)

where D(i)min is the minimum value of normalized packet
delay D(i) and RTh(i)max is the maximum value of Relative
normalized throughput RTh(i). Consistently to equation (4),
when the universal performance factor Upf(i), as computed
by equation (5) is close to 0, the performance a MIN is
considered optimal whereas, when the value of Upf(i)
increases, its performance deteriorates. Finally, taking into
account that the values of both delay and throughput
appearing in equation (5) are normalized, D(i)min = RTh(i)max
= 1, thus the equation can be simplified to:

2

2

)(

)(1
1)()(

iRTh

iRTh
wiDwiUpf thd

 (6)

The definition of universal performance Upf(i) effectively
extends the definition of universal performance factor in
[55] to consider the different priority classes.

In this study, when calculating the value of the above
combined factor Upf, we have considered the individual
performance factors (packet throughput and delay) to be of
equal importance (wd = wth =1). This is not necessarily true
for all application classes, e.g. for batch data transfers
throughput is more important, whereas for streaming media
the delay must be optimized.

Finally, we list the major parameters affecting the
performance of examining quad-priority MIN.

Buffer-size b(i) of an i-class priority queue, where i=1..p

is the maximum number of such packets that the
corresponding i-class input buffer of a SE can hold. In this
paper we consider symmetric-sized single-buffered b(i)=1
MINs, where i=1..4. It is worth noting that a buffer size of
b(i)=1 is being considered since under this setting each SE
egress link is effectively equipped with four buffer positions
(one buffer space for each distinct priority). Studies on
single-priority architectures have shown that increasing the
buffer size beyond four would lead to excessive delays [55],
hence in this study we have fixed the per priority buffer size
to 1.

 Offered load λ(i) of i-class priority traffic, where i=1..p is
the steady-state fixed probability of such arriving packets at
each queue on inputs. It holds that

p

i
i

1
)(, where λ

represents the total arrival probability of all packets. In our
simulation λ is assumed to be λ = 0.1, 0.2… 0.9, 1.

 Ratio of i-class priority offered load r(i), where i=1..p
expressed by r(i)=λ(i)/λ. It is obvious that

p

i
ir

1
1)(. In

this paper the ratios of high, medium, normal and low
priority packets are assumed to be r(4)=0.20, r(3)=0.25,
r(2)=0.25 and r(1)=0.30 respectively.

 Weight of i-class priority queues w(i) is the percentage
rate of processor dedicated to i-class priority packets in each
queue by the applied scheduling algorithm. In the case of
CBWFQ discipline the weight of a class-priority expresses
the probability that a particular class queue is examined first;
this probabilistic mechanism applied individually in each SE
for every cycle repeatedly. In this paper we consider two
different case studies. In the first scenario the weights of
higher priority-classes are considered to be greater than those
of lower ones [w(4)=0.40, w(3)=0.30, w(2)=0.20 and
w(1)=0.10], while at the second configuration all priority
classes are assumed to have equal weights w[i]=0.25, where
i=1..4.

Network size n, where n=log2N, is the number of stages
of an (N X N) MIN. In our simulation n is assumed to be
n=6.

IV. SIMULATION AND PERFORMANCE RESULTS

In this paper we developed a special simulator in C++,
capable of handling quad-priority MINs using the class-
based weighted fair queuing. Each (2X2) SE was modeled
by eight non-shared buffer queues, where buffer operation
was based on the first come first serviced principle; each

egress link of the SE (upper and lower) is provided with
four buffer queues, corresponding to the four priority levels.

Performance evaluation was conducted by using
simulation experiments. Within the simulator several
parameters such as the buffer-length, the number of input
and output ports, the ratio of each class-priority offered
load, the weight of each class-priority queue, and the traffic
shape was considered.

Finally, the simulations were performed at packet level,
assuming fixed-length packets transmitted in equal-length
time slots, while the number of simulation runs was again
adjusted at 105 clock cycles with an initial stabilization
process 103 network cycles, ensuring a steady-state
operating condition.

A. Simulator validation

Since no other related works on simulators for multi-
priority MINs operating under class-based weighted fair
queuing scheduling discipline have been reported insofar in
the literature, we validated our simulator only against those
that use strict priority scheduling. In the case of single-
priority traffic p=1, we noticed that all simulation
experiments were in close agreement with the results
reported in [56] (fig. 2 in [56]), and -notably- with
Theimer’s model [50], which is considered to be the most
accurate one in comparison with the other two classical
models [37],[30]. In dual-priority MINs (p=2) we compared
our measurements against those obtained from Shabtai's
Model reported in [44], and have found that both results are
in close agreement (maximum difference was only 3.8%).

B. Overall MIN performance

Before examining the QoS offered to each priority class
under different settings of the queue weights in CBWFQ,
we will present the simulation results regarding the effect of
queue weight setting to the overall performance of the MIN.

Figure 5 depicts the total normalized throughput
[th=th(h)+th(m)+th(n)+th(l)] of a MIN using a quad-priority
scheme vs. the offered load, for different queue weight
assignments. In Figure 5, curve PQ corresponds to the total
normalized throughput of a 6-stage MIN operating under
the strict priority queue scheduling algorithm, while curves
CBWFQ[H,M,N,L] indicate the total normalized
throughput of the same MIN operating under the CBWFQ
scheduling policy and having the weights of its high,
medium, normal and low packets set to H, M, N and L,
respectively. In all cases, the ratio of high, medium, normal
and low packets against the overall network load is set to
20%, 25%, 25% and 30% correspondingly. Under this load
mixture, the queue weight setting 25/25/25/25 roughly
corresponds to a setup with no priorities (the
correspondence is not exact because the load ratios for
different priority classes are not equal), while queue weight
setting 40/30/20/10 corresponds to a “mild prioritization”

scheme where e.g. a high-priority packet has approximately
double probability to be transmitted as compared to a
medium-priority packet, when they contend for the same
output link (high-priority packets have a 40% ratio of the
bandwidth being the 20% of the overall traffic, while
medium-priority packets have a 30% ratio of the bandwidth
being the 25% of the overall traffic).

We can notice here that by employing the CBWFQ
algorithm, the overall MIN throughput increases, as
compared to the PQ algorithm with the increment ranging
from 0.9% (λ=0.6) to 2% (λ=1). This can be attributed to the
fact that under CBWFQ, network resources are better
exploited; this particularly applies to network buffers
dedicated to lower-priority queues within the SEs: under the
strict priority mechanism, these buffers have decreased
probability of transmitting the packets they hold, which in
turn leads to increased probability of blockings, in the event
that new lower-priority packets arrive at the corresponding
SE. Nevertheless, the primary goal of classifying the
packets into four priority classes is to provide better QoS to
higher priority ones. This goal can be also achieved under
the CBWFQ algorithm, by setting the weight of the higher-
priority queues to a value greater than the anticipated load
of packets with the corresponding priorities. The exact
setting of this parameter can be determined by balancing
between the factors of achieving optimal overall network
performance and delivering better QoS to higher-priority
packets.

0.50

0.55

0.60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

T
h

-T
ot

al
 N

or
m

al
iz

ed
 th

ro
ug

hp
ut

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 5. Overall MIN throughput under varying scheduling algorithms and
queue weight settings

In Figure 5 we can also notice that the overall MIN
performance is practically not affected at all when shifting
from the “no priorities” scheme (queue weight setting:
25/25/25/25) to the “mild prioritization” scheme (queue
weight setting: 40/30/20/10).

In the following paragraphs, we discuss the QoS level
delivered to packets of different priority classes under the
above queue weight settings when the CBWFQ algorithm is
employed.

C. Quad-Priority MINs Performance under High Network
Load

In this subsection we examine the effect of queue weight
setting on the QoS offered to packets of different priority
classes under the CBWFQ algorithm, and we also compare
these QoS levels to the corresponding ones delivered by the
strict priority queuing scheduling algorithm,

Figures 6, 7, 8 and 9 depict the relative normalized
throughput for packets belonging to the high, medium,
normal and low priority classes, respectively. In these
figures (and subsequent ones also), curves PQ correspond to
the total normalized throughput of a 6-stage MIN operating
under the strict priority queue scheduling algorithm, while
curves CBWFQ[25,25,25,25] and CBWFQ[40,30,20,10]
correspond to the “no priority” and “mild prioritization”
scenarios described above. In all cases, the ratio of high,
medium, normal and low packets against the overall
network load is set to 20%, 25%, 25% and 30%
respectively.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ - offered load

R
T

h(
h)

 -
 R

el
at

iv
e

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 6. Relative normalized throughput for high-priority packets vs.
offered load

Figure 6 shows that, while under strict priority queuing
the normalized throughput for high priority packets is close
to optimal, under CBWFQ the respective normalized
throughput (expectedly) drops. The deterioration ranges
from 5.2% (λ=0.7) to 15.5% (λ=1) for the “mild
prioritization” scenario, while in the “no priorities” scenario
the corresponding drop ranges from 11.2% (λ=0.7) to 28.8%
(λ=1). Similar observations hold for medium priority

packets (Figure 7), which under the “mild prioritization”
scenario exhibit a drop in normalized throughput varying
from 6.8% (λ=0.7) to 16.9% (λ=1) and a drop in the same
metric ranging from 12.4% (λ=0.7) to 27.5% (λ=1) under
the “no priorities” scenario.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ - offered load

R
T

h(
m

)
-

R
el

at
iv

e
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 7. Relative normalized throughput for medium-priority packets vs.
offered load

Figures 8 and 9 show that using the CBWFQ algorithm
instead of the strict priority queuing one is beneficial for
normal- and low-priority packets (especially for the latter).
Indeed, under the “mild prioritization” scenario, the gains
for normal- and low-priority packets scale up to 11.0% and
101.7% respectively (in both cases for offered load λ=1),
while under the “no priorities” scenario, the corresponding
gains are 11.0% and 181.3%, again for λ=1. Interestingly,
the relative normalized throughput for medium-priority
packets appears to be higher under the strict priority queuing
algorithm for loads 0.7 λ 0.8 as compared to the “mild
prioritization” scheme (approximately by 2%), while the
situation quickly reverses for higher loads. This can be
explained by considering that under strict priority queuing,
normal-priority packets are favored over low-priority ones,
with the latter constituting the 30% of the overall network
traffic. Thus, when the network operates under strict priority
queuing, it appears to have amble resources to service high-,
medium- and normal-priority packets, obviously at the
expense of low-priority ones (cf. Figure 9). Beyond this load
range however, the servicing of high- and medium-priority
packets (which are now greater in numbers) consumes most
network resources, resulting in degraded service being
offered to medium-priority packets. Similarly we can
explain the fact that the throughput offered to medium-
priority packets under the “mild prioritization” scheme is
better than the one offered under the “no priorities” scheme:

medium-priority packets (25% of the overall traffic) are
offered twice the bandwidth allocated to low-priority
packets (30% of the overall traffic) and the gains from this
setting seem to surpass the losses incurred from giving
higher bandwidth shares to high- and medium-priority
packets.

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ - offered load

R
T

h(
n)

 -
 R

el
at

iv
e

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 8. Relative normalized throughput for normal-priority packets vs.
offered load

From the figures above we can conclude that the “mild
prioritization” scenario offers considerable gains for low-
and normal-priority packets, while the normalized
throughput drops for high- and medium-priority packets can
be considered tolerable.

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ - offered load

R
T

h(
l)

 -
 R

el
at

iv
e

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 9. Relative normalized throughput for low-priority packets vs.
offered load

Figure 10 illustrates the normalized delay for high-
priority packets. The strict priority queuing scheduling
algorithm offers the best delay, using however the CBWFQ
algorithm under the “mild prioritization” scenario increases
the delay only by 3.8% (λ=0.7) to 6.6% (λ=1); under the “no
priorities” scenario, the delay metric deteriorates further,
ranging from 7.5% (λ=0.7) to 11.3% (λ=1).

1.00

1.05

1.10

1.15

1.20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

D
(h

)
-

N
or

m
al

iz
ed

 d
el

ay

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 10. Normalized delay for high-priority packets vs. offered load

1.00

1.05

1.10

1.15

1.20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

D
(m

)
-

N
or

m
al

iz
ed

 d
el

ay

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 11. Normalized delay for medium-priority packets vs. offered load

For medium-priority packets (Figure 11), the
deterioration of the normalized delay metric owing to the
usage of the CBWFQ algorithm instead of strict priority
queuing is even smaller: under the “mild prioritization”
scenario the normalized delay increases by 0.8% (λ=0.7) to

3.7% (λ=1), while under the “no priorities” scenario, the
corresponding increments are 7.4% (λ=0.7) to 3.3% (λ=1).
Noticeably, the deterioration at full network load is smaller
than the normalized delay increment for load λ=0.7: this is
due to the fact that, under the strict priority queuing
algorithm, the normalized delay increases steeply beyond
load λ=0.7, since at this load range the network contains a
considerable number of high-priority packets and the
network resources are not adequate to optimally serve both
high-and medium-priority packets.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

D
(n

)
-

N
or

m
al

iz
ed

 d
el

ay

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 12. Normalized delay for normal-priority packets vs. offered load

Figure 12 depicts the normalized delay for normal-
priority packets. We can notice than for load λ0.7 both
CBWFQ scenarios offer significantly improved normalized
delay for this priority class. In more detail, the “mild
prioritization” scenario offers an improvement in the delay
from 2.5% (λ=0.7) to 13.9% (λ=1), while in the “no
priorities” scenario the improvement ranges from 3.3%
(λ=0.7) to 15.2% (λ=1). Similar observations can be made
for the normalized delay of low-priority packets (Figure 13),
where under the “mild prioritization” scenario the
normalized delay improves from 11.6% (λ=0.7) to 15.9%
(λ=1), while under the “no priorities” scenario the
improvements range from 18.4% (λ=0.7) to 23.3% (λ=1).

In overall, from the figures above we can conclude that
the “mild prioritization” scenario offers considerable gains
for low- and normal-priority packets, while the normalized
delay drops for high- and medium-priority packets can be
considered small (in all cases less than 7.5%).

Figures 14, 15, 16 and 17 illustrate the universal
performance factor for packets belonging to the high,
medium, normal and low priority classes, respectively.
Recall that this metric combines the normalized throughput
and normalized delay into a single metric, whose value

tends to zero when the network approaches its optimum
operation.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

D
(l

)
-

N
or

m
al

iz
ed

 d
el

ay

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 13. Normalized delay for low-priority packets vs. offered load

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

U
pf

(h
)

-
U

ni
ve

rs
al

 P
er

fo
rm

an
ce

 F
ac

to
r

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 14. Universal performance factor for high-priority packets vs.
offered load

For high- and medium-priority packets (Figure 14 and
Figure 15), we can observe that the universal performance
factor increases when shifting from the strict priority
queueing algorithm to the “mild prioritization” scheme
under CBWFQ, indicating that the QoS offered to these
packet classes degrades. This is expected since both
performance factors considered for the calculation of the
universal performance factor (i.e. relative normalized
throughput and normalized delay) have been found to

deteriorate for these packet priority classes under the “mild
prioritization” scheme, as compared to strict priority
queuing. Under the “no priority” scheme, we can observe
that the QoS offered to these packet classes degrades
further.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

U
pf

(m
)

-
U

ni
ve

rs
al

 P
er

fo
rm

an
ce

 F
ac

to
r

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 15. Universal performance factor for medium-priority packets vs.
offered load

Regarding normal- and low-priority packets (Figure 16
and Figure 17), we can observe that switching from the
strict priority queue algorithm to the “mild prioritization”
scheme under CBWFQ leads to lower values of the
universal performance factor, indicating that the QoS
offered to packets of these priority classes increases. Again,
this is expected since both the relative normalized
throughput and normalized delay have been found to
improve under the “mild prioritization” scheme. For load
λ = 0.7 in particular, we can observe that for normal-priority
packers the universal performance factor is smaller for strict
priority queuing than CBWFQ/“mild prioritization”, owing
to the better throughput achieved by strict priority in this
particular case, as discussed above. For load λ = 0.8, while
strict priority queuing offers better normalized throughput to
medium-priority packets than CBWFQ/“mild
prioritization”, strict priority queuing exhibits also
considerably higher delays (cf. Figure 12); the final result is
a (marginally) worse value for the strict priority queuing
algorithm for the particular value of λ. Finally, the “no
priorities” scheme yields even smaller values of the
universal performance factor regarding low-priority
packets, while for medium-priority packets the “no
priorities” scheme results in higher values of the universal
performance factor (i.e. worse QoS), owing to the fact that
“mild prioritization” achieves better normalized throughput
for normal-priority packets, as discussed above.

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

U
pf

(n
)

-
U

ni
ve

rs
al

 P
er

fo
rm

an
ce

 F
ac

to
r

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 16. Universal performance factor for normal-priority packets vs.
offered load

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ - offered load

U
pf

(l
)

-
U

ni
ve

rs
al

 P
er

fo
rm

an
ce

 F
ac

to
r

PQ

CBWFQ[40,30,20,10]

CBWFQ[25,25,25,25]

Figure 17. Universal performance factor for low-priority packets vs.
offered load

V. CONCLUSIONS

In this paper we have addressed the performance
evaluation of a quad-priority, single-buffered, 6-stage MIN,
employing the class-based weighted fair queuing packet
scheduling algorithm. We have evaluated through
simulations the overall performance of the MIN and the
quality of service offered to each priority class under
different network loads and compared these results against
the strict priority algorithm and the “no priority” scheme.
The performance evaluation results show that the strict

priority algorithm does offer the high- and medium-priority
packets better quality of service, but on the other hand it
degrades the overall MIN performance and significantly
degrades the quality of service offered to normal- and low-
priority packets. Using a “mild prioritization” configuration,
i.e. setting the high/medium/normal/low queue weights to
0.4/0.3/0.2/0.1 under a traffic mixture of 0.2/0.25/0.25/0.3
has been found to degrade the QoS offered to high- and
medium-priority packets at a tolerable level, while it
significantly improves the QoS offered to normal- and low-
priority packets. Queue weights could further be tuned to
obtain the desired QoS for all packet priority classes, always
considering the ratio of packets in each priority class.

MIN designers and operators can use the results presented
in this paper to optimally configure the weights of the
queues, taking into account the QoS they want to offer to
packets of different priorities and the overall MIN
performance they want to achieve.

Future work will focus on examining other network sizes
and load configurations, including hot-spot and burst loads,
as well as different buffer sizes and handling schemes. In
our future work we also intend to develop a closed form
solution, providing thus an analytical model for single-
buffered MINs incorporating the class-based weighted fair
queuing algorithm on a quad-priority scheme. The provision
of QoS with a reduced number of queues, as proposed in
[36], [61] will be also considered.

VI. REFERENCES
[1] G.A. Abandah and E.S. Davidson, “Modeling the communication

performance of the IBM SP2”, in Proceedings of the 10th International
Parallel Processing Symposium (IPPS’96), IEEE Q3 Computer Society
Press, Hawaii, pp. 249-257, 1996.

[2] G. B. Adams and H. J. Siegel, “The extra stage cube: A fault-tolerant
interconnection network for supersystems”, IEEE Trans. on
Computers, 31(4)5, pp. 443-454, May 1982.

[3] I. F. Akyildi, X. Wang, W. Wang. Wireless mesh networks: a survey.
Computer Networks 47, pp. 445–487, 2005.

[4] Avaya Inc. Avaya “Automatic QoS Technical Configuration Guide for
the ERS 4500, 5000, Avaya BCM 50, 450, Avaya CS 1000, Avaya CS
2100 and Avaya SRG 50”,
http://support.avaya.com/css/P8/documents/100123842, accessed July
19, 2011.

[5] R.Y. Awdeh and H.T. Mouftah, “Survey of ATM switch
architectures”, Comput. Netw. ISDN Syst. 27 (1995), pp. 1567–1613,
1995.

[6] C. Bouras, J. Garofalakis, P. Spirakis, V. Triantafillou., “An analytical
performance model for multistage interconnection networks with
finite, infinite and zero length buffers”, in Performance Evaluation
34(98) , pp. 169-182, 1998..

[7] Cisco Systems. QoS Scheduling and Queueing on the Catalyst 3550
Switches.
http://www.cisco.com/en/US/tech/tk389/tk813/technologies_tech_note
09186a00801558cb.shtml, accessed July 19, 2011.

[8] Cisco Systems. Class-Based Weighted Fair Queueing. Chapter in
Cisco IOS Software Releases 12.0 T, 2010.
http://www.cisco.com/en/US/docs/ios/12_0t/12_0t5/feature/guide/cbwf
q.html accessed July 28, 2011.

[9] CISCO. Catalyst 6500 Release 15.0SY Software Configuration Guide.
CISCO systems, 2011.

[10] CISCO. Catalyst 2960 Switch Software Configuration Guide. CISCO,
2010.

[11] CISCO. Catalyst 4500 Release IOS-XE 3.1.0 SG. Software
Configuration Guide. CISCO systems, 2011.

[12] H. J. Chao. Next Generation Routers. Proceedings of the IEEE 90(9),
September 2002.

[13] C.-H. Choi and S.-C. Kim, “Hierarchical multistage interconnection
network for sharedmemory multiprocessor system”, Proceedings of the
1997 ACM Symposium on Applied Computing, pp. 468–472, 1997.

[14] Dax networks. Dax Dx-5048GM technical specifications.
http://www.daxnetworks.com/products-dec2010/switches/dax%20dx-
5048gm.asp?Page=3&Print=

[15] A. Demers, S. Keshav and S. Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm”, Journal of Internetworking Research and
Experience, V1, N1, pp 3-26, September 1990.

[16] DLink. D-Link™ DGS-1008D Gigabit Ethernet Switch manual. DLink
2007.

[17] A. Elwalid , D. Mitra, “Analysis, Approximations and Admission
Control of a Multi-Service Multiplexing System with Priorities”,
Proceedings of IEEE INFOCOM '95, pp. 463-472, 1995.

[18] A. Elwalid , D. Mitra, “Design of generalized processor sharing
schedulers which statistically multiplex heterogeneous QoS classes”,
Proceedings of the Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM '99), pp. 1220 –
1230, 1999.

[19] S. Feit. Local area high speed networks.MTP, Indianapolis, 2000.

[20] G.F. Goke, G.J. Lipovski. “Banyan Networks for Partitioning
Multiprocessor Systems” Procs. of 1st Annual Symposium on
Computer Architecture, pp. 21-28, 1973.

[21] S.J. Golestani. A self-clocked fair queueing scheme for broadband
applications. Proceedings of the 13th Conference on Networking for
Global Communications (INFOCOM '94), pp. 636 – 646,1994.

[22] C. Guo. SRR, “An O(1) time complexity packet scheduler for flows in
multi-service packet networks”, IEEE/ACM trans. Networking,
12(6):pp. 1144–1155, Dec. 2004.

[23] A. K. Gupta, L. O. Barbosa, N.D. Georganas, “Switching modules for
ATM switching systems and their interconnection networks”,
Computer Networks and ISDN Systems, Volume 26, Issue 4, pp. 433-
445, December 1993.

[24] S. Hiyama, Y. Nishino and I. Sasase, “Multistage Interconnection
Multicast ATM Switch with Exclusive Routes for Delay-Sensitive and
Loss-Sensitive Cells”, Journal of High Speed Networks - JHSN , vol.
15, no. 2, pp. 131-155, 2006.

[25] Hewlet Packard. 3Com SuperStack 3 Switch 3800 – Overview.
http://bizsupport1.austin.hp.com/bizsupport/TechSupport/Document.js
p?objectID=c02642521&printver=true, accessed July 19, 2011.

[26] Hewlet-Packard. HP ProCurve Secure Router 7000dl Series. Available
at
http://www.hp.com/rnd/pdfs/datasheets/ProCurve_Secure_Router_700
0dl_Series.pdf accessed July 28, 2011.

[27] Hewlett-Packard, HP 2615-8-PoE Switch QuickSpecs. Hewlett-
Packard, 2011.

[28] IEEE 802.1D Working Group. IEEE Standard for Local and
Metropolitan Area Networks: Media Access Control (MAC) Bridges.
IEEE 2004, http://standards.ieee.org/about/get/802/802.1.html

[29] IEEE 802.1Q Working Group. IEEE Standard for Local and
Metropolitan Area Networks: Virtual Bridged Local Area Networks.
IEEE 2005, http://standards.ieee.org/about/get/802/802.1.html

[30] Y.-C.Jenq, “Performance analysis of a packet switch based on single-
buffered banyan network”, IEEE Journal Selected Areas of
Communications (83), pp. 1014-1021, 1983.

[31] J. Kim, T. Shin, and M. Yang, “Analytical modeling of a Multistage
Interconnection Network with Buffered axa Switches under Hot-spot
Environment”, Procs. of PACRIM’07, 2007.

[32] S. Kumar, “Mathematical Modelling and Simulation of a Buffered
Fault Tolerant Double Tree Network”, International Conference on
Advanced Computing and Communications ADCOM’07, Volume ,
Issue pp.422 – 433, 18-21 Dec. 2007.

[33] D.A. Lawrie. “Access and alignment of data in an array processor”,
IEEE Transactions on Computers, C-24(12):11451155, Dec. 1975.

[34] J. Liebeherr, E. Yilmaz., “Workconserving vs. Non-workconserving
Packet Scheduling”, An Issue Revisited. Seventh International
Workshop on Quality of Service (IWQoS '99), 1999, pp. 248 – 256,
1999.

[35] T.Lin, L. Kleinrock, “Performance Analysis of Finite-Buffered
Multistage Interconnection Networks with a General Traffic Pattern”,
Joint International Conference on Measurement and Modeling of
Computer Systems, Proceedings of the 1991 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, San
Diego, California, United States, Pages: 68 - 78, 1991

[36] A. Martinez, F.J. Alfaro, J.L. Sanchez, F.J. Quiles, J. Duato. A New
Cost-effective Technique for QoS Support in Clusters. IEEE
Transactions on Parallel and Distributed Systems. 18(2), pp. 1714 –
1726, 2007

[37] H. Mun and H.Y. Youn. “Performance analysis of finite buffered
multistage interconnection networks”, IEEE Transactions on
Computers, pp. 153-161, 1994.

[38] M. Nabeshima. Packet-based scheduling for ATM networks based on
comparing a packet-based queue and a virtual queue. IEICE
Transactions on Communications. vol e82-b, no 6, June 1999.

[39] Netgear. Quality of Service (QoS) on Netgear switches. Netgear, 2009.

[40] Network Working Group. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. IETF, 1998.
http://tools.ietf.org/html/rfc2474

[41] Nortel Networks. Nortel Ethernet Switch 460/470 Overview —
System Configuration.
http://support.avaya.com/css/P8/documents/100099692, accessed July
19, 2011

[42] J.H. Patel. “Processor-memory interconnections for mutliprocessors”,
Procs. of 6th Annual Symposium on Computer Architecture. New
York, pp. 168-177, 1979.

[43] B. Prabhakar, N. McKeown. On the speedup required for combined
input- and output-queued switching. Automatica, Volume 35, Issue 12,
pp.1909-1920, December 1999.

[44] G. Shabati, I. Cidon, and M. Sidi. Two priority buffered multistage
interconnection networks. Journal of High Speed Networks, pp.131–
155, 2006.

[45] J. Shortle, M. Fisher. Approximation for a two-class weighted fair
queueing discipline. Performance Evaluation 67 (2010) 946-958.

[46] M. Shreedhar, G. Varghese, “Efficient fair queuing using deficit
round-robin”, IEEE/ACM Transactions on Networking, vol. 4 issue 3,
pp. 375 – 385, June 1996.

[47] T. Soumiya, K. Nakamichi, S. Kakuma, T. Hatano, and A. Hakata,
The large capacity ATM backbone switch “FETEX-150 ESP”,
Comput. Netw. 31(6) , pp. 603–615, 1999.

[48] E. Stergiou, G. Garofalakis, “Performance evaluation for multistage
interconnection networks servicing unicast and multicast traffic (by
partial operation)” Proceedings of the Performance Evaluation of
Computer and Telecommunication Systems (SPECTS’09), IEEE Press,
pp. 311 - 318 , July, 2009.

[49] W.R. Stevens, “TCP/IP Illustrated”, Volume 1. The protocols, (10th
Ed), Addison-Wesley Pub Company, 1997.

[50] T.H. Theimer, E. P. Rathgeb and M.N. Huber. “Performance Analysis
of Buffered Banyan Networks”, IEEE Transactions on
Communications, vol. 39, no. 2, pp. 269-277, February 1991.

[51] [J. Torrellas and Z. Zhang, “The performance of the cedar multistage
switching network”, IEEE Trans. Parallel Distrib. Syst. 8(4) , pp. 321–
336, 1997.

[52] E.S.H. Tse, “Switch fabric architecture analysis for a scalable bi-
directionally reconfigurable IP router”, Journal of Systems
Architecture, EUROMICRO J. 50(1) , pp. 35–60, 2004.

[53] D. Tutsch, G.Hommel. “Comparing Switch and Buffer Sizes of
Multistage Interconnection Networks in Case of Multicast Traffic”,
Procs. of the High Performance Computing Symposium, (HPC 2002);
San Diego, SCS, pp. 300-305, 2002.

[54] D. Tutsch and G. Hommel. “Multilayer Multistage Interconnection
Networks”, Proceedings of 2003 Design, Analysis, and Simulation of
Distributed Systems (DASD'03). Orlando, USA, pp. 155-162, 2003.

[55] D.C. Vasiliadis, G.E. Rizos, and C. Vassilakis. “Performance Analysis
of blocking Banyan Swithces”, Procs. of CISSE 06, December, 2006.

[56] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis, and E.Glavas.
“Performance evaluation of two-priority network schema for single-
buffered Delta Network”, Procs. of IEEE PIMRC' 07, 2007.

[57] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis. “Improving Performance of
Finite-buffered Blocking Delta Networks with 2-class Priority Routing
through Asymmetric-sized Buffer Queues”, Proceedings of the Fourth
Advanced International Conference on Telecommunications AICT08,
IEEE Press, 2008.

[58] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis, E. Glavas. “Routing and
Performance Analysis of Double-Buffered Omega Networks
Supporting Multi-Class Priority Traffic”, Proceedings of International
Conference on Systems and Networks Communications ICSNC08,
IEEE Press, 2008.

[59] D.C. Vasiliadis, G.E. Rizos, and C. Vassilakis. “Routing and
Performance Evaluation of Dual Priority Delta Networks under
Hotspot Environment”, Proceedings of the First International
Conference on Advances in Future Internet AFIN09, IEEE Press, pp.
24-30, 2009.

[60] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis. Performance Study of
Multilayered Multistage Interconnection Networks under Hotspot
Traffic Conditions. Journal of Computer Systems, Networks, and
Communications, doi:10.1155/2010/403056, Volume 2010 (2010).

[61] A. M. Vicente, G. Apostolopoulos, F.J. Alfaro, J.L. Sanchez, F.J.
Duato. Efficient Deadline-Based QoS Algorithms for High-
Performance Networks. IEEE Transactions on Computers. 57(7), pp.
928-939, July 2008.

[62] C. A. Waldspurger, W. E. Weihl, “Lottery Scheduling: Flexible
Proportional-Share Resource Management”, In Proceedings of
symposim on Operating System Design and Implementation,
November 1994.

[63] Xin. Li, L. Mhamdi, J. Liu, K. Pun, M. Hamdi,, “Architectures of
Internet Switches and Routers”, In High-performance Packet
Switching Architectures, I. Elhanany and M. Hamdi (eds), ISBN: 1-
84628-273-X, Springer-Verlag London Limited 2007.

[64] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet-
Switched Networks. ACM Transactions on Computer Systems, Vol 9,
No. 2.,,pp. 101-124, May 1991.

