
The final publication is available at www.springerlink.com

 1

A context management architecture for m-
commerce applications

Benou Poulcheria1, Vassilakis Costas1

1University of Peloponnese,

Terma Karaiskaki 22100 Tripoli, Greece

{pbenou@ethnodata.gr, costas@uop.gr}

Abstract Mobile commerce applications operate in highly dynamic environments with diverse
characteristics and interesting challenges. The characteristics and conditions of these environments –
called context–, can be exploited to provide adaptive mobile services, in terms of user interface,
functionality and content, in order to offer more effective m-commerce. Today, building adaptive
mobile services is a complex and time-consuming task due to the lack of standardized methods, tools
and architectures for the identification, representation and management of the context. Addressing
some of these issues, recent works have provided formal extensions for various stages of the m-
commerce application lifecycle, such as extended UML class diagrams for building design models and
have used context parameters in order to offer adaptive applications. Using these works as the basis, in
this paper we propose a context management architecture, which accommodates the requirements that
have been identified for m-commerce applications. The proposed architecture is evaluated in terms of
completeness, complexity, performance and utility, and compared against other approaches proposed
in the literature regarding its suitability for supporting context-aware m-commerce applications.

Keywords mobile commerce; context; context-awareness; context management; adaptivity; software
architecture

1. Introduction
With the appearance and penetration of mobile computing devices and the advent of wireless
communication technologies, e-commerce has broadened the spectrum of its application and users to a
new form of commerce known as mobile electronic commerce. According to [5], “Mobile commerce
or m-commerce is defined as any activity related to a commercial transaction (or a potential one) – an
exchange of services or goods for money - and is conducted via wireless and mobile communication
networks and uses wireless and mobile devices as user interface.”
The process of designing and developing mobile commerce applications is inherently more complex
and demanding, as compared to traditional applications, due to the fact that they are executed in
diverse environments, as opposed to “traditional applications” which are typically executed on the
relatively stable desktop PC. Within these environments, there are greatly varying characteristics
regarding (a) the properties of the individual devices (memory capacity, battery lifetime, processing
power, input/output and communication capabilities), (b) the properties of the networking
infrastructure (latency, bandwidth, disconnections, cost), and (c) the properties of the natural
surroundings (noise level, brightness, temperature). Moreover, user mobility leads to the need for
extending the use of these applications both temporally and spatially, while, at the same time, users
may interact with mobile commerce applications while concurrently engaging in other activities (e.g.
driving). Hence, the full attention of the user cannot be assumed and alternative communication
modes may need to be explored (e.g. auditory instead of visual) [18, 41].
M-commerce applications are, furthermore, addressed to an audience with greatly varying qualities
regarding their personal characteristics, preferences, computer literacy and skills, needs and desires.
Lastly, the merchandise (tangible or intangible) traded within an m-commerce transaction is of focal
interest, since the added value of an m-commerce transaction lies in the ability to promote and trade
the merchandise within the “anytime/anywhere” framework. These particularities, known under the
general term context [16, 45, 59], demand from an m-commerce application adaptability, in terms of

The final publication is available at www.springerlink.com

 2

user interface, functionality and content [42], so as to maximize user satisfaction and increase the
amount of sales. The utilization of context for the provision of adapted applications may offer a
number of advantages for providers of m-commerce as well as for users. We will indicatively mention
some of them:

i) The providers will be able to offer the functions of the same basic application to a wide range of
devices and networks with the result of approaching more users to whom to offer their services
anywhere and anytime. Also, they will be able to utilize environmental parameters (e.g. location)
for the provision of innovative services (e.g. theatres or restaurants closest to the user, location-
based advertising) with the goal of attracting and maintaining clients.

ii) The user, who on some occasions may have to give some personal data (e.g. age or preferences)
and the consent to use them, will have the advantage of being able to receive timely interesting
information at any time and regardless of his/her location. Examples of that would be product
offers at a shopping mall, parking areas or theatres closest to him/her, product or service lists
according to his/her interest, stock prices exceeding a limit, etc.

In order to achieve the goal of adaptability of m-commerce applications, we should be equipped with
(a) a solid perception of concepts and structures related to context, (b) a methodology to capture the
important context factors and include them in the m-commerce application design and (c) the proper
software system that will collect, process and distribute the context. So far, a number of systems
utilizing context (context-aware systems) have been developed, especially in the field of pervasive
computing, but either the array of the context they manage is very limited (e.g. user’s location and
identity), or they are not widely available to everyday users [30]. This can be attributed to the fact that
while the process of developing context-aware mobile services constitutes a complex and time-
consuming task, the above requirements for achieving adaptability of m-commerce applications,
especially (b) and (c), are still lagging. In this paper, we propose a scheme for middleware-level
support for building context-aware services, describing an architecture for context management
suitable for the special characteristics of mobile commerce applications; our proposal thus focuses on
factor (c) listed above. To better support the presentation of the proposed architecture, we also include
in this paper appropriate elements for context definition (factor a) and representation (factor b).
The remainder of the paper is organized according to the framework proposed by March et al [50] for
presenting design science research outputs, which suggests that design science research output or
artifacts should include: constructs (the vocabulary of the domain, constituting a conceptualization
used to describe problems within the domain and to specify their solutions); models (representing
situations as problem and solution statements); methods (facilitating the construction of a
representation of user needs, the transformation of user needs into system requirements and then into
system specifications and finally into an implementation); and instantiations (realization of artifacts in
their environment). Following this framework, the paper is structured as follows:

 in section 2, we describe the “problem” or otherwise the necessity and requirements that
derived from a decision to exploit the context in order to offer adaptive m-commerce
applications,

 in section 3, we present a set of constructs which conceptualize the concepts of context and
convey the relevant knowledge in a form understandable from IT practitioners,

 in section 4, we present the extended UML class diagrams as a model for expressing
constructs and the relations among them,

 in section 5, we propose a context management, presenting the overall design and the
individual modules) and discuss how the presented architecture tackle the requirements for
context management presented in sections 2 and 3; a number of implementation issues for the
proposed method are also discussed in subsection 5.7,

 in section 6, we present our experiences from the usage of the proposed context management
architecture, discussing the implementation of an adaptive application as a case-study,

 in section 7, we review other approaches tackling context management and compare them to
the method proposed in this paper, focusing on the suitability of each approach for m-
commerce application development and the comprehensiveness of features provided, while
we also point out our contribution in the field,

 finally, in section 8 conclusions are drawn and future work is outlined.

2. Problem statement and requirements
Context has been independently studied in the domains of: i) mobile computing [44], ii) pervasive and
ubiquitous computing [17], and iii) e-commerce. Each of these domains approaches and handles
context from its own viewpoint.

The final publication is available at www.springerlink.com

 3

In the domain of mobile computing, emphasis is placed on computational context, i.e. the context
referring to device characteristics (e.g. memory capacity, processing power) and network
characteristics (e.g. latency, bandwidth); these characteristics are mainly collected by logical sensors
(e.g. operating system APIs). In the domain of pervasive and ubiquitous computing, context is
approached through individual environmental parameters (environmental context), which are mostly
captured by physical sensors (e.g. location, presence, motion, temperature sensors). Finally, in e-
commerce, the aspect of personalization has been investigated in order to tailor the behaviour of a
system’s interaction to match the skills, tasks and preferences of its users. Additionally, effort is made
to present to the user the information considered most appropriate for his/her current information
needs. In the area of personalization, the meaning of context revolves around the user and his/her
preferences (user context), and context information is captured either explicitly by user input or by
recording the user’s habits or through reasoning processes (derived or interpreted context).
Each of the three aforementioned domains (mobile computing, pervasive and ubiquitous computing
and e-commerce) is of interest for m-commerce applications, and manages only one portion of the
context approached from its own viewpoint, whether it may be computational context or
environmental context or user context, without being interested in the application-specific context [6]
(context related to the data and functionality of the specific application in question). Also, each of
these domains collects context from different sources, either from logical sensors or physical sensors
or by the users, using different mechanisms each time, with little or no standardization regarding the
mechanisms for collection, processing and provision of context. Additionally, context management
will on several occasions take place in ad-hoc ways inside the main application, which will use it to
adjust its function. Τhis practice however complicates the code, decreases software cohesion and
increases software module coupling, resulting to decreased understandability, manageability,
maintainability and code reusability.
Thus, m-commerce, being on the cutting edge of mobile computing, pervasive and ubiquitous
computing and e-commerce technologies, faces the challenge of distinguishing the context that
concerns it and standardizing the mechanisms for its collection, management and provision, taking
into consideration the limitations set by the mobile networks and the mobile devices in use. Benou and
Vassilakis [6] defined the context that concerns m-commerce applications (computational,
environmental, user and application-specific context) and recording the metadata that it should bear,
extended the UML class diagrams for its representation (as we overview in the sections 3 and 4) and
introduced a methodology for its definition in each case [6]. The next step to be made so as to utilize
context from m-commerce applications is the provision of standardized mechanisms for its collection,
management and distribution, suitably adapted to the particularities of m-commerce applications,
which are dictated by the user’s devices, networks and mobility.
Therefore, and given that m-commerce is interested in all types of context information, a software
architecture must be made available, which will be able to:

1. manage all types of context information (computational, environmental, user, application-
specific),

2. standardize the partial functions of managing the context information (collection, processing,
distribution) regardless of the type of context and the mechanism of its collection (sensed,
explicitly provided, or derived),

3. facilitate the implementation of adaptive applications, through the provision of standardized
and uniform interfaces,

4. take into consideration the technological limitations of devices and networks.

3. The concept of context

3.1. Definition of context information and context domains

After analyzing the concepts of context [45, 64, 70, 71] in the domain of m-commerce applications,
we define context as the set of all possible conditions and states that surround an electronic commerce
operation, whereas we define context information as the set of data elements comprising the operation
context. Context is therefore an abstract model, which - through a series of design and implementation
activities - will be mapped into concrete context information elements; the latter will be finally
utilized to support the adaptive services.
In the stages of m-commerce application analysis, design and development, we will mainly address
context information; for the requirements of these stages, context information may be extended as
follows [6]:
“Context information of an m-commerce application is every piece of information which may be used
to characterize a state of an entity, which may be considered to be relevant to the interaction of the

The final publication is available at www.springerlink.com

 4

user with the particular application. The entity state may be either static or dynamically changing,
while the relevance of the entity to the user-application interaction can be derived from the potential
to exploit the information describing the entity state to optimize this interaction so as to maximize the
commercial value of the application”.
With the term “entity”, they refer both to the term “entity” and the term “relationship” of the Entity
Relationship Model (ER-Model) [37]. Benou and Vassilakis [6] also organize context information in
four domains: i) the user domain, ii) the environment domain, iii) the computing domain and, iv) the
application-specific domain (Figure 1). Context domains are also called entity groups, because they
group together entities pertaining to the same actor. The user domain includes information relevant to
the user. The computing domain includes information regarding the computing (and communication)
infrastructure. The environment domain encompasses information regarding the real-world aspects of
the user and computing surroundings, such as location, time, weather, etc. The application-specific
domain contains information that is conceptually related to the particular application. We can observe
that the first three groups are common to all m-commerce applications’ categories, whereas the fourth
(application-specific domain) is specialized for different application classes or even at application
level.

Relation a-u

User Domain Environment
Domain

Computing
Domain

Relation u-e

Relation u-c Relation e-c

Relation a-e Relation a-c

Application Specific
Domain

Figure 1. Types of Context Information

The base entities of these four context domains may be interrelated; relationships may be established
either among base entities within the same context domain, or among base entities belonging to
different domains; these relationships, are called “associative entities”. Relationships between entities
of different domains - namely the associative entities -, are depicted in Figure 1 as lines labeled
“Relation u-e”, “Relation u-c”, “Relation e-c”, “Relation a-c”, “Relation a-u”, “Relation a-e”.
Associative entities, derived by relationships among entities of the same domain, are naturally
classified within the domain to which both associated entities belong to. For the classification of
associative entities derived by interrelating entities of different domains, the analyst should consider
the semantics of the relationship -if some of the interrelated entities are deemed more important, or
even properties of the development philosophy (e.g. user-centric model vs. process-based models).
For example, we may consider the associative entity “user access devices” (a relationship between the
base entity “user” of the user domain and the base entity “device” of the computing domain), which is
more naturally classified into the user domain, since the properties of this relationship are more user-
oriented. The arrows’ directions in Figure 1 show the domain in which the produced associative
entities could be classified.

3.2. The formal definition of context

Before dealing with the representation of context information, we will present a series of definitions
that formalize this representation and further elaborate on the definition of context information that we
have introduced in section 3.1.

Definition 1:. An entity Oi is defined as a tangible or intangible real-world entity, such as a device, a
place, a CD, an electronic product such as an mp3 file or a customer order.

The final publication is available at www.springerlink.com

 5

Definition 2: The context domain is a high-level abstraction which partitions entities into the
following categories: {user, computing, environment, application-specific}.

Definition 3: An entity Oi, may be modelled using a number of properties that describe aspects of the
object Oi and a number of relationships, which describe how the entity relates to other entities. The set
that includes all attributes (i.e. both properties and relationships) for entity Oi will be denoted as Ai =
{ai,1, ai,2, …, ai,m}. Note that relationships may model the “part-of” semantics.

Definition 4: The state of an object Oi during a particular transaction t will be denoted as Si(t) and is
derived by assigning a concrete value to each attribute of Ai. Each value may be atomic, record-typed,
array-typed or any combination of the above. Orthogonally to their types, attribute values may be
sensed (i.e. be gathered from physical or logical sensors), explicitly provided (i.e. the user enters the
value) or derived (i.e. other values are processed to compute the value of the particular attribute). This
is effectively the context information of object Oi during transaction t.

Definition 5: The context of a transaction t will be denoted as C(t) and is defined as the collection of
all states of objects Oi which can be perceived as relevant to the user, the executed application or their
interaction during the transaction t. Formally, C(t) = kSk(t) for all objects Ok that are considered
relevant.

According to the definitions above, context information for a particular transaction can be denoted as
a set of quadruples (object context domain, object, attribute, value). The element object denotes the
object to which the particular piece of context information corresponds, e.g. a particular stock share
(which includes information regarding “share description”, “share daily prices”, “shareholders
registry,” etc.), location (which includes information regarding the longitude and latitude, but may
include more “high-level” information such as “office”, “home”), etc. The element object context
domain specifies the context domain to which the object belongs; the element attribute identifies the
particular attribute that is measured; and the value element gives the exact value for the attribute
within the specific transaction.
Note that the level of abstraction considered in the selection of an entity is dependent on the
requirements of the application domain and the choices of the systems’ analysts. For instance, a PDA
may be modelled as a single entity Opda, having attributes representing its keyboard, screen, etc, or
these parts may be modelled as separate entities and be connected to the Opda entity through
relationships of type “part-of” (cf. “FIPA Device Ontology Specification” [24]). These modelling
choices do not affect the generality of the modelling method, since the goal, of capturing all the
required context state information, can be accomplished independently of whether this information
has been represented as a value of a property within a linked entity or as a component of a structure-
valued attribute of a single entity.

4. Representing context: the extended UML class
diagrams
According the definitions which have been presented in paragraph 3.2, context-related information,
which encompasses a commercial transaction conducted via a mobile device by a moving user, may
be organized into a sum of interrelated entities [29, 34, 62]. The attributes of those entities represent
the context elements, which will be utilized by the services implementing the adaptation of the m-
commerce application.
These entities and their interrelationships can be illustrated as enhanced UML class diagrams [6], in
which the enhancement refers to the inclusion of the special characteristics of context information and
more specifically:

 the dynamicity of the value of each attribute, given that context information is distinguished
into static and dynamic [16], depending on how often it changes,

 the acquisition method of each attribute value (sensed, explicitly provided, derived [16]),
 the metadata information accompanying each attribute [39]. Such information is the source

from which the context element is retrieved, the timestamp of the retrieval, the confidence for
the correctness of its value, the frequency of its collection, the validity period, and the metric
in which it is expressed,

 the need to record past values for the information [6],

The final publication is available at www.springerlink.com

 6

 the possibility that the type of a related entity may change. This is important in adaptive
services, since such a change may make new context items or sensing methods available or
may terminate the availability of context items/sensing methods, which, in turn, may trigger
changes to the user interface, processing or available data [6]. For instance, a change in the
user’s location from an instance of “office” to an instance of “shopping mall” may lead to the
withdrawal of the user interface item “Read corporate memos” and establish the item “Get
offers.”

An example of an enhanced class diagram is illustrated in Figure 2. The notations used in this diagram
are described in the following paragraphs.

located at
? (sns) {,,}

Office Room

Bus Station

Location

1..1 is type of
©(exp) {,,}

1..1

Shopping Mall

1..*Uses ? (exp) {,,}

engaged in
? (exp) {,,}

1..1

is type of
©(exp){,,}

+©(exp){,,}Desc
……..

Activity

1..*

Person

+ ©(exp){,,} ID
+©(exp){,,}Name

……..

+ ©(sns) {,,} ID
+©(exp){,,}Name

………………

Device Hardware Device Type

+©(exp) {,,} ID
+©(exp) {,,} Desc

……………….

Location Type

Figure 2. Context-aware UML class diagrams

Consistently to the UML class diagrams, entities are represented using rectangles with three areas.
The top area contains the class name, the middle area lists its properties and the bottom area lists the
basic operation it provides. Its relationships with other entities are denoted using arrows (), which
are labeled with the relationship cardinality (e.g. 0..1, 1..1, 1..*) [51]. The special-type generalization
links () denote the parent/child class relationships. Each attribute or relationship may be labeled
with additional marks that denote the special nature of context information as follows:

 Information dynamicity is denoted using:
o the symbol © for static information
o the symbol ≈ for dynamic information

 The acquisition method is denoted using:
o (sns) : for sensed information
o (exp): for explicitly provided information
o (drv): for derived information

 The metadata associated to the context information is denoted as a series of values, with each
value corresponding to a piece of metadata, e.g. {source, timestamp, confidence, frequency,
validity period, metric}

 the need to record past values for the information is illustrated through a double rectangle

(

).
 the possibility that the type of a related entity may change is denoted using an arrow splitting

to multiple ends (

), one end for each possible type.
The stereotypes denoting the characteristics of attributes and relationships storing context information
can be automatically mapped to code, relieving the developer of tedious and repetitive work and
minimizing the possibility of errors. The code generation procedure can be summarized as follows:

1. all elements representing context include code to locate their context sources. This code is
called when the object is initialized (within the constructor) and when the connection to the
current source is broken. Additionally, callback methods are provided for receiving new
values from the context sources and storing them accordingly into the context elements,

2. if information regarding information dynamicity (static, dynamic) is specified, then a slot
will be created where the relevant dynamicity characterization will be stored, in order to be

The final publication is available at www.springerlink.com

 7

available to consumers of context information (e.g. adaptation managers). Context
consumers, using this information and the appropriate metadata (e.g. confidence), will be
able to assess the quality of context information [34],

3. information regarding the acquisition method (sensed, derived, explicitly provided) is used in
the process of discovering available sources for the context information element, effectively
filtering out sources not providing the designated method,

4. each item in the metadata list is handled according to its particular semantics. More
specifically:

a. the presence of the source metadata element leads to the creation of a slot in which
the context information source will be stored,

b. if the timestamp metadata element is specified, a slot will be created where the time
of the context information acquisition will be stored,

c. the confidence, validity period and metric metadata elements, if specified, are
retrieved from the context information source and stored in special slots. If the
context information source does not make these relevant metadata available, a
designer-specified default value is used,

d. Finally, the frequency metadata element is used to set how often a new value will be
obtained from the context source. The code generation procedure creates a dedicated
thread [63] to query context sources and store the obtained values accordingly.

5. recording past values is achieved by using a collection object (e.g. a Java or STL/C++ vector)
to store all past values of the context element; each past value is accompanied with the
timestamp the value was obtained. Set methods are redefined to append new values to the
collection, while distinct get methods are provided to obtain the last or a designated range of
values,

6. if the type of a related entity may change, the type of the variable storing the relationship is
set to the lowest common ancestor in the class hierarchy, as determined by the generalization
relationships in the class diagram (in the example of Figure 2, the lowest common ancestor of
classes Shopping mall, Office room and Bus station is Location). If no lowest common
ancestor can be found in the class diagram, a suitable generic type (e.g. Object in Java) is
used. Additionally, callback functions are provided enabling the developer to execute actions
when the type of the related object changes.

A UML profile and a plugin extending ArgoUML [2], with capabilities to (a) represent the context
information extension and (b) adapt the code generation procedure to the characteristics specified for
attributes and relationships representing context information, are currently under development, while
an extension to the Eclipse platform is being designed.
Through the tracing of the context information onto extended UML class diagrams, the transformation
of the vague concept of context of an m-commerce transaction into distinct data elements suitable for
processing by computerized information systems has been achieved. Note that UML class diagrams
are merely a means to the end of identifying the needed context data elements; the same goal can be
attained using different approaches, such as the Mobl domain specific language [32] or the COPAL
language [48], which allow for high-level, declarative language for programming mobile web
applications including context-aware aspects.
The next logical step of the process of context utilization is its capture, management, storage and
distribution from informational systems which will take into consideration the particularity of m-
commerce applications.

5. The architecture for context management of m-
commerce applications

5.1. The context information manager

In order to determine the context information needs of an m-commerce application a relevant
methodology for extracting these needs should be employed. Benou and Vassilakis [6] have already
proposed such a methodology. Since the context information of an m-commerce application has been
identified (through Benou and Vassilakis’ methodology or any other suitable methodology) and
properly modeled (through extended UML class diagrams), the next step for the realization of a
context-aware application is the designing of the subsystem that will manage the context.
The process of designing the system that will manage context information is common to all context-
aware mobile commerce applications (CAMCAs). Despite the fact that the context that different
CAMCAs manage can be quite diverse, a well-defined and extensible context management

The final publication is available at www.springerlink.com

 8

architecture with standardized interfaces between its components and towards its clients may
practically be used to support the context management requirements of any CAMCA. The need for
extensibility in this context refers to both the context factors the architecture is able to manage and the
methods that can be employed for context acquisition. Such a standardized architecture will constitute
a useful tool for speeding up the development of context-aware applications [33] and minimizing the
probability for errors or omissions; furthermore, it will increase the potential for reusability, since
context components developed for some application (e.g. context interpreters) will be able to be
incorporated in other applications with few or no changes.
Both the international practice and the state-of-the-art [15, 46, 75] in the areas of pervasive and
ubiquitous computing indicate that a context information management subsystem should be able to:

 capture context information from its sources, which are physical and logical sensors, as
well as the users. This includes the discovery of the context information sources within
its vicinity,

 store context information or parts of it, so that it can be exploited in subsequent
situations,

 interpret the context to a higher level of abstraction, which will be more meaningful
(and useful) to the application that will use it. As an example, we can consider the
interpretation of a (longitude, latitude) pair to a representation of the form “home,”
“office” or “shopping mall”,

 transit the context information to the application that will use it. Transition should be
supported in two modes, i.e. with the initiative being either on the application
(request/response or pull paradigm) or on the context management system (pub/sub or
push paradigm [52]), since both these modes are considered useful for CAMCAs [11].

In accordance with the above requirements, we will present below the design of the Context Manager
module (Figure 3), which is further decomposed into the following components: i) the Context
Collection and Interpretation module, ii) the Context Distribution module, iii) the Context Storage
and iv) the Context Discovery Agency. The Context Collection and Interpretation module is
responsible for gathering the context information from the various sources of the application
environment and interpreting it to a higher level of abstraction. The Context Storage module is
responsible for storing the context information for subsequent use. The Context Distribution module is
responsible for distributing the context information to the applications that need it. The Context
Discovery Agency is responsible for facilitating context information discovery for interested parties.
The interested parties are essentially the components responsible for performing adaptation within
various information systems (frequently termed as adaptation managers); these components will use
the information provided by the Context Manager to perform the adaptation of the application they
provide.
In the following subsections we will describe in detail each of the functional components that
comprise the Context Manager, as well as the interactions between these components and between the
context manager and the adaptation manager component of the m-commerce applications requesting
its services.

m-commerce
application

Explicit Context Sensed Context

Context
Storage

Context Discovery
Agency

Adaptation
Manager

Context Manager

Context collection
and interpretation

Context distribution

Figure 3. The Context Manager

5.2. Context wrappers: collecting and distributing context

One of the tasks assigned to the Context Collection and Interpretation subsystem is the collection of
context information from its sources. Context information may be gathered from physical sensors
(e.g. location sensors such as GPS, identification sensors such as smartcard or fingerprint readers,
motion sensors, etc) [26] or from logical sensors (e.g. APIs provided by the operating systems which

The final publication is available at www.springerlink.com

 9

allow the retrieval of information regarding the processing power, the available software and hardware
components, the current time and so forth). Logical sensors include the software modules that retrieve
information from the main application database, (e.g. which user is currently logged in, which has
been his/her observed behavior up to now, etc). An additional source of context information is the
user, who is the source of explicitly provided context information, (i.e. information directly entered by
the user, such as gender, date of birth and so on; some of this information may, of course, be stored
into the main application database and subsequently extracted from there). Depending on the source of
the context information (physical sensors, logical sensors or users), the mechanisms that will capture
it will be designed.
Physical sensors typically react to some environmental stimulus and generate numerical outputs
which can be retrieved using low-level, device-specific protocols. Logical sensors are realized through
software APIs, which the interested party may invoke to obtain the desired context information;
logical sensors may read the context information values from a single physical sensor or combine
values from multiple physical sensors [38]. Context information is made available from logical
sensors either through a periodic monitoring process (polling) or through an available notification
mechanism (e.g. an operating system API which provides notifications when additional storage space
is made available). Finally, user information sensors - i.e. sensors delivering context information
provided by the user (explicitly provided context information, e.g. information about the age or the
likings of the user) - do not retrieve the relevant information through sensing mechanisms, but this
information is made available through graphical interfaces or through information integration
procedures (e.g. parsing and processing of XML files, retrieval of information from smart cards and
so forth).
Direct incorporation of sensor-dependent code data into applications, usually necessitates low-level
coding and leads to tightly-coupled applications with low portability and components with limited
reusability [15]. Therefore, in order to decouple the applications from the details of the sensing
process, we adopt the context wrapper approach. Figure 4 illustrates the concept of the context
wrapper through a UML diagram. This software module undertakes the responsibility of reading
context information from its source (through the ContextSourceAPI), so the peculiarities and
idiosyncrasies of the particular context source are encapsulated in the ContextSourceAPI. Naturally,
context wrappers will include source-dependent software, therefore a distinct context wrapper is
required for each different context source; the presence of the context wrapper makes the context
information available for exploitation through a standardized interface (ContextWrapperAPI),
common for all kinds of context information.
Context wrappers can be viewed as the context domain counterpart of device drivers found in
operating systems: device drivers undertake the task of accepting generic commands from the
operating system (e.g. “read a block from disk”) or passing data and status information to the
operating system (e.g. “these are the requested data” or “the last command has failed in a retryable
manner”), while at their other end, they communicate with the device in a device-dependent fashion,
such as reading and writing device registers and processing device-generated interrupt signals [63].
The presence of the context wrapper, enables us to handle introductions of new context sources or
modifications of existing ones by correspondingly creating a new context wrapper or modifying the
existing one, leaving the rest of the CAMCA and the Context Manager system intact.

Context
Source

Context source-
specific interface/API
for context retrieval

Context
Wrapper

Context source-
independent interface/API
for context management

ContextSourceAPI ContextWrapperAPI

Figure 4. A Context Wrapper

As part of their internal operation, context wrappers may cache the last value obtained from the
managed sensor in local memory to speed up the processing of the requests posed to them.
Regarding their cooperation with other components, context wrappers provide the following
functionalities:

1. they allow external entities, (e.g. adaptation managers of CAMCAs), to retrieve the
values produced by the context source they manage, thus implementing the pull
paradigm. As a response to such queries, the wrapper may probe the context source for a

The final publication is available at www.springerlink.com

 10

new value, use the last one retrieved from the context source and cached, if it is deemed
valid or even retrieve a value previously stored in the context store,

2. they allow external entities to subscribe to notifications provided by the wrapper. These
notifications allow interested applications to be informed about changes on the values of
the context information sensed by some particular wrapper. They are sent whenever a
subscriber-specified condition is met – e.g. for a wrapper managing a GPS device, a
relevant condition could be “the location has changed by 200m or more”. The
subscription mechanism effectively implements the pub/sub paradigm,

3. they store the values obtained in the context store for later usage,
4. they offer reflection capabilities, through which a context wrapper may be queried

regarding the context properties it “measures” (e.g. user identity or user location), which
metadata are pertinent to each specific property (e.g. if a wrapper “measures”
temperature, an indication whether temperature is measured in Centigrade or Fahrenheit
degrees) and the list of the notifications it provides (e.g. for a wrapper measuring
temperature, “temperature increased,” “temperature dropped,” “temperature changed,”
“temperature above threshold” and so forth),

5. they register themselves with the Context Information Discovery Agency. This
registration allows the wrapper to be discovered by other software components (context
information aggregation wrappers, adaptation managers, etc), as described in section 5.5,
below. They also unregister themselves from the Context Information Discovery Agency
when they cease their operation,

6. they enable their detection from the Discovery Agency, thus allowing the Context
Information Discovery Agency to populate its context provider repository. This may be
practically implemented by having the Discovery Agency periodically broadcast requests
for the specific service and automatically register to its repository those context wrappers
that will respond to the broadcast. These broadcasts also allow the Context Information
Discovery Agency to determine which wrappers remain operational and which have
ceased functioning.

According to the above list of offered functionalities, the context wrapper interface depicted in Figure
4 can be refined as shown in Figure 5.
Essentially, context wrappers implement the context collection and the context distribution of the
architecture depicted in Figure 3, with the code liaising with the context source interface (cf. Figure 4,
Figure 5) implementing the context collection and the code realizing the context source-independent
interface/API (and more specifically the ContextQuery and ContextNotification interfaces of Figure 5)
being the context distribution. More specifically, the ContextQuery and ContextNotification interfaces
of Figure 5 implement the distribution of context information to interested parties, while interfaces
ContextReflection, ContextDiscoverable and ContextDataStoreCom facilitate aspects of the context
distribution operation in the overall architecture.

ContextSource Context
Wrapper

ContextSourceAPI

ContextQuery

ContextNotification

ContextReflection

ContextDiscoverable

ContextDataStoreCom

Figure 5. Refined Context Wrapper Interface

The details of the interfaces through which the wrappers communicate with external software entities
(i.e. details on the request response dialogues and notification messages) are described in [7]. We must
note here that the design presented above directly supports configurations where the context wrapper
is not located on the same machine as the context source it manages. This is important for cases where
some sensor is an embedded device with limited CPU power, communication capabilities or increased
needs for energy preservation. In such cases, the sensor only needs to make available the data using a
prominent mode (e.g. through an RS-232 connection or via Bluetooth), while the context wrapper will
run on suitable hardware and undertake the tasks of context information gathering and distribution.
A context wrapper provides information originating from a particular context source, i.e. physical or
logical sensor, or the user. In many cases, however, the information required for an entity (person,
location or object) is essentially an aggregation of the data elements provided by multiple context
information wrappers, which may also need to be combined with additional information from the
context information store. Therefore, it is necessary to introduce software components that implement
this form of aggregation and which are called context information aggregators. Their functionality is

The final publication is available at www.springerlink.com

 11

similar to that of context wrappers, in the sense that they can respond to queries, produce notifications
and store the context information they acquire. These software components can in turn query or
subscribe to other context information wrappers so as to obtain the elements of context information
they are interested in. Furthermore, they can retrieve information from the context information store,
which may be used together with the data obtained through queries or incoming notifications to
produce aggregated context information; the latter will be made available to interested parties for
further perusal. Context aggregators are similar to logical sensors, differing only in the aspect that
context information is retrieved from context wrappers instead of context source-dependent APIs.

5.3. The context information distribution module

The context information distribution module (i.e. the ContextQuery and ContextNotification
interfaces of the context wrapper) undertakes the task of making the context information available to
the interested parties (notably the adaptation managers of CAMCs) in a standardized and uniform
manner. More specifically, it allows for the distribution of the context information according to both
the request-response and the event-triggered paradigm [8], corresponding to the “pull” and “push”
context information distribution [11]. According to the request-response (pull) paradigm, context
information is given as a response to explicit requests, while according to the event-triggered (push)
paradigm, the context distributor arranges for sending context information to subscribers when certain
events occur. The context information distribution module is implemented through the query and
notification mechanisms built in the context information wrappers and realized by the ContextQuery
and ContextNotification interfaces, respectively, while, as noted above, these interfaces are
complemented with interfaces ContextReflection, ContextDiscoverable and ContextDataStoreCom,
with the latter three facilitate aspects of the context distribution module’s operation in the overall
architecture. The query mechanism serves the need for on-demand provision of context information,
with the initiative being on the side of the interested application. The notification mechanism (also
referred to as publish/subscribe) is suitable for repeating requests for context information where the
interested application merely states the conditions under which it wishes to be notified of changes
regarding the context information values. Under this scheme, the context consumer (i.e. the adaptation
manager module of an m-commerce application) needs to be coded in a manner that can
asynchronously receive and process incoming notification messages. Context information wrappers
implement both the query and the notification mechanisms through interfaces that are uniform for all
wrappers. Uniformity is a key requirement, since in this way applications may easily communicate
with the wrappers, regardless of the wrapper implementation details.

5.3.1. The ContextQuery interface

The interface to the query mechanism has the form:
queryContext(timeSpecification, attributeList)

attributeList designates which attributes provided by the sensor are requested. This is required since
context wrappers may be attached to context sources (physical sensors, logical sensors or users) that
provide numerous attributes, only few of which are needed (e.g. a meteorological data sensor may
provide information about temperature, humidity, etc., and we need only to obtain information
regarding temperature). Since timeliness is an important aspect of context information [6], the query
mechanism allows the querying party to specify how “fresh” the context information is required to be
through the timeSpecification designation [7]. The client defines to the wrapper the attributes it
requires and the wrapper returns an appropriate reply [7]. This scheme decouples the querying
mechanism from the context value obtainment implementation details, (e.g. interfacing to an RFID
scanner, a floor sensor or a video image processor to detect the presence of an individual) and thus
allows the application to be designed independently of the actual implementation of the sensing
devices.

5.3.2. The ContextNotification interface

The notification mechanism of context information wrappers is activated when the software
component, which is interested in receiving notifications regarding a particular piece of context
information, places a subscription for a notification produced by a context wrapper (flow 1 in Figure
6). Each such subscription is complemented with a notification condition which specifies the
circumstances under which the particular subscriber wishes to receive notifications. Besides the
current value of the context information element, the condition may refer to the previously observed
value, useful for producing notifications when the change has exceeded a certain threshold (e.g.
temperature – previousNotificationTemperature > 0.5); it may also refer to temporal information (e.g.

The final publication is available at www.springerlink.com

 12

produce a notification every hour, regardless of whether the value has changed) or to context
information element metadata (e.g. check whether temperature is measured in Celsius or Fahrenheit
degrees to set accordingly the notification threshold within the condition).

Context Wrapper Context consumer

1. Subscribe to notification

2, 3, 4…n-1. Event notifications

n. Unsubscribe from notification

Figure 6. Publish/subscribe paradigm

Every time the wrapper detects that a notification condition is satisfied, it will send a notification to
the consumer that has placed the relevant subscription (flows 2 to n-1 in Figure 6). Finally, the context
consumer may cancel its subscription through an unsubscribe request (flow n in Figure 6).

5.3.3. The ContextReflection interface

The ContextReflection interface allows context wrappers to be queried regarding the capabilities they
offer and more specifically:

1. which context attributes it provides information on. For each attribute, a list of pertinent
metadata is given, describing the attribute (e.g. a human-readable description), the value (e.g.
units of measurement) and characteristics specific to the acquisition method (e.g. accuracy,
period of value refreshment, minimum and maximum supported values) [7].

2. which notifications it publishes [7].

5.3.4. The ContextDataStoreCom interface

The ContextDataStoreCom interface [7] includes all provisions for communicating with the data store
for storing values obtained by the context source for further perusal or for querying already stored
values when the algorithm employed by the QueryAny method [7] indicates that such a value should
be returned.

5.3.5. The ContextDiscoverable interface

The ContextDiscoverable interface [7] allows for the context wrapper to be dynamically discovered
by the respective modules within the context management architecture, and thus be subsequently used
by interested context consumers. It encompasses methods to register and unregister the context
wrapper to and from the Discovery Agency, as well as methods in order to allow for the context
wrapper to be discovered from the Discovery Agency [7].

5.4. Context interpretation

Context interpretation is the sub-module of the Context Collection and Interpretation module that
produces context information of higher level of abstraction, as opposed to context wrappers which
only produce low-level context data. More specifically, it collects “primitive” information elements
from the context distribution module and the data store and applies to them inference procedures
according to rules that have been defined. For instance, it may retrieve the GPS coordinates
corresponding to the user’s location to map it to a position on a specific road (e.g. “Motorway 5, 3rd
kilometer”) or determine if the user’s location is “home,” “office” or “on the move.” The inference
procedure may be performed using simple if/then rules or through more elaborate algorithms and
techniques [25, 74]. Context interpreters adhere to the context wrapper specifications. They consume
context from context sources (context distribution module and the data store) and make it available to
other context consumers. However, since the input data is gathered from standardized sources, context
interpreters’ implementation may be greatly simplified since there is no need to write context-source
specific code; instead, data gathering may be specified declaratively by simply listing the context
sources some pertinent parameters (e.g. whether data will be retrieved according to the push or pull
paradigm, what the polling frequency for the pull paradigm is).
According to the specification above, the full definition of a context interpreter includes (i) the
information that will be interpreted (e.g. specific attributes) (ii) the context attributes that will be

The final publication is available at www.springerlink.com

 13

produced as output of the interpretation procedure and (iii) the procedure that will perform the
interpretation and (iv) the notifications provided, if any.
Context interpreters implement the ContextQuery, ContextNotification, ContextReflection,
ContextDataStoreCom and ContextDiscoverable interfaces, thus being context distributors
themselves, and providing the services described in section 5.3.

5.5. The context information discovery agency

The context information discovery agency [7] implements facilities for storing information about the
context providers (context information wrappers, context information aggregators, context
information interpreters), for locating them and for informing interested parties of how they can be
contacted. Additionally, it offers information about itself in order to be detectable from context
providers.
When a context information provider becomes active, it searches for the context information
discovery agency and then registers to it. The details sent with the registration are (i) its ID, (ii) the
address it can be reached at (e.g. if the communication is TCP/IP socket-based, the address will
include the IP address and the port number), (iii) the attributes it provides and the related metadata and
(iv) the notification services it offers. Additionally, the context information discovery agency can
itself register context information providers that have been discovered through a broadcast message.
When a context information provider terminates its operation, it informs the discovery agency to
remove itself from the context information discovery agency’s registry. Context information providers
may however terminate their operation abruptly (e.g. due to battery failure) and in these cases they
cannot contact the context information discovery agency to perform the registry removal operation. In
order to maintain its registry in an up-to-date state, the context information discovery agency
periodically checks for the availability of the registered agents and automatically unregisters context
information providers that fail to respond to it.

Discovery
Agency

1. The context wrapper is
queried and the wrapper’s
address is returned

2. Query context
wrapper

3. New context
data

0. The context wrapper registers to the discovery
agent, either with own initiative or after being
discovered (responds to a received probe)

Context
wrapper

Communication
Mechanism

Sensor

Communication
Mechanism

ADAPTATION MANAGER

Context
Consumer

4. Response from
context wrapper

Figure 7. Example of an adaptation manager querying a context wrapper

Finally, context information consumers (adaptation managers, context information aggregators and
context information interpreters) may invoke the discovery agency to locate the context information
providers which make available some particular context information. Figure 7 illustrates the complete
message sequence from the point the Context Consumer module of an Adaptation Manager queries
the discovery agency for a context wrapper’s address, up to the point that it receives the requested
messages (note that messages 2, 3 and 4 may be repeated multiple times).

5.6. The context information store

The context information store [7] allows for long-term storage of context information; this may be
produced by any context information provider and once stored in the context information store may be
later retrieved by context consumers. In this sense, the context information store plays the role of a
buffer between context producers and context consumers, decoupling the context production from the
context consumption time, while it also offers the potential to store large amounts of context data,
which would be infeasible to do in other components.

5.7. Implementation issues

Mobile commerce applications may be distinguished into three categories according to their
architecture [23]. The first category includes applications that run exclusively on mobile devices and
exchange data with a remote server (e.g. J2ME and Windows CE applications). The second category
includes applications that run on some server and exchange only messages with the mobile device

The final publication is available at www.springerlink.com

 14

(typically SMS and MMS applications). The third category includes applications that run within a
browser and exchange data with a remote server using a web protocol (HTTP, WAP, etc). According
to Quah and Seet [56], the adaptation of these applications essentially comprises of taking into
account the values of the context information elements to i) customize the data presented to the user
(content adaptation) and/or ii) tailor the application’s presentation properties (presentation adaptation)
and/or iii) make the suitable modification of the application’s functionality (functional adaptation). In
order to achieve presentation and functional adaptation, context information must be available either
when the application interface is generated (for browser-based applications or message-based
applications) or at the location where the application is run (for “desktop-like” applications).
Regarding the first category of m-commerce applications (i.e. applications that run exclusively on the
mobile devices), the interface is created at application development time, while the application is run
later on the mobile device. On the contrary, for applications falling into the second and third category
(message-based and browser-based, respectively), both the application interface generation and the
application logic are hosted at the remote server and performed at run-time. Taking into account,
however, the resource limitations of current mobile devices, the full-scale management and
exploitation of context information at mobile device-side seems infeasible. Especially if numerous
context information elements need to be taken into account and advanced interpretation techniques are
required; the need for constantly updating the volatile elements of context information also implies
increased communication costs and battery consumption, which are two additional deterring factors
for adopting the mobile device-side adaptation. Therefore, the architecture presented here is primarily
suitable for mobile applications of the second and third categories (message-based and browser-based,
respectively), where the remote server is mainly responsible for most tasks and the mobile device
serves mostly as a presentation/user interaction apparatus. The proposed architecture can also be
employed in applications falling in the first m-commerce application category (for “desktop-like”
applications), provided that the context information elements managed are few and the adaptation
tasks do not require extensive resources.
It has to be noted here that context wrappers, which are responsible for capturing and delivering
context information, may be hosted in mobile devices, in all three application categories. Thus,
context information providers that supply information regarding the user (e.g. identity, location) or the
mobile device (screen size, input capabilities, etc) will naturally be accommodated in the mobile
device. The mobile device may also host context information aggregators that capture data from
context wrappers in its proximity (e.g. weather or traffic sensors). Context information from providers
hosted in the mobile device will be transmitted to the central server, which will feed it accordingly to
the relevant adaptation modules or deposit it in the context information store.
Currently all submodules of context manager are implemented in the Java 1.6 language, (with the
exception of the context store which is under development) and have been successfully tested under
Linux, Windows XP and Windows 7. Components that may run on mobile devices (context wrappers)
have been successfully ported to compile under compiled Java ME SDK [54] under Windows mobile
5.0 (running on an HP iPAQ) and Windows mobile 6.0 (running on a Samsung Omnia) and Android
(running on a Sony Ericsson Xperia X10). Specific context wrapper modules have been developed for
the GPS receiver and for accessing application preferences (stored in the registry in Windows mobile
and through the shared preferences class [1] in Android). The Java language was preferred against
languages producing native code (e.g. C++) to promote portability, while Java ME provides a
comprehensive set of libraries for accessing context sources on mobile devices; this set of libraries has
evolved to cover the technologies introduced in the mobile devices market, accommodating thus the
necessary extensibility.
The described architecture was designed and implemented as part of a broader adaptation-enabling
approach, which includes, besides the Context Manager, the Adaptation Manager module, i.e. the
module that will adapt the main application to the changes of context information. In section 6, we
present a case study which describes the adaptation of an application using the Context Manager
presented in this section, and discusses the experiences from this development.

6. Case study - evaluation
In order to assess the effectiveness of using the Context Manager for the development of context-
aware browser-based m-commerce applications, we present below a case study application using the
ASP.NET framework [19] for the reservation of cinema tickets. In the following, we will only discuss
the use of context and the adaptation of two pages, the TicketsReservation page and the
MovieSelection page, since these include usage of all context categories (user, application,
environment, computing) and all types of context (sensed, derived, explicitly provided).

The final publication is available at www.springerlink.com

 15

In order to evaluate the effectiveness of Context Manager and considering that the question “how
effective was the usage of Context Manager?” is rather a general one and hence difficult to answer,
we render it concrete by adopting the four specific evaluation criteria proposed in [28] in order to
assess its usage: a) Completeness: this criterion determines whether Context Manager is sufficiently
powerful and extensible to support all CAMCA requirements, b) Complexity: this criterion determines
how hard it is to write code implementing Context Manager, i.e. it assesses the effort involved in
developing the Context Manager itself, as well as the impact on the programmer’s productivity,
c) Performance: this criterion determines whether the Context Manager’s architecture and its relevant
implementation are good enough to support actual application workloads, i.e. to respond quickly in
different usage scenarios (e.g. context sources registration, context queries, sending of notifications,
etc), d) Utility: this criterion determines whether the architecture of the Context Manager can be used
by others, in order to implement relevant modules for a wide range of applications with extensive
demands for adaptation.
We proceed with the presentation of the case study application and then we will move on to present
the results of our experimental evaluation.

6.1. Case study application development

After analyzing the requirements, we have concluded that for the TicketsReservation page the default
and adapted functions listed in items (i)-(vii) below will be provided; for each one of them, we also
list the context elements that will drive the adaptation procedure, as well as the categories they belong
to.

i) The user selects one from the available films screened on that day (through the
MovieSelection page – cf. Figure 8, sixth view) and the TicketsReservation page is displayed
in order to implement his/her tickets reservation. The default behavior of the page (cf. Figure
8- first view), is to give the capability to the user to define the number of tickets and by
pressing a button to call the onlyReservation service, through which the reservation of seats
takes place. Additionally, in the default behavior of the page, some basic information about
the film is displayed and more specifically, the title of the film, a summary of the plot and the
cast, as well as additional information about the film, especially information about viewers’
reviews and film critics’ reviews,

ii) According to the paymentMode user preference (which is explicitly provided context and
belongs to user domain), there will be a capability for a) only reservation of seats (with a call
to the onlyReservation service), b) reservation and payment via credit card (through
navigation to the PaymentViaCreditCard page) and c) reservation and payment via bank
account (after navigation to the PaymentViaBankAccount page),

iii) According to the accessMode user preference (which is explicitly provided context and
belongs to user domain), there will be a capability to not display the information regarding
viewers’ review and film critics’ review (cf. Figure 8- second view),

iv) According to the musicFriendly user preference (which is explicitly provided context and
belongs to user domain), there will be the capability for additional information regarding the
music of the film and, depending on the current value of the bandwidth context parameter
(which is sensed context that belongs to computing domain), the related information will be
displayed either as text (cf. Figure 8- third view) or as image (cf. Figure 8- fourth and fifth
views). Furthermore, according to the current value of the bandwidth context parameter, the
resolution of the image will be adjusted (cf. Figure 8- fifth view),

v) According to the user preferences (which are explicitly provided context and belong to user
domain), the proper language for displaying the film’s title and additional information will be
selected (cf. Figure 8- fifth view), as well as the values for font size, font weight (bold or not
bold) and background color of the title and the data areas of the page will be determined (cf.
Figure 8- all views),

vi) According to the cinemaCritic element of the user context (which indicates whether a user is
a cinema critic and is explicitly provided context that belongs to user domain) and the
moviePremiereStatus element of the application-specific context (which indicates whether a
particular film screening is a premiere), a message will appear on TicketReservation page
informing the user of a 50% discount on tickets price (cf. Figure 8- second view).

vii) Also, according to the accessMode user preference and the current value of the bandwidth
context parameter, the system, instead of simply displaying a sole input box where the user
may input the desired number of tickets, can display a table where the seating zones of the
cinema theatre are listed along with the available seats of each zone (cf. Figure 8- third view).

Views of the adapted page are shown in Figure 8.

The final publication is available at www.springerlink.com

 16

Regarding the default behavior of the MovieSelection page (cf. Figure 8- view (i) of this page), it will
display information about the films of the current day and more specifically it will display in a table,
information about the title of each film, its category, the cinema hall in which it will be screened, the
hall type (indoor, outdoor) and the start time of the film. The adaptive operations which this page

The final publication is available at www.springerlink.com

 17

Default page behavior: on click of
the ‘Reserve’ button, the
onlyReservation service is called.

TicketsReservation page view

Adapted page behavior: a content
unit (viewers and critics’ review) is
hidden, colors are changed, a
discount offer message is shown
and on click of the ‘Reserve’
button, the user is navigated to the
PaymentViaCreditCard page

TicketsReservation page view

Adapted page behavior: two content units
not belonging to default page behavior
(reservation for specific seating zones
and soundtrack) are shown, colors are
changed and on click of the ‘Reserve’
button the user is navigated to the
PaymentViaBankAccount page.

TicketsReservation page view

 (i)

 (ii)

(iii)

Adapted page behavior: the image
of soundtrack is shown (instead of
text) and colors are changed.

TicketsReservation page’s view

Adapted page behavior: the
language is changed (to Greek), a
different image resolution is used
and colors are changed.
TicketsReservation page’s view

(i) default page behavior, (ii) movies
starting in less than 15’ are shown in
yellow background, (iii) screenings in
outdoor halls are excluded.
MovieSelection page’s views

Figure 8. The Adapted TicketsReservation and MovieSelection pages views according Context
Information

The final publication is available at www.springerlink.com

 18

offers (according to the presentation language and other presentation-related properties such as font
weight, font size and background color), are the same as those which are offered by the
TicketsReservation page and will not be further discussed. The additional adaptive operations which
this page offers are the following:

i) If the badWeather element of the environmental context is evaluated to “true”, the films
which have been scheduled to be screened in outdoor cinema halls will be excluded from
the table of the MovieSelection page displaying the offered films (cf. Figure 8- view (iii) of
this page). The badWeather element is an interpreted context element provided by the
Context Manager module, and its value is derived after processing the values of the
temperature and rainProbability context elements, with the first obtained through a web
service offering current meteorological data, and the second provided by a web service
providing weather forecasts. Both temperature and rainProbability context elements belong
to environment domain, with the first being sensed and the second interpreted context
element,

ii) According to the userDistance context element which belongs to user domain and indicates
the current distance of the user from the cinema (interpreted form the current user’s
location and the cinema’s location, with the first captured by a GPS sensor and therefore
sensed context and the second to be explicitly provided context which belongs to
application-specific domain) and the remainingTimeForMovieStart element which is
application-specific context element (interpreted from currentTime which belongs to
environment domain and movieStartTitme which belongs to application specific domain,
with the first sensed and the second explicitly provided context element), some rows on the
table of the MovieSelection page displaying the day’s films may will appear with a yellow
background color (cf. Figure 8- view (ii) of this page). More specifically, if the user’s
distance from the cinema is greater than 1,500 meters and the film will start in less than 15
minutes, the relevant row on the table will appear with a yellow background color.

Screenshots of the adapted MovieSelection page are shown in Figure 8.

6.2. Proposed architecture evaluation

After the description of our case study application, we return to the criteria set at the beginning of the
paragraph to present the results of our experimental evaluation.
Completeness: The use of all categories of context information by the application (user context,
computing context, environment context and application-specific context) and all types of context
information (sensed, interpreted, explicitly provided) has shown that the provided types of context
information from Context Manager efficiently supported the application demands in terms of context
information and allowed the implementation of the adaptation for a wide spectrum of functions. The
types of adaptation presented in the case study application, using context information provided by the
Context Manager, are representative and suggest that, by using such information, other types of
adaptation may be implemented, such as all context information usage scenarios sourced from the
bibliography ([13, 17, 21, 30, 36, 44, 48, 75]). Additionally, the proposed architecture also includes
the potential to use services offered by third parties as context information sources (e.g. a web service
giving rainProbability), the use of context provided by distributed nodes and the use of context
information originating from remote clients (e.g. sensors, services, mobile devices). The support of
these context source categories is necessary for developing CAMCAs due to the user’s mobility, the
need for the use of environmental parameters and, more generally, context information derived from
remote locations. Finally, the ability to manage metadata (e.g. confidence for the temperature or
rainProbability) allows for incorporating more effective adapted functions in the application. For
example, if the confidence characteristic for the badWeather context element has a value lower than a
certain threshold, an adaptation rule can be defined specifying that films screened in outdoor theatres
will not be excluded from table presented to the user, but a message will appear instead, informing the
user that “In case of bad weather, outdoor theatres will be closed. Reservation will be still valid for an
indoor theatre. In such a case, users will be notified through an SMS”).
Complexity: The standardization of software artifacts of the Context Manager has allowed their easy
development by distinct development teams (e.g. a team may implement the various kinds of context
wrappers while another team may implement other modules, such as Discovery Agency); naturally, an
integration test will be required after the distinct modules have been implemented and individually
tested. The implementation time for the Context Manager was approximately 480 hours for 8,329
noncommenting source statements (NCSS), which results in a measured productivity of 17.35
NCSS/hr, which is within the acceptable range reported by the literature [22, 58]. The use of the
Context Manager for the development of the aforementioned application does not pose an additional
time burden, given the uniform and standardized interfaces which it offers. The adaptive application

The final publication is available at www.springerlink.com

 19

programmers have been found to quickly learn the API provided by the context manager, usually after
having developed one or two simple applications; their productivity regarding the functionalities of
sensing, collecting, interpreting and managing context has been measured to increase by 60%-70%, as
compared to the productivity observed when the proposed context manager is not used.
Performance: The proposed architecture has been tested regarding its performance, in order to
evaluate its ability to withstand different workloads. In the following, we present the results of our
performance evaluation tests regarding the functionalities of (i) registering a context provider to the
discovery agency, (ii) the time to perform a context query to a context wrapper attached to a physical
device, returning the last value sensed (as opposed to requesting from the context wrapper to fetch a
new value from the physical sensor; this setup was chosen since the time to obtain a value from a
physical device greatly varies among devices and physical interface speeds), (iii) the overhead
imposed by a context interpretation mechanism, and (iv) the time needed to process an event and
notify registered parties.
Regarding the test hardware/software configuration, the context distribution, context discovery agency
and context collection and interpretation modules ran on a server equipped with 4 GB of memory and
a Pentium dual-core processor running at 2.60GHz, which operated under Debian Linux version 6. In
all cases we performed the tests used synthetic workloads, generated using the Tsung load testing tool
[69], which ran on PCs equipped with 2GB of memory and a Pentium dual-core processor running at
2.60GHz, which operated under Debian Linux. One to twenty different machines were used in parallel
for workload generation, depending on the number of concurrent clients simulated in the particular
test; the maximum number of clients hosted in a single workstation was limited to 50, to ensure their
efficient operation. The thinktime feature of Tsung was used to introduce delays between consecutive
requests from the same simulated client when such a delay was needed; for instance in the
performance test regarding the query interface, we used a thinktime with a uniform distribution
U(32,63) (i.e. with minimum value equal to 32 and maximum value equal to 63), since it has been
reported that most “user think times” fall in this range (e.g. [3]).
The client machines were interconnected to the server using a 1GB Ethernet switch. In both the client
machines and the server machines we used the netem tool [66] to introduce packet delays in the client-
to-server communications, emulating thus different network speeds (WLAN 802.11b with a
bandwidth of 11Mbps; UMTS/HSDPA with a bandwidth of 7.2 Mbps; and Bluetooth 2.0 + EDR with
a bandwidth of 3Mbps).
Finally, all experiments were run for 2 hours, to ensure that the simulation reaches a steady-state
producing thus reliable results.

4,00

5,00

6,00

7,00

8,00

9,00

50 100 150 200 250 300 350 400 450 500

#clients

re
sp

o
n

se
 t

im
e

(m
se

c)

Bluetooth 2.0 + EDR/3Mbps UMTS/HSDPA/7.2 Mbps

WLAN 802.11b/11Mbps

Figure 9. Performance test results for context source registration to the discovery agency

Figure 9 depicts the performance test results for the benchmark concerning the registration of context
sources to the discovery agency. In this experiment, a thinktime of 1 minute was set, to simulate the
periodic polling of the discovery agency to the context sources to check if they are operative. As can
be seen from the diagram, the worst-case response time (when 500 context sources register over
Bluetooth communication links) is approximately 8msec. UMTS and WLAN networks expectedly
offer better response times.

The final publication is available at www.springerlink.com

 20

3,00

4,00

5,00

6,00

7,00

50 100 150 200 250 300 350 400 450 500

#clients

re
sp

o
n

se
 t

im
e

(m
se

c)

Bluetooth 2.0 + EDR/3Mbps UMTS/HSDPA/7.2 Mbps

WLAN 802.11b/11Mbps

Figure 10. Performance test results for querying a context wrapper

Figure 10 depicts the performance test results for the benchmark concerning the querying of a context
wrapper for the last value sensed (and retained in its memory). In this experiment, a thinktime
following the uniform distribution U(32,63) was set, to simulate the client page request rate. The
worst-case response time (when 500 context sources register over Bluetooth communication links) is
approximately 6.8msec, while the respective worst-case response times for UMTS and WLAN are
5,16msec and 4.61msec respectively.

0,15

0,17

0,19

0,21

50 100 150 200 250 300 350 400 450 500
#clients

re
sp

o
n

se
 t

im
e

(m
se

c)

Figure 11. Context interpretation mechanism overhead

Figure 11 illustrates the measured overheads incurred from using a context interpreter, mapping
Celsius degrees to Fahrenheit degrees. Clearly, this interpretation is a trivial one, the objective
however of the benchmark is to quantify the overhead of using the interpretation mechanism, and not
the time needed to run some arbitrary interpretation algorithm, which is dependent on the algorithm’s
complexity and implementation efficiency. In this experiment, a thinktime following the uniform
distribution U(32,63) was set, to simulate the client page request rate. Note that these results are
independent of the client network infrastructure, since the interpreter runs on the machine hosting the
Context Manager. The worst-case response time (when 500 clients request a page involving an
interpretation) is approximately 0.2msec.

The final publication is available at www.springerlink.com

 21

1,00

1,50

2,00

2,50

3,00

3,50

50 100 150 200 250 300 350 400 450 500

#clients

re
sp

o
n

se
 t

im
e

(m
se

c)

Bluetooth 2.0 + EDR/3Mbps UMTS/HSDPA/7.2 Mbps

WLAN 802.11b/11Mbps

Figure 12. Event processing and notification subscriber update

Figure 12 depicts the benchmark results regarding processing an event and notifying the registered
parties, i.e. it concerns the performance of the “push” paradigm for transiting context information. The
scenario, evaluated regarding the notification mechanism, was a sudden rain in the area surrounding a
shopping mall (detected by a weather sensor in the mall’s vicinity), which triggered the notification of
context interpreters employed by a number of applications delivered by retail stores in the shopping
mall (stores supplying umbrellas or raincoats, cinemas, parking areas, etc) as well as the mall
information application operated by the mall management. Individual mall customers are notified
appropriately from the m-commerce application they use, through an area of their web page which
employs the Ajax push engine [65] to receive incoming messages from the m-commerce application
server. The measured times illustrated in the figure pertain to the time needed to notify all clients
(#clients in the above diagram).
Utility: Under the light of the experiences amassed from developing a number of CAMCAs using the
proposed approach, we can state that the applications designed using the WebML model [12] (or any
similar model), are adequately standardized and may be adapted using the same pattern; hence, the
Context Manager architecture is able to support a wide array of applications. Also, the provision of
interpreted context information (e.g. badWeather) has relieved the developer of the main application
of the additional work required to transform the context information to higher abstraction levels that
are needed for the application under development. This provides standardized software artifacts,
which may be used by other applications, simplifying and accelerating their development. The
isolation of the sensing mechanisms from distribution of the context information facilitates the
replacement of any context provider. Lastly, the encapsulation of the capturing, management and
distribution of the context information by a separate module (i.e. the Context Manager) has relieved
consumers (e.g. adaptation managers) of the need to liaise with multiple distinct context sources
(potentially accessible through diverse interfaces).

7. Related work and discussion
Insofar, numerous researchers have proposed software systems that aim at managing context
information. Each approach depends on special requirements related to the location of sensors (local
or remote), the number of users (one user or many) and the resources available at the user access
devices, which may be high-end-PCs or small mobile devices [4]. Thus based on these requirements,
three types of architectures for context management can be distinguished [13]:

(i) Direct sensor access: In this approach, sensors embedded in the mobile device are used. The
client software collects the context information directly from the sensors, which implies that
drivers for the sensor devices are hardwired into the application. Besides severely limiting the
application portability and expandability due to the presence of drivers within the application
[57], this approach is not suitable for distributed systems because it cannot manage well
concurrent access to sensor devices that may be needed by multiple applications (e.g. a GPS-
based driving aid and a location-based e-commerce application both requiring access to the
GPS device). Examples of such systems are Active Badge [72] and Context-Aware Pocket
PC [35],

(ii) Middleware-based: This approach introduces a layered architecture aiming to hide low-level
sensing details. Once the middleware has been standardized, any changes in the available

The final publication is available at www.springerlink.com

 22

sensing devices or any other such details do not necessitate any modification to the
application, thus application portability is promoted. The middleware may be hosted in a
specific computer or may be distributed in multiple devices, following the P2P paradigm.
The system proposed for the Odyssey project [53] is an example of a system following this
approach,

(iii) Context server: This approach introduces a central component termed context server, which
gathers context information from all sensors. Clients communicate only with this server to
obtain context information; therefore, they are offloaded from low-level sensing details and
resource-intensive operations.

In the following paragraphs, we review related work from the three architectural types described
above.

7.1. Direct sensor access-based approaches

Ortiz et al. [55] deals with the issue of adaptation of web services and the mobile client without using
a Context Manager for the management and processing of context, and targets exclusively to mobile
applications executed on the client (e.g. J2ME applications). The context elements used cover a small
subset of context (e.g. device type, platform type, certain user preferences) and are relayed to the
server executing the (business logic) web services, by adding parameters to the SOAP message’s
header. The suggested architecture is suitable for client-side applications which consume web services
and with a limited need for adaptation, since few context parameters may be used and part of the
adaptation takes place on the resource-constraint client. The absence of a Context Manager module in
this approach does not allow (i) context processing (interpreted context, aggregated context), (ii) the
utilization of context derived from sources other than the device (e.g. a weather service) without the
selection of context provider to be hardwired inside the application, since context source rebinding
mechanisms consume additional resources to identify non-operational context sources and locate
potential alternatives; this is not feasible to be performed on most mobile devices, (iii) the use of
metadata for assessing the quality of context information (iv) use of a context storage in order to
reduce the size of data sent from the client to the server (e.g. user preferences) and (iv) the facilitation
of transparent use of the context even if the context source in unavailable (e.g. the client device cannot
communicate with the GPS satellites; the last position obtained from the GPS system could of course
be used, but this will be done by writing extra code in the client, as opposed to an automatically
performed action by the Context Manager to retrieve the last value from the context store).

7.2. Middleware-based approaches

The Context Toolkit [17] is a context-aware framework that adopts a peer-to-peer architecture,
introducing however a “super-peer” node which acts as a centralized discoverer. Distributed sensor
units (called widgets), interpreters and aggregators register themselves to the centralized discoverer
to ascertain that they are discoverable by the client applications. This architecture is middleware-based
and is mostly oriented to sensor-based applications. It has a limited suitability for m-commerce
applications, it doesn’t use a central management server but uses a Discovery Agent. The extent of
context managed is limited. Other examples of peer-to-peer systems are the MANIP system [49] and
the SALES system [14], although the latter additionally uses a centralized component.
The architecture proposed in the Hydrogen project [36] attempts to avoid the use of a centralized
component, distinguishing initially the context information to local (context of the device itself) and
remote (context from another device). The architecture has then three layers: The Adaptor layer is
responsible for the gathering of context information by querying sensors; the Management layer is
responsible for delivering context information; and the Adaptation layer which performs the
adaptation of the application. This architecture is middleware-based and uses a central management
server located on the mobile device, without the use of a Discovery Agent. The framework runs on the
mobile device and mostly addresses stand alone applications over wireless LANS (including
Bluetooth) for context exchange between devices. The extent of context managed is limited due to the
scarceness of resources on the mobile device. The considered context mainly includes time, location,
device characteristics and personal properties.
The ESCAPE framework [68] has been developed in order to support the management of context
information in emergency situations such as natural disasters. Although this system has been
developed to support an m-business application rather than an m-commerce application, we discuss it
as another peer-to-peer paradigm in the wider area of m-commerce. This specific architecture has
been developed in order to support a certain model of process implementation, in which front-end
teams of individuals are active on certain sites (e.g. a village) where the situation occurs, in order to
conduct situation responses (e.g. rescue subjects) and which are supported by back-end teams. The

The final publication is available at www.springerlink.com

 23

architectures consist of two components: i) the Context Information Management Service (CIMS)
executed on each individual’s device, which collects and processes context information and ii) the
Situation Context Information Management Service (SCIMS) executed on the back-end system and
which collects all context data related to a situation. The context data collected on the device of each
team individual are forwarded to the team manager’s device, which in turn forwards them to the back-
end system. In this specific architecture using Service Discovery, a CIMS can publish information
about itself to other devices by exploiting multicast service discovery based on SLP (Service Location
Protocol). The architecture uses a peer-to-peer (P2P) data exchange model, which is suitable for each
situation demanding the exchange of context information among individuals on a site, but which is
unsuitable for m-commerce applications requiring a server-centric approach, since the utilization of
context information takes place on the server. Moreover, the component structure of the architecture is
oriented towards this specific use without the capability of generalizing for m-commerce applications.
For instance, each CIMS is described by a triple (teamID, individualID, serviceURL), while in m-
commerce applications teamID normally does not apply, and moreover this representation cannot
accommodate types of context such as application-specific context parameters. Additionally the
proposed XML schema for context representation is specifically targeted to emergency situations,
handling context provenance in the situation/site/response/team/individual model, but without the
provision for incorporating useful extensions such as context metadata. Finally, CIMSs require to run
multiple components (query and subscription, data aggregation and publishing, context interpretation
and storage, service discovery, SOAP servers, etc), which is a resource-demanding setting, and this
further limit the applicability of this approach for m-commerce applications that need to reach a wide
public, without imposing restrictions on the access devices.

7.3. Context server-based approaches

The most widespread architecture is the one involving one or more centralized components for context
information management and some distributed components for context information collection, i.e. the
context server paradigm. This approach has been proposed by Korpipää et al [44] and the related
system comprises of three functional entities namely the context manager, the resource servers and
the context recognition services. The resource servers and context recognition services are distributed
components responsible for gathering context information, while context manager is a centralized
server storing context information and delivering it to the client applications. This architecture is
middleware-based and is suitable for applications running on the mobile device. It uses a central
management server which runs on the mobile device without a Discovery Agent. The extent of the
context managed as well as the extent of applicable context processing are limited, due to the
scarceness of resources on the mobile device
The SOCAM architecture (Service-oriented Context-Aware Middleware) [30] also employs a
centralized server termed context interpreter, which collects data from distributed context providers
and offers it, in processed format, to client applications. This architecture is middleware-based and is
mainly oriented to smart spaces, e.g. smart vehicles. It uses a central management server which runs
on a resource-rich stationary computer and uses a Discovery Agent. The extent of the context
managed is limited and partitioned into different domains.
Another centralized middleware-based approach that has been designed for context aware mobile
applications is the one proposed by Fahy and Clarke [21] in the CASS project (Context-Awareness
Sub-Structure). The middleware contains an Interpreter, a ContextRetriever, a Rule Engine and a
SensorListener. The SensorListener listens for updates from sensors which are located on distributed
computers, called sensor nodes. Then the gathered information is stored in the database by the
SensorListener. The ContextRetriever is responsible for retrieving stored context. Both of these
classes may use the services of an interpreter. This architecture is middleware-based and is mainly
oriented to smart spaces, e.g. presentation areas. It also uses a central management server which runs
on a resource-rich stationary computer but maintains a copy of the context in the mobile device and
uses a Discovery Agent. The extent of the context managed is limited, mostly including sensor data
and location from GPS.
Copal [48] introduces a runtime middleware and a programming model for context provisioning. It
provides a loosely-coupled and modularized architecture, whose main components are i) the Device
Services providing context which are, in essence, the context Publishers that register themselves to
Publisher Registry, ii) the Context-aware services, which are essentially context Listeners that core
COPAL has to notify when specific events occur, iii) the core COPAL, and iv) the Plugins, which are
optional architectural components and expand the functionality of core COPAL, e.g. through
Localization and QoC (Quality of Context), possibly adding attributes of source location and QoC
[47]. The main components in core COPAL are i) Context Type, a central component, which
represents the different context elements provided by Publishers, ii) Context Query, which provides

The final publication is available at www.springerlink.com

 24

the context events, and iii) Context Processor, which offers a wide range of context processing, such
as filtering, abstraction, differentiation, enrichment, peeling. The use of COPAL-DSL (Domain
Specific Language) to generate code skeletons and deployment artifacts from context components
indeed reduces implementation effort and enhances automation of context-aware service development.
The advantages of this architecture include the capability for integrating new context sources, the use
of metadata for the assessment of context information quality and the provision of interpreted context.
However, there are also some disadvantages in relation to the suggested architecture stemming from
the fact that it is oriented to the management of sensor-derived context, not directly supporting
explicitly provided context and application-specific context. The architecture supports the event model
(publish-subscribe mechanism) and not the query mechanism (request-response) with the exception of
historical data. The aforementioned disadvantages of the COPAL architecture do not render it suitable
for use as is from m-commerce applications.
CoBrA (Context Broker Architecture) [13] is another centralized agent-based architecture that may
support context-aware applications. The key component of the CoBrA architecture is the intelligent
context broker, which maintains and manages a shared contextual model on behalf of a community of
agents (applications hosted by mobile devices, services provided by a room, web services). The
context broker consists of four main sub-components, namely the Context Knowledge Base, the
Context Inference Engine, the Context Acquisition Module and the Privacy Management Module. This
architecture is middleware-based and is mainly oriented to smart spaces, e.g. intelligent rooms. It uses
a central management server which runs on a resource-rich stationary computer, without a Discovery
Agent. The extent of the context managed is relatively large. Other systems oriented to smart spaces
are [10, 27, 40].
The Location-based Publish/Subscribe Service (LPSS) is also a noteworthy approach. LPSS has been
implemented in the context of developing the Pervaho platform [20], which essentially is an
implementation of a context-aware public-subscribe mechanism, on top of the Java ME platform. The
particular system employs a central server for the management of the context and extends the classic
content-based and topic-based publish/subscribe mechanism incorporating environment and
application-specific context. Although the comprehensiveness of the context information elements
used in this approach was limited (only the location of the user and some of his/her preferences were
considered), performance evaluation has shown that the time needed to process new subscriptions and
publications, as well as the delivery of “matching information” within most mobile settings remain
within acceptable limits.
The ContextServ platform [61] has been developed in order to support the rapid and flexible
development of context-aware web services. One of its main components is the Context Manager
which provides two kinds of context: atomic (low level) and composite (processed or aggregated)
context. The ContextServ platform also contains the ContextUML modeler and the RubyMDA
transformer. The ContextUML modeler offers a graphical user interface, allowing service developers
to specify context-aware web services using Context UML language [60], through the context binding
and context triggering mechanisms. Once a context-aware web service has been defined using the
ContextUML modeler, the Ruby MDA transformer converts the service model into executable web
service specifications, including BPEL and WSDL specifications and deploys the BPEL process to the
web server exposing it thus as a web service. This particular process focuses more on the use of the
Context Manager for the provision of context-aware web services and the automation of their
production process instead of providing a generalized framework for supporting applications (the
subject of our paper). From the description of Context Manager in [61], it follows that Context
Manager supports low-level context as well as interpreted and aggregated context, however no details
are given about the architecture of the corresponding components managing it. Regarding the
representation of context, it seems to be using individual values (atomic or composite), and this
representation (individual values) is not suitable for applications demanding a large number of context
elements. No standardized mechanisms for context retrieval (e.g. query mechanism) are listed, it does
address the issue of metadata, it has limited triggering mechanisms and it does not have a discovery
agency for the location of context services and for the facilitation of the selection of context provided
by several different context providers. In addition, it does not include a Context Data Storage, which
is a necessary component for using historical context as well as in cases when it is not possible to
communicate with a context provider. Lastly, this architecture focuses on processing context provided
by sensors, not covering thus context categories such as explicitly provided context.

7.4. Discussion

The context management systems overviewed in the above subsections differ among themselves in the
following respects: (a) the comprehensiveness of the context information elements they can manage
efficiently, (b) the location of the different components that will perform the different context

The final publication is available at www.springerlink.com

 25

management operations within the network and (c) the spectrum of operations they offer for context
management. Moreover, taking into account that the notion of context is extensively used in the areas
of pervasive and ubiquitous computing, most of these systems aim to manage context originating from
physical sensors and to include provisions for context management in smart spaces (e.g. smart
vehicles, intelligent rooms, smart conferences places, etc). Within smart spaces, context information is
transferred from its capture points (e.g. sensors) to the context information management server using
Wi-Fi, Bluetooth and Ethernet networks, as opposed to GPRS/UMTS networks used in other settings.
From the analysis of the aforementioned propositions for context management in the field of pervasive
and ubiquitous computing, we can notice that i) they are either smart space-oriented (for places such
as smart homes, smart vehicles, smart university campus, etc), with the main goal of supporting
context provisioning to service level and utilization of context originating from physical sensors,
mostly, without standardized discovery or expansion capabilities to m-commerce applications (for the
use of other types of context information and the support of other types of adaptation such as
presentation adaptation which are required for m-commerce applications, in which the presentation is
of particular importance), or ii) the context management system is executed on the mobile device,
with the result of the context management functions developed being very limited (lack or limited
interpreted or aggregated data, stored data, metadata), due to the scarceness of resources on the mobile
device. Also, iii) they manage a small portion of the context and use specific context models that suit
to their needs (e.g. key-value models [17], XML models [43] or domain-oriented ontologies [13] such
as space ontologies) and specific context processing operations, due to the fact that context data
processing is strictly defined on the basis of specific context-aware scenarios [31] that the system is
going to support. Therefore, each of the aforementioned systems can only handle a restricted set of
specific scenarios with specific and limited demands for context information.
In reference to context management and its utilization from mobile commerce applications, we outline
and assess some representative examples in the following paragraphs.
The Delivery Context Ontology [9] is an important source of information that can be exploited to
create context-aware applications, and provides a formal model of the characteristics of the
environment in which devices interact with the Web or other services. The Delivery Context includes
the characteristics of the Device, the Runtime Environment, the Network providing the connection
and the Physical Environment. The Ontology is formally specified in the Web Ontology Language
(OWL) [73]. It defines a normative vocabulary of terms (classes, properties and instances) that models
the different Properties, Aspects and Components of a Delivery Context. The vocabulary developed in
this ontology facilitates the interoperability of the applications and is mainly suitable for the
implementation of applications using web services of different manufacturers; however, it is very
specific and demands from the designer adherence to this degree of analysis of context elements and
use of certain context classes. In addition, no methodology is recommended for the definition of
context demands for each application and the context demands will have to be adopted as
recommended by the particular ontology. Also, it does not use the concept of metadata of context
elements (with the exception of measurement units representation), which is an essential element for
the assessment of available context information [34]. Another disadvantage of this approach is that it
does not deal with application-specific context, as it is not intended to model properties which can be
application -or domain- dependent. The particular suggestion of Delivery Context Ontology comprises
a noteworthy approach of context modeling and not a suggestion for capturing, managing and
distributing context.
From the analysis of approaches to context management in the field of mobile commerce presented
above, it follows that there has been no proposal of a well-rounded architecture, which:

i) manages all types of context (computing, user, environment, application-specific), regardless
of the context source they are derived from (physical sensors, logical sensors, users, etc.) and
in a domain-independent way: most of the times only few simple context elements are used,
while at the same time enabling the application designer to design the context model in
accordance with the current needs of its application,

ii) collects the context information in a comprehensive and uniform way, through standardized
interfaces, facilitating the task of developers (who only need to learn a single context
acquisition interface) and promoting component reusability across applications.

iii) exploits the full potential of context sources: in most approaches, only simple context
element values are drawn from a service, even though the context source can offer more than
one context attribute and their metadata,

iv) offers the capability for advanced techniques of interpretation or aggregation of context
information: many approaches simply use the context values as drawn from their sources.

v) offers the capability to use and exploit metadata of context information in order to assess the
quality of the provided context information: with the exception of COPAL [48], this
capability is either completely absent or is very limited,

The final publication is available at www.springerlink.com

 26

vi) offers the capability to store the context information in order to disconnect context
production from context consumption and to support context data availability in cases in
which the context provider is unavailable or the network is malfunctioning (low bandwidth,
inability to access a context service). Only the ESCAPE framework offers an on-device
“lightweight data storage” facility and the capability to later offload context data to a central
server for post-situation studies, while COPAL [48] supports context persistence through a
plugin,

vii) can readily accommodate new context information elements, simply by plugging-in the
context sources. On the contrary, many of the approaches proposed in the literature handle
only a very limited and fixed set of context information elements.

Recapitulating, mobile commerce applications exhibit a very important lack of an architecture that
efficiently manages context, does not place limitations on the range and number of context parameters
used (allowing thus for comprehensive adaptation) and provides capabilities for context processing
(e.g. interpretation and aggregation) and storage.
Our proposal adopts the use of middleware for context management, using both centralized
components (mainly for management, storage and dissemination of context information) and some
distributed components for capturing the context information. This arrangement, apart from
addressing the disadvantages mentioned in the previous paragraphs, is suitable for mobile commerce
applications for the following reasons:

i) A single software component (context manager) will manage issues stemming from
concurrent access to sensors,

ii) Centralized management of context guarantees context data availability and relieves the
mobile devices from the burden of managing context themselves. If we consider the large
number of context sources and the production rates usually associated with real physical
phenomena (some context aspects change very often, and their associated sources can
produce data with very high rates), the context data processing and dissemination performed
by mobile devices could consume a considerable portion of the available resources, thus
affecting the final experience perceived by mobile users. This is particularly important since
resources in mobile devices are scarce. Additionally, centralized management and storage
allows us to store large amounts of context information and perform complex and advanced
interpretation as needed,

iii) The user interface (data, presentation properties, functionality) of web-based m-commerce
applications is created on a centralized application server; taking into account that the context
storage components is also centralized, the two components can communicate efficiently
through high bandwidth networks, relieving mobile devices from the need to continuously
transfer context information through slow and costly channels. The use of these channels is
limited to the absolute minimum number of messages required to transfer context information
from capture sources directly to the centralized server or other aggregators/interpreters.

iv) The use of distributed context wrapper components allow for capturing of context from
remote locations (mobile devices, weather and traffic sensors, etc),

v) The component-based architecture allows the implementation using web services technology,
which promotes independence from programming language, underlying operating system or
middleware, while it also guarantees interoperability, which is a requirement for web-based
m-commerce applications. Specific components (mostly context source to context wrapper
communication) can however be implemented using more lightweight technologies (e.g. RPC
[67] or even proprietary protocols) to better suite sensors with limited resources,

vi) The adopted approach for context management allows for hiding the low-level sensing details
from all context consumers (aggregators/interpreters, adaptation manager, applications).
Additionally, the main code of the mobile commerce application doesn’t need to receive
notifications (these are forwarded to the context manager); this removes the need for using
advanced programming techniques, such as a separate thread to receive notifications or signal
handlers to be invoked upon arrival of an incoming notification, simplifying thus the mobile
commerce application development and reducing the possibility of bugs,

Additionally, the proposed architecture is general enough to support the context needs of a wide range
of m-commerce applications, while the implemented components for one application could be used
from other applications without or with short-range modifications.
Table I summarizes the differences and overlaps between existing approaches and our proposed
architecture for Context Management.

The final publication is available at www.springerlink.com

 27

Table I. Differences and overlaps between existing approaches and proposed architecture

Property

Context
Management
System

Use of
middle-

ware

Use of a
central

management
Server

Use of a re-
source-rich
stationary

computer as
Server (storage,
interpretation,
distribution)

Use of a
Discovery

Agent

Comprehen-
siveness of
managed
Context

Suitability for m-
commerce

applications

Proposed Approach Yes Yes Yes Yes Yes Yes
Context Toolkit [17] Yes No No Yes Only data

directly from
sensors

Limited, mostly
oriented to sensors-
based applications

Korpipää, Context
Management System
[44]

Yes Yes No, the central
management

server runs on
the mobile

device

No

Limited
because, the

central
management

servers runs on
the mobile

device

Yes, but directed to
applications running

on the mobile
device, not for

browser-based ones

SOCAM [30] Yes Yes Yes, needs one
server for each
domain (e.g.

vehicle domain)

Yes Limited and
partitioned in

different
domains.

Suitable for smart
spaces with limited

extent e.g. smart
vehicles

CASS [21] Yes Yes, it
maintains
however a
copy of the
context in
the mobile
devices.

Yes No Limited, mainly
context from
sensors and

location from
GPS

Mainly oriented to
smart spaces with
limited extent e.g.
smart presentation

areas

CoBrA [13] Yes Yes Yes No Yes Suitable for smart
spaces with limited

extent e.g.
intelligent rooms

Hydrogen [36] Yes Yes No, located on
the mobile

device.

No Limited, due to
the scarceness
of resources on

the mobile
device. Mainly
considers time,
location, device
characteristics
and personal

properties

The framework runs
on the mobile

device and mostly
addresses stand

alone applications
over wireless LANS

(including
Bluetooth) for

context exchange
between devices

Copal [48] Yes Yes Yes, but with
limited

capabilities

Yes No, only context
from sensors

Suitable for smart
spaces with very

limited extent
ESCAPE
framework [68]

Yes, but
uses the
peer-to-

peer
model

Yes but
limited: the

bulk of
context

management
is performed

on the
mobile
device

Yes, but with
limited

capabilities

Yes, but
with limited
capabilities

No, context for
the specific
emergency

domain

Suitable for
emergency
situations

8. Conclusions
The study of the behavior of the user of m-commerce applications coupled with the study of his/her
environment allows us to delimit and specify the context information that is of value for a particular
m-commerce application. In the m-commerce domain, the exploitation of this information for
delivering innovative and enhanced services offers a competitive advantage for attracting new

The final publication is available at www.springerlink.com

 28

customers and maintaining existing ones. However, we need to appropriately design the subsystems
that will manage, distribute and exploit the context information for m-commerce applications.
The design of a subsystem that will manage the context information can be standardized, since it
constitutes a standard and repetitive process for each mobile commerce application. Additionally, the
encapsulation of the content management logic and procedures into a separate subsystem results in a
number of advantages regarding its manageability, maintainability, reusability and speed of
application development. In this paper, we have presented a high-level software architecture for
context information management and distribution, suitable for m-commerce applications.
Additionally, we have described the functionality and characteristics of its components, as well as the
interaction among these different components. The presented architecture is modular, hides the
complexity associated with different sensing methods, diverse context sources and various access
technologies. Additionally, it leads toward a user-transparent infrastructure that provides application
developers with services that facilitate and quicken context aware mobile commerce applications
development. In this paper, we have also presented the main differences and advantages of the
proposed architecture against other proposals in the literature, while the case-study application and its
relevant evaluation, presented in section 6, show the effectiveness of Context Manager’s usage and the
accommodation of all relevant requirements for context information stemming from the study of
special m-commerce applications characteristics.

9. References
[1] Android developers. Using Shared Preferences.
http://developer.android.com/guide/topics/data/data-storage.html#pref, 2011
[2] ArgoUML, http://argouml.tigris.org/, 2011
[3] Arlitt M., Characterizing Web User Sessions, ACM SIGMETRICS PERF E R, 8(2), 50–63, 2000
[4] Baldauf M., Dustdar S., Rosenberg, F., A Survey on Context- Aware Systems, INT J AD HOC
UBIQ CO, 2(4), 63-277, 2007
[5] Benou P., Bitos V., Developing Mobile Commerce Applications, J ELECTRON COMM ORGAN,
6(1), 63-78, 2008
[6] Benou P., Vassilakis C., The Conceptual Model of Context for Mobile Commerce Applications, J
ELECTRON COMM RES, Springer-Verlag, 10(2), 130-165, 2010
[7] Benou P., Vassilakis C., technical report TR-SSDBL-11-001, Department of Computer Science
and technology, University of Peloponnese, http://sdbs.cst.uop.gr/?q=node/261, 2011
[8] Biegel G., Cahill V., A framework for developing mobile, context-aware applications, In Tripathi,
A., Iftode, L., Nahrstedt, K., Nixon, Patrick (eds), Proceedings of the 2nd IEEE Conference on
Pervasive Computing and Communication (14-17 Mar. 2004 Orlando FL USA), IEEE Computer
Society Press, 2004, 361–365
[9] Cantera Fonseca J.M., Lewis R., W3C - Delivery Context Ontology,
http://www.w3.org/TR/dcontology/, 2009
[10] Caveney D., Cooperative Vehicular Safety Applications, IEEE CONTR SYST MAG, 30(4), 38-
53, 2010
[11] Ceri S., Daniel F., Matera M., Model-Driven Development of context-aware web applications,
ACM T INTERNET TECHN, 7(1), 2007
[12] Ceri S., Fraternali P., Bongio A., Brambilla M., Comai S., Matera M., Designing Data-Intensive
Web Applications. Morgan Kaufmann Publishers, ISBN: 1–55860–843–5, 2003
[13] Chen H., An Intelligent Broker Architecture for Pervasive Context-Aware systems. PhD Thesis,
University of Maryland, Baltimore County, 2004
[14] Corradi A., Fanelli M., Foschili L., Adaptive Context Data Distribution with Guaranteed Quality
for Mobile Environments, Proceedings of the IEEE International Symposium on Wireless Pervasive
Computing (5-7 May 2010 Modena Italy), IEEE Computer Society Press, 2010, 373-380
[15] Devaraju A., Hoh S., Hartley M., A context gathering framework for context-aware mobile
solutions, In Chong P.H.J., Cheok A.D. (Eds.) Proceedings of the 4th international Conference on
Mobile Technology, Applications, and Systems and the 1st international Symposium on Computer
Human interaction in Mobile Technology (10-12 Sep. 2007 Singapore Singapore), ACM, 2007, 39-46
[16] Dey A., Abowd G., Towards a Better Understanding of Context and Context-Awareness.
Technical Report 99-22, Georgia Institute of Technology, 1999
[17] Dey A., Abowd G., A conceptual framework and a toolkit for supporting the rapid prototyping of
context-aware applications, HUMAN COMPU, 16 (2), 97–166, 2001
[18] Dunlop M., Brewster S., The Challenge of Mobile Devices for Human Computer Interaction,
PERS UBIQUIT COMPUT, 6(4), 235-236, 2002

The final publication is available at www.springerlink.com

 29

[19] Esposito D., Programming Microsoft ASP.NET, Microsoft Press, ISBN: 0735643385, 2006
[20] Eugster P., Garbinato B., Holzer A., Pervaho: A specialized middleware for mobile context-
aware applications, J ELECTRON COMM RES, Springer-Verlag, 9(4), 245-268, 2009
[21] Fahy P., Clarke S., CASS – a middleware for mobile context-aware applications, Proceedings of
the Workshop on Context Awareness (6-9 Jun.2004 Boston USA), ACM, 2004, 304-308
[22] Ferguson P, Leman G., Perini P., Renner S., Seshagiri G., Software Process Improvement
Works!, techical report CMU/SEI-99-TR-027, Software Eng. Inst., Carnegie Mellon Univ, 1999
[23] Fertalj K., Horvat M., Comparing architectures of mobile applications, Proceedings of the 5th
WSEAS International Conference on Automation & Information (15-17 Nov. 2004 Venice Italy),
2004, 946-952
[24] FIPA Gateways TC, FIPA Device Ontology Specification,
http://www.fipa.org/specs/fipa00091/PC00091A.html, 2001
[25] Frank K., Rockl M., Nadales V., Robertson P., Pfeifer T., Comparison of exact static and
dynamic Bayesian context inference methods for activity recognition, In Muhtadi J.A., Passarella A.
(eds.). Proceedings of the 8th IEEE International Conference on Pervasive Computing and
Communications Workshops (29 Mar.- 2 Apr. 2010 Mannheim Germany), IEEE Computer Society,
2010, 189-195
[26] Gellersen H., Schmidt A., Beigl M., Multi-Sensor Context-Awareness in Mobile Devices and
Smart Artifacts, MOBILE NETW APPL, 7(5), 341 –351, 2002
[27] Gorgorin C., Gradinescu V., Diaconescu R., Cristea V., Iftode, L., Adaptive Traffic Lights using
Car-to-Car Communication, In Heath R., Bottomley G. (eds.), Proceedings of the 2007 IEEE 66th
Vehicular Technology Conference (30 Sep. – 3 Oct. 2007 Baltimore USA), IEEE Computer Society,
2007, 21-25
[28] Grimm R., One.world: Experiences with a pervasive computing architecture, IEEE PERVAS
COMPUT., 3(3), 22-30, 2004
[29] Gu T., Hang X., Wang X., Pung H. K., Zhang D. Q., An Ontology-based Context Model in
Intelligent Environments, In McDonald A. B. (ed.), Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference (18-21 Jan. 2004 San Diego USA), 2004,
270-275
[30] Gu T., Pung H. K., Zhang D. Q., A Service-Oriented Middleware for Building Context-Aware
Services, J NETW COMPUT APPL, Elsevier, 28(1), 1-18, 2005
[31] Gupta A., Karla A., Boston D., Borcea C., MobiSoC: a middleware for mobile social computing
applications, MOBILE NETW APPL, 14(1), 35-52, 2009
[32] Hemel Z., Visser E. Declaratively Programming the Mobile Web with Mobl. In Videira-Lopes
C., Fisher K. (Eds.): Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011 (22-27
Oct. 2011 Portland, OR, USA). ACM 2011, 695-712
[33] Henricksen K., Indulska J., McFadden T., Balasubramaniam S., Middleware for Distributed
Context-Aware Systems, On the Move to Meaningful Internet Systems, Springer, LNCS 3760, 846-
863, 2005
[34] Henricksen K., Indulska J., Rakotonirainy A., Modeling Context Information in Pervasive
Computing Systems, In: Mattern F., Naghsineh M. (ed.), In Mattern F., Naghshineh, M. (eds),
Proceedings 1st International Conference on Pervasive Computing (26-28 Aug. 2002 Zurich
Switzerland), Springer Verlag, 2002, 167–180
[35] Hinckley K., Pierce J., Sinclair M., Horvitz E., Sensing techniques for mobile interaction, In
Ackerman M., Edwards K. (eds). Proceedings of the 13th annual ACM symposium on User interface
software and technology (06 – 08 Nov. 2000, San Diego, CA, USA), ACM New York, NY, USA
2000, 91-100
[36] Hofer T., Schwinger W., Pichler M., Leonhartsberger G., Altmann, J., Context-awareness on
mobile devices – the hydrogen approach, In Sprague R.H. (ed), Proceedings of the 36th Annual
Hawaii International Conference on System Sciences (6-9 Jan. 2003, Island of Hawaii), IEEE
Computer Society, 2002, 292–302
[37] Hoffer J., Prescott M., McFadden F., Modern Database Management - 7th Edition, Prentice Hall,
7th edition, 2004
[38] Hoh S., Devaraju A., Wong C., A Context Aware Framework for User Centered Services, In
Khong C.W., Wong C.Y., Niman B. (eds), Proceedings of the 21st International Symposium Human
Factors in Telecommunication (27-28 Mar, 2008, Kuala Lumpur, Malaysia), Prentice Hall, 2008
[39] Honle N., Kappeler P., Nicklas D., Schwarz T., Grossmann M., Benefits of Integrating Meta Data
into a Context Model, Proceedings 3rd IEEE International Conference on Pervasive Computing and
Communications Workshops (8-12 Mar. 2005, Kauai Island, HI, USA), IEEE 2005, 25-29

The final publication is available at www.springerlink.com

 30

[40] Iftode L., Smaldone S., Gerla M., Misener J., Active Highways, Proceedings of the IEEE
Symposium on Personal, Indoor and Mobile Radio Communications (15-18 Sep. 2008, Cannes,
French Riviera), IEEE 2008, 1-5
[41] Kaikkonen A., Kallio T., Kekäläinen A., Kankainen A., Cankar E., Usability Testing of Mobile
Applications: A Comparison between Laboratory and Field Testing. Journal of Usability Studies, 1(1),
4-16, 2005
[42] Kappel G., Proll B., Retschitzegger W., Schwinger, W., Customisation for Ubiquitous Web
Applications – A Comparison of Approaches. International Journal of Web Engineering and
Technology, 1(1), 79-111, 2003
[43] Knappmeyer M., Baker N., Liaquats S., Tonjes R., A context provisioning framework to support
pervasive and ubiquitous applications, In Barnaghi P., Moessner, K., Presser M., Meissner S. (eds.),
Proceedings of the 4th European conference on Smart sensing and context (16-18 Sep., Guildford,
UK,), Springer-Verlag Berlin, Heidelberg, 2009, 93-106
[44] Korpipää P., Mäntyjärvi J., Kela J., Keränen H., Malm E. J., Managing Context Information in
Mobile Devices, PERVASIVE COMPUT., 2(3), 42-51, 2003
[45] Koukia S., Rigou M., Sirmakessis S., The Role of Context in m-Commerce and the
Personalization Dimension, In Toyoaki N., Zhongzhi S., Ubbo V., Xindong W., Jiming L.,
Benjamin W., William C., Yiu-Ming C. (eds), Proceedings of the 2006 IEEE/WIC/ACM international
conference on Web Intelligence and Intelligent Agent Technology (18-22 Dec 2006, Hong Kong,
China), IEEE 2006, 267-276
[46] Kranenburg H., Bargh M.S., Iacob S., Peddemors A., A context management framework for
supporting context-aware distributed applications, IEEE COMMUN. MAG., 44(8), 67-74, 2006
[47] Krause M., Hochstatter I., Challenges in modelling and using quality of context (qoc), Mobility
Aware Technologies and Applications, Magedanz T. (ed), LNCS Springer Verlag 3744, 324–333,
2005
[48] Li F., Sehic S., Dustdar S., COPAL: An Adaptive Approach to Context Provisioning, In
Chilamkurti N., Lian S., Mišić J., Taleb T. (eds), Proceedings 6th International Conference on
Wireless and Mobile Computing, Networking and Communications (11-13 Oct, Niagara Falls,
Ontario, Canada), IEEE, California, 2010
[49] Macedo F., Dos Santos L., Nogueira S., Pujole G., A Distributed Information Repository for
Autonomic Context-Aware MANETs, IEEE TRANS NETW SERVICE MANAG, 6(1), 45-55, 2009
[50] March S. T., Smith G. F., Design and natural science research on information technology,
Decision Support Systems, 15, 251-266, 1995
[51] Miles R., Hamilton K., Learning UML 2.0, O'Reilly Media, Inc, 2006
[52] Mühl G., Fiege L., Pietzuch P., Distributed Event-Based Systems, Springer, 1st edition, 2006
[53] Noble B., Satyanarayanan M., Narayanan D., Tilton J., Flinn J., Walker K., Agile application-
aware adaptation for mobility, In Waite W. (ed), Proceedings of the sixteenth ACM Symposium on
Operating Systems Principles (5-8 Oct 1997, Saint Malo, France), ACM New York, NY, USA 1997,
276-287
[54] Oracle, Java for mobile devices,
http://www.oracle.com/technetwork/java/javame/javamobile/overview/getstarted/index.html, 2011
[55] Ortiz G., Garcia de Prado A., Improving Device-Aware Web Services and their Mobile Clients
through an Aspect-Oriented, Model-Driven Approach, INFORM SOFTWARE TECH, 52(10), 1080-
1093, 2010
[56] Quah J., Seet V., Adaptive WAP Portals, ELECTRON COMMER R A, 7(4), 337-385, 2007
[57] Pascoe J., The Stick-e Note Architecture: Extending the Interface Beyond the User, In Moore J.,
Edmonds E., Puerta, A. (eds.), Proceedings of International Conference on Intelligent User Interfaces
(06 – 09 Jan 1997, Orlando, FL, USA), ACM New York, NY, USA 1997, 261-264
[58] Prechelt L., An Empirical Comparison of Seven Programming Languages, COMPUTER, 33(10),
23–29, 2000
[59] Rakotonirainy A., Loke S., Fitzpatrick G., Context-Awareness for the Mobile Environment, In
Turner T., Szwillus G. (eds.), Proceedings of the Conference on Human Factors in Computing
Systems (April 01 - 06, 2000, The Hague, Netherlands), ACM New York, NY, USA 2000
[60] Sheng Q. Z., Benatallah B., ContextUML: A UML-Based Modeling Language for Model-Driven
Context-Aware Web Service Development, In Chang E., Brookes, W. (eds.), Proceedings of the 4th
International Conference on Mobile Business (ICMB’05) (11 – 13 Jul 2005,,Sydney, Australia), IEEE
Computer Society 2005
[61] Sheng Q. Z., Pohlenz S., Yu J., Wong H. S., Ngu A.H.H., Maamar Z., ContextServ: A platform
for rapid and flexible development of context-aware Web services, In Atlee J.M., Inverardi, P. (eds.),
Proceedings of the 31st International Conference on Software Engineering (16-24 May 2009,
Vancouver, BC, Canada), IEEE Computer Society Washington, DC, USA 2009, 619-622

The final publication is available at www.springerlink.com

 31

[62] Strang T., Linnhoff-Popien C., A Context Modeling Survey, In Davies N., Mynatt E., Siio I.,
(eds), Proceedings of the 1st International Workshop on Advanced Context Modelling, Reasoning and
Management (7-10 Sep 2004, Nottingham, UK), Springer 2004
[63] Tanenbaum A.S., Modern operating systems (3rd edition), Pearson education international, Upper
Saddle River, NJ. ISBN: 0-13-813459-6, 2009
[64] Tarasewich P., Designing mobile commerce applications, COMMUN ACM, 46(12), 57-60, 2003
[65] The APE project, Ajax Push Engine, http://www.ape-project.org/, 2011
[66] The Linux foundation, netem,
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem, 2011
[67] Thurlow R., RPC: Remote Procedure Call Protocol Specification Version 2,
http://tools.ietf.org/html/rfc5531, 2009
[68] Truong H. L., Juszczyk L., Manzoor A. Dustdar, S., ESCAPE - An Adaptive Framework for
Managing and Providing Context Information in Emergency Situations, in Kortuem G., Finney J., Lea
R., Sundramoorthy V. (Eds.), Proceedings of Smart Sensing and Context 2007 (EuroSSC 07) (23-25
Oct 2007, Lake District, UK), Springer Berlin / Heidelberg, 207-222, 2007
[69] Tsung open-source multi-protocol distributed load testing tool, http://tsung.erlang-projects.org/,
2011
[70] Venkatesh V., Ramesh V., Web and wireless site usability: Understanding differences and
modeling use, MIS QUART, 30(1), 181-205, 2006
[71] Venkatesh V., Ramesh V., Massey A. P., Understanding usability in mobile commerce,
COMMUN ACM, 46(12), 53-56, 2003
[72] Want R., Hopper A., Falcao V., Gibbons J., The Active Badge Location System. ACM T
INFORM SYST, 10(1)91-102, 1992
[73] Web Ontology Language, http://www.w3.org/2004/OWL/, 2011
[74] Ye J., Coyle L., Dobson S., Nixon P., Ontology – based models in pervasive computing systems,
KNOWL ENG REV, 4, 315-347, 2007
[75] Zheng D., Wang J., Jia Y., Han W. H., Zou P., Middleware Based Context Management for the
Component-Based Pervasive Computing, Lecture Notes in Computer Science, 4610/2007, 71-81,
2007

