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Abstract 

In this paper, we present a framework which incorporates runtime adaptation for BPEL scenarios. The adaptation is based on (a) the 

quality of service parameters of available services, allowing for tailoring their execution to the diverse needs of individual users and 

(b) on collaborative filtering techniques, allowing clients to further refine the adaptation process by considering service selections 

made by other clients, in the context of the same business processes. The proposed framework also caters maintaining the 

transactional semantics that invocations to multiple services offered by the same provider may bear.  
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1 Introduction 

Web Services are considered a dominant standard for distributed application communication over the internet. 

Consumer applications can locate and invoke complex functionality, through widespread XML-based protocols, 



without any concern about technological decisions or implementation details on the side of the service provider. Web 

Services Business Process Execution Language (WS-BPEL) [1] allows designers to orchestrate individual services so 

as to construct higher level business processes; the orchestration specification is expressed in an XML-based language, 

and it is deployed in a BPEL execution engine, made thus available for invocation by consumers. 

WS-BPEL has been designed to model business processes that are fairly stable, and thus involve the invocation of 

web services that are known beforehand. Therefore, the BPEL scenario designer specifies, at the time the scenario is 

crafted, the exact services to be invoked for the realization of the business process. This setting is however considered 

inadequate in the context of the current web: many functionalities offered by the services invoked within the scenario 

(e.g. checking for free rooms in a hotel or booking an air flight) are typically offered by numerous providers (different 

hotels and flight companies, respectively), and each providers offers its service under different quality of service (QoS) 

parameters. In this environment, it would be highly desirable for consumers to be able to tailor the WS-BPEL scenario 

execution according to their QoS requirements. Indeed, [2] lists governance for compliance with QoS and policy 

requirements as an open issue for the SOA architecture. 

To tackle this shortcoming, numerous approaches have been proposed, following two main strategies [3]: (i) 

horizontal adaptation, where the composition logic remains intact and the main adaptation task is to select the service 

and invoke the service best matching the client’s QoS requirements; the selected services are substituted for either 

abstract tasks (e.g. [3]) or concrete service invocations (e.g. [5]) and (ii) vertical adaptation, where the composition 

logic may be modified. The incorporation of run-time adaptation introduces the need for service selection affinity 

maintenance [5]: service selection affinity refers to cases where a service selection in the context of adaptation implies 

the binding of subsequent selections (e.g. selecting a hotel reservation from a travel agency dictates that the payment 

will be made to the same travel agency), to cater for preserving the transactional semantics that invocations to a specific 

service provider may bear.  



QoS-based service selection, however, limits the adaptation criteria to aspects such as cost, availability and 

performance, not being able to take into account the satisfaction of service users “in the real world”; for instance, an 

airline company may offer low fares and a short trip duration, but the actual traveling experience may be very poor, an 

aspect not reflected in QoS attributes and therefore unavailable for the purposes of adaptation. On the other hand, 

collaborative filtering combines the informed opinions of humans (i.e. opinions taking into account the aspect of 

satisfaction), to make personalized, accurate predictions and recommendations [6]. In the context of collaborating 

filtering, personalization is achieved by considering ratings of "similar users" (in our case the a user is considered to 

rate a service favorably if she actually uses it), under the collaborative filtering’s fundamental assumption that if users 

X and Y have similar behaviors (e.g., buying, watching, listening – in our case, selecting the same services) on some 

items, they will act on other items similarly [7]. 

Under this light, a prominent approach would be to combine QoS-based service selection with collaborative filtering 

to perform adaptation based on both objective data (QoS attributes) and subjective ratings (quality of experience). 

Similarly, the combination of content-based filtering with collaborative filtering has been proposed in a number of 

works (e.g. [8][9]). 

However, personalization and adaptation needs may extend beyond the specification of QoS requirements. In some 

cases, users may desire to select the exact services to be invoked for some cases and ask for recommendations on other 

services; for instance, in a holiday planning application, the user may require that reservation is made in a particular 

hotel, while at the same time asking for a recommendation about the airline. Once a user has made some explicit service 

selections, the combined approach can be used to make recommendations on the services that the user has not bound 

to specific providers. 

In this paper we present an approach for adapting the execution of WS-BPEL scenarios taking into account both 

QoS-based criteria and collaborative filtering techniques, introducing both an adaptation algorithm and an associated 

execution framework. The adaptation algorithm uses both QoS specifications and semantic-based collaborative filtering 



personalization techniques to decide on which offered services best fit the client’s profile. To achieve this goal, we 

follow the metasearch algorithm paradigm [56], using two different candidate adaptation ranking algorithms, the first 

examining the QoS aspects only and the second being based on collaborative filtering techniques. The adaptation 

rankings produced by these two algorithms are combined to generate the overall ranking, which then drives the 

adaptation. The combination of the results is performed using a weighted metasearch score combination 

algorithm [56][57], however varying weights are used to address issues associated with collaborative filtering, such as 

cold start (i.e. few entries recorded in the rating database, thus no good matches can be obtained) and gray sheep (i.e. 

unusual users, which cannot be matched with other users even after the database has been adequately populated) [10]. 

The proposed BPEL execution framework includes provisions for (a) specifying QoS requirements for invocations 

of web services within a WS-BPEL scenario (b) specifying specific bindings for selecting services and designating 

which services are subject to adaptation and (c) adapting the WS-BPEL scenario execution according to the results of 

the service selection algorithm. Our approach follows the horizontal adaptation paradigm since, as noted in [5], 

horizontal adaptation preserves the execution flow which has been crafted by the designer to reflect particularities of 

the business process, while it also allows the exploitation of specialized exception handlers. 

This paper extends the work presented in [53] by including the collaborative filtering adaptation algorithm proposed 

in [54]. The two algorithms run separately, and a combination step is introduced to synthesize the individual algorithm 

proposals to a single result. Effectively thus, in this work the adaptation process is driven by a metasearch 

algorithm [56], where each individual algorithm (the QoS-based and the collaborating filtering-based ones) ranks the 

suitability of each possible adaptation, and the combination step synthesizes these proposals in a way which optimizes 

the performance of the combination [57]. In order to allow this mode of operation, where each of the algorithms is 

actually a “voter”, the algorithms presented in [53] and [54] have been redesigned to a large extent, in order to use 

integer programming techniques instead of exhaustive search, in order to cater for efficiency and scalability. To the 



best of the authors’ knowledge, no other work supports adaptation of WS-BPEL scenario execution based on both QoS-

based and collaborative filtering-based criteria. 

The rest of the paper is structured as follows: In section 2 we briefly present the QoS concepts and collaborative 

filtering foundations used in this work. In section 3 we present the proposed service recommendation algorithm in the 

context of WS-BPEL scenario execution, while section 4 presents the execution adaptation architecture and elaborates 

on the functionality of its components. Section 5 presents a qualitative (in terms of proposed solution QoS) and a 

quantitative (in terms of performance) evaluation of the proposed approach. In section 6 we overview related work, 

while section 7 concludes the paper and outlines future work. 

2 QoS concepts and collaborative filtering foundations 

In the following subsections we summarize the concepts and underpinnings from the areas of QoS and collaborative 

filtering, which are used in our work. 

2.1 QoS concepts and definitions 

QoS may be defined in terms of attributes [27][28], while typical attributes considered are cost, response time, 

availability, reputation, security etc. [29]. For conciseness purposes, in this paper we will consider only the attributes 

responseTime (rt), cost (c) and reliability (rel), adopting their definitions from [20]. Extension of the framework to include 

additional attributes is straightforward, thus we have no loss of generality. 

In the proposed framework, the QoS specifications for a service within the BPEL scenario may include an upper 

bound and a lower bound for each QoS attribute, i.e. for service sj included in a WS-BPEL scenario, the designer 

formulates two vectors MINj(minrt,j, minc,j, minrel,j) and MAXj(maxrt,j, maxc,j, maxrel,j). Additionally the designer 

formulates a weight vector W = (rtw, cw, relw), indicating how important each QoS attribute is considered by the designer 

in the context of the particular operation invocation (effectively, weight element values are multiplied by the value of 



the respective QoS dimension of the service composition, and these products are then summed to produce a total score 

for the composition). The values of the QoS attributes are assumed to be expressed in a “larger values are better” 

encoding, hence a service having response time = 7 actually responds in less time than a service with response time = 

3 (better response time). Note that weights apply to the whole composition, rather than to individual services, since they 

reflect the perceived importance of each QoS attribute dimension on the process as a whole, and not its constituent 

parts [4]. 

For convenience reasons, we assume that all QoS attributes are normalized in the range [0, 1]; value range 

normalization is a typical approach in works considering QoS-based adaptation (e.g. [4][11]). Note that this implies 

that a total ordering relationship is required in the range of the QoS attributes; this is always the case with attributes 

such as response time and reliability, however some QoS attributes are more complex: for instance [32] identifies seven 

dimensions related to security, and some security mechanism S1 may outperform some other security mechanism S2 

in some dimensions but lag behind S2 in other dimensions. This could be tackled by decomposing the security QoS 

attribute in seven distinct attributes, one for each dimension, ensuring thus the existence of the total ordering 

relationship in the range of each attribute. In the rest of this paper, we will only consider cases that the total ordering 

relationship exists. 

In order to compute the QoS of services composed through sequential or parallel execution from constituent services 

s1, …, sn having QoS attributes equal to (rt1, c1, rel1), …, (rtn, cn, reln), respectively, the formulas given in Table 1 [16] 

can be used. These computation formulas are in line with the Q-algebra operations introduced in [30] and generalized 

in [31]. 

As we can see from Table 1, the response time of a sequential composition is equal to the sum of its components’ 

response time, while the response time of a parallel composition is equal to the maximum value. This difference is 

important in the adaptation process, since different search strategies should be employed to optimally adapt the scenario 

to the client’s QoS specification. Consider for example the case of a BPEL scenario includes sequential invocations to 



A and B, which is invoked with the setting W=(1, 1, 0) for both service invocations. If the repository of available services 

were as listed in Table 2, then the adaptation engine should select services (A2, B2), with this composition scoring 2 

=(sum(rtA2, rtB2)∗1 +sum(cA2, cB2)∗1), a score higher than any other composition. In a parallel composition however, the 

adaptation engine should select (A2, B1), since these provide an overall score of 1.7 =(max(rtA2, rtB1)∗1 +sum(cA2, cB1)∗

1), as opposed to 1.3 of (A2, B2). 

Table 1. QoS of composite services 
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Table 2. Sample repository contents 

Service responseTime cost reliability 
A1 0.6 0.5 0.8 
A2 0.8 0.4 0.7 
B1 0.2 0.5 0.9 
B2 0.7 0.1 0.7 

2.2 Subsumption relation representation 

In order to perform adaptation, either QoS-based or collaborative filtering-based, we need to represent which 

services implement the same functionality, and are thus candidate for invocation when this particular functionality is 

needed. In this work, we use subsumption relations between services [18] to represent this information. In [18] the 

following subsumption relations are defined: 

1. A exact B, iff A provides the same functionality with B. 



2. A plugin B, iff A provides more specific functionality than B. For instance B could provide travel, whereas 

A could provide air travel; in this case A could be used whenever the functionality of B is needed, since it 

delivers (a specialization of) the functionality delivered by B. 

3. A subsume B, iff A provides more generic functionality than B. In this case A cannot unconditionally be 

used whenever the functionality of B is needed. For instance B could provide air travel while A provides 

travel, and using a travel service (instead of an air travel one) could result to transportation by car, which 

does not comply with the functionality of B. 

4. A fail B, in all other cases; in this case, A cannot be substituted for B. 

The rationale for adopting the subsumption relations are as follows: 

a. subsumption relations effectively broaden the pool of services that can be used in the context of adaptation (a 

service A can be unconditionally substituted by a service B if A exact B or A plugin B, as opposed to strict 

equivalence where substitution is only possible when A exact B1), providing thus more flexibility in the 

formulation of the execution plan. 

b. subsumption relations are suitable for supporting the task of similarity metric computation, which is essential 

for collaborative filtering-based adaptation. 

[18] and [39] address the representation of subsumption relations between service categories (or abstract tasks, in 

horizontal adaptation terminology) using trees, with generic service categories being located towards the tree root and 

specific service categories being placed towards the leafs (the references above apply this arrangement also to concepts 

corresponding to service parameters). Since in this work we are interested not only in service categories but in concrete 

services also (because these will be actually invoked in the context of WS-BPEL scenario execution), we extend the 

                                                           
1 Note that if A subsume B, this does not preclude using B instead of A, however this is only possible under certain 

conditions. In this work, we will not consider this case. 



tree scheme used in [18] and [39] by considering not only is-a arcs in the tree (general/specific categories) but also 

instance-of arcs: an arc is drawn in the tree between service category C and concrete service S, if and only if S 

implements exactly the functionality specified by category C. To illustrate this representation, let us consider the case 

of a travel planning WS-BPEL scenario containing the following activities: ticket booking, hotel booking, and event 

attendance. In this case the subsumption relations, including categories and concrete services could be arranged as 

shown in Figure 1 (categories are denoted using a folder icon; concrete services are denoted using a bullet mark). 

We list below how the exact and plugin subsumption relations (the ones sufficient for unconditional service 

substitution) can be computed using the tree representation. Since the goal of the adaptation is to select the concrete 

services to be invoked in place of an abstract task or a concrete service, we give only the rules for the cases where the 

right-hand side operand is a concrete service. In the following, c represents a category, while s1 and s2 represent 

services: 

• Rule Cext: c exact s1 iff c is the immediate parent of s1 (e.g. Air travel and SwissAir in Figure 1). 

• Rule Cplg: c plugin s1 iff c is an ancestor of s1 (e.g. Ticket and SwissAir in Figure 1). 

• Rule Sext: s1 exact s2 iff ∃ c: c is the immediate parent of s1 and c is the immediate parent of s2 (e.g. AirFrance 

and SwissAir in Figure 1). 

• Rule Splg: s1 plugin s2 iff ∃ c: c is the immediate parent of s1 and c plugin s2 (e.g. SportsTicketBooker and 

NBAFinals in Figure 1).  

In all other cases, unconditional substitution cannot occur hence we compute a fail result for the operands. Listing 1 

and Listing 2 illustrate the computation of the relevant subsumption relation between a service category and a service 

or between two services, respectively, given the tree representation suggested in [18] and [39]. The representation of 

subsumption relations illustrated in Figure 1 can be trivially extended to accommodate the QoS attribute values of 

concrete services, by simply attaching to each concrete service node s the vector QoSS=(rts, rels, prs) corresponding to 

the particular service’s QoS metrics. 



 

Figure 1. Subsumption relations for the travel planning WS-BPEL scenario 



The exact subsumption relation is equivalent to contract equivalence [67]. Further [58] uses the subcontract 

preorder concept, denoted as a ≼b, to denote that b offers “more capabilities than a, and therefore b can be substituted 

for a”; the preorder concept is therefore analogous to the plugin subsumption relation. 

 

subsumptionRelCatSvc(ServiceCategory c, ConcreteService s, SubsumptionTree st) { 
 SubsumptionTreeNode categNode = findNodeInTree(c, st); 
 SubsumptionTreeNode svcNode = findNodeInTree(s, st); 
 if (svcNode.parent == categNode) 
  return exact; 
 end if 
 while (svcNode.parent ≠ null) 
  svcNode = svcNode.parent; 
  if (svcNode == categNode) 
   return plugin; 
  end if 
 end while 
 return fail; 
} 
Listing 1. Computing the subsumption relation between a service category and a concrete service 
 
subsumptionRelSvcSvc(ConcreteService s1, ConcreteService s2, SubsumptionTree st) { 
 SubsumptionTreeNode svc1Node = findNodeInTree(s1, st); 
 SubsumptionTreeNode svc2Node = findNodeInTree(s2, st); 
 if (svc1Node.parent == svc2Node.parent) 
  return exact; 
 end if 
 while (svc2Node.parent ≠ null) 
  svcNode = svcNode.parent; 
  if (svcNode2 == svc1Node.parent) 
   return plugin; 
  end if 
 end while 
 return fail; 
} 
Listing 2. Computing the subsumption relation between two concrete services 

 
The information regarding the QoS data and the subsumption relations can be stored in repository structures like the 

ones provided by OPUCE [33]. The population of the repository with QoS values can be performed either by using 

existing web service QoS datasets (e.g. the QWS dataset [34][35][36] or the WS-DREAM dataset [37][38]), or by using 

the methodologies described in [34][35][37] to compute the QoS attribute values for any desired set of target web 



services. In all cases, the execution framework can monitor the actual quality of service delivered by the individual web 

services upon their invocation, and update the QoS attribute values in the repository accordingly, as described in [21]. 

2.3 Designations on specific service bindings 

In the considered environment, the WS-BPEL consumer is allowed to make specific service bindings, i.e. request 

that some particular operation is performed using a designated service. For instance, in the travel planning WS-BPEL 

scenario discussed above, the consumer may request that ticket reservation is performed through the SwissAir service. 

The consumer may also designate that some functionality included in the WS-BPEL scenario is not executed; for 

instance, a tourist may not want to attend any event. Typically, the WS-BPEL code will examine input parameters and 

decide using a conditional execution construct (<switch>) whether to invoke the functionality or not. 

Finally, functionalities that are neither explicitly bound to a specific service implementation, nor are designated as 

“not to be executed” are subject to adaptation, using the algorithm described in section 3. 

2.4 Usage patterns repository 

In order to perform collaborative filtering, a system needs to record evaluations (ratings) or choices (actions taken) 

made by users. This information is typically stored in a ratings matrix [22], where each row corresponds to a user and 

each column corresponds to an item, and the value of the (i, j) cell of this matrix indicates how user i has rated item j 

(or whether user i has taken action j). Since our aim is to adapt WS-BPEL scenario executions based on past user 

choices, each row of the ratings matrix in the proposed system corresponds to a particular WS-BPEL scenario execution, 

while each column corresponds to a concrete web service implementation. The value of a cell (i, j) is 1 if the service 

corresponding to column j were executed in the ith execution, and null otherwise. We will call this matrix usage patterns 

repository. The execution framework can maintain this usage patterns repository by recording in an appropriate store 

which services were used in any particular execution of a BPEL scenario. 



For notational convenience, in the rest of this paper we will represent the usage patterns repository in a more compact 

form: taking into account that each functionality included in the WS-BPEL scenario will result to at most one invocation 

of some service that implements it2, for each row, at most one of the columns corresponding to the services 

implementing the functionality will have a value, while the other columns will be null. Thus we can equivalently denote 

the information within the usage patterns repository using one column for each distinct functionality of the WS-BPEL 

scenario, with the value of a cell (i, j) designating the service used to deliver the specific functionality if the functionality 

corresponding to column j were delivered in the context of the ith execution, and null otherwise. Table 3 illustrates a 

usage patterns repository for the travel planning WS-BPEL scenario, using the compact notation. Note that the sparse 

representation is used internally, as is the case with all collaborative filtering algorithms. In executions 1, 2 and 5 all 

functionalities were invoked, while in the remaining executions some functionalities were omitted, as per user request. 

Table 3. Example usage patterns repository 

# exec Travel Hotel Event 
1 OlympicAirways YouthHostel ChampionsLeague 
2 SwissAir Hilton GrandConcert 
3 HighSpeedVessels YouthHostel  
4 LuxuryBuses  EuroleagueFinals 
5 Lufthansa YouthHostel GrandConcert 
6 AirFrance Hilton  
7 SwissAir YouthHostel ChampionsLeague 
 

The usage patterns repository is populated by the execution adaptation architecture, described in section 4. When 

the execution adaptation architecture formulates the execution plan for a particular invocation (i.e. selects the concrete 

                                                           
2 it may result to zero invocations, if the consumer has designated that this piece of functionality should not be 

executed. Note that the adaptation procedure presented here does not take into account loops, an aspect which will be 

addressed as part of our future work. 



services to be selected to deliver the requested functionalities), the corresponding row is inserted in the usage patern 

repository. 

3 The service recommendation algorithm 

As stated in section 1, our approach follows the horizontal adaptation algorithm, i.e. it leaves the composition logic 

intact and adapts the execution by selecting which concrete service implementation will be used in each specific 

invocation. In order to perform this task, the algorithm takes into account the following criteria: 

i) The consumer’s QoS specifications (bounds and weights). 

ii) Designations on which exact services should be invoked, if such bindings are requested by the consumer. 

iii) Designations on which functionalities should not be invoked (e.g. in the example within section 2, the user does 

not want to attend any event). 

iv) The QoS characteristics of the available service implementations.  

v) The service subsumption relations. 

vi) The usage patterns of services recorded in past WS-BPEL scenario executions. 

vii) Statistics on how well-populated the usage patterns repository is; these are used to adjust the weights assigned 

to the results of the collaborative filtering-based adaptation, considering the fact that a poorly populated usage 

patterns repository is bound to produce results of poorer quality. To this end, we exploit the concept of user-

item sparsity [55]; details on this aspect are given below. 

Items (i)-(iii) are provided per WS-BPEL scenario execution by the consumer, while items (iv)-(vii) are drawn from 

repositories maintained by the adaptation scheme. Note that it is not necessary for the end-user to directly specify the 

QoS bounds or weights for each individual service as an input parameter to the scenario: the user could specify the 

bounds and weights in a more generic form (e.g. choose=cheapest), which would then be mapped to specific bounds 

for the involved services’ QoS attributes through code provided by either the WS-BPEL scenario designer or an 



intermediate entity (e.g. the code behind a web page collecting the necessary data from the user, in order to invoke the 

BPEL scenario). 

Recall also that the approach adopted in this paper incorporates two different candidate service ranking algorithms, 

the first examining the QoS aspects only and the second being based on collaborative filtering techniques. The 

algorithms run in parallel to formulate their suggestions regarding the services that should be used in the adapted 

execution, and subsequently their suggestions are combined, through a metasearch score combination algorithm with 

varying weights. In the following subsections, we will describe the two algorithms (the QoS-based and the collaborating 

filtering-based) as well as on the combination step. Note that, for the metasearch score combination algorithm to work 

properly, the scores produced by each individual algorithm should be normalized [56][57][58]. To this end, the 

individual algorithms adopted from [53] and [54] have been extended to include a score normalization step; additionally 

the algorithms have been modified to allow them to function as “voters” in the metasearch process adopted in this 

paper. Figure 2 depicts the operation of the algorithm in the form of an activity diagram. 

 

Figure 2. Activity diagram for overall algorithm operation 

 

To illustrate the operation of the algorithms, we will use an example execution request: 

TravelPlanner(bindings=(AirTravel(R), GrandResort, NBA), QoSLimits={MINAirTravel(rt: 4, cost: 3, rel: 3), 

MAXAirTravel(rt: 7, cost: null, rel: null)}, QoSWeights={rt: 0.2, cost: 0.5, rel: 0.3}) 

which can be effectively read as “I want to stay in Grand Resort, I want to watch an NBA match and I want a 

recommendation for an air travel; response time for the AirTravel service should be at least 4 and at most 7, cost should 



be at least 3 (recall that QoS attribute values are expressed in a “larger values are better” encoding scheme, therefore 

setting a lower bound for the cost excludes the most expensive services) and reliability should be at least 3. 

We assume that the values of the QoS attributes for the services implementing the AirTravel functionality are as shown 

in Table 4. 

Table 4. QoS attribute values for services 

AirTravel Company Response_Time Cost Reliability 

Swiss Air 5 7 8 

Olympic Airways 4 1 6 

Air France 5 8 9 

Lufthansa 6 3 4 

3.1 The QoS-based algorithm 

The QoS-based algorithm initially identifies the services which are candidate to be used for delivering functionalities 

in the context of the current WS-BPEL scenario, according to their QoS attribute values, as well as the QoS bounds 

specified by the user for the particular invocation, and subsequently computes a score for each candidate composition. 

Figure 3 illustrates the steps of the QoS-based algorithm in the form of an activity diagram and Figure 4 describes the 

algorithm in pseudocode, while the following paragraphs provide details on the actions taken within each step. 

 

Figure 3. Activity diagram for the QoS-based algorithm 

 
/* QoS-based adaptation algorithm pseudocode  

Assumption: 

- Scenario includes functionalities (i.e. invocations to services) f1, f2, …, fn 

Inputs: 



- MIN and MAX (lower and upper bounds for QoS attributes) and weights 

- Specification of bindings of functionalities to concrete services B=(b1, b2, …, bn) [bi == null if no binding provided, else id 
of service) 

- Specifications of functionalities not to be invoked O=(o1, o2, …, on) [oi == true if fi should not be invoked, false otherwise] 

- Specifications of functionalities for which recommendations are requested R=(r1, r2, …, rn) [ri == category of functionality 
if a recommendation is requested for fi, null otherwise] 

- Subsumption relation tree, including the QoS attribute value of services 

- Scenario structure (information about which functionalities are executed sequentially and which in parallel) 

Outputs: 

- List of <execution plan, score> pairs, with “execution plan” binding services that recommendation is asked for to concrete 
services 

*/ 

 
/* 1. For each functionality ri that a recommendation is requested for, compute the set of services QPA(i) that deliver this 
functionality (as can be determined by the subsumption relations) and satisfying QoS thresholds. */ 
foreach fi  R, fi ≠ null: QPA(i) = {s  serviceRepository: (fi exact s  fi plugin s)  MIN ≤ QoS(s) ≤ MAX} 
 
/* 2. formulate and solve integer programming problem, obtaining the top-20 execution plans, taking into account the QoS 
attribute values and the weights of the QoS attributes */ 

ipp = formulateIntegerProgrammingProblem(QPA) 

QoS_solutions = obtainTop20Solutions(ipp) 

/* 3. Finally, normalize scores */ 

QoS_proposal = normaliseScores(QoS_solutions); 

 
Figure 4. Pseudocode for the QoS-based algorithm 

 
1. for each distinct functionality functi within the WS-BPEL scenario which is subject to adaptation (i.e. for each 

service invocation that the user (a) has not designated an exact service binding and (b) has not designated that 

the functionality should not be invoked), the service implementations that deliver this functionality are retrieved 

from the repository. Recall that service functionalities are represented using the subsumption relations tree, and 

in terms of this tree the retrieval of services implementing a specific functionality is equivalent to retrieving 

services satisfying either the Sext or the Splg rule (i.e. services with either identical or more specific 

functionality, compared to the requested one). Equivalent services retrieval is further constrained by the QoS 

thresholds specified in the respective invocation. Thus, for each functionality functi, this step computes a set of 

possible concrete service assignments QPA(i)={si,1, si,2, …, si,T(i)}. Formally, QPA(i) is computed as follows: 



ሺ݅ሻܣܲܳ ൌ ሼݏ ∈ :ݕݎ݋ݐ݅ݏ݋݌ܴ݁ ሺ݂ݐܿ݊ݑ௜	݁ݐܿܽݔ	ݏ	 ∨ ሻݏ	݊݅݃ݑ݈݌	௜ݐܿ݊ݑ݂ 	∧ 	 ሾሺ݉݅݊௥௧,௜ ൑ ௦ݐݎ

൑ ௥௧,௜ሻݔܽ݉ 	∧ 	 ሺ݉݅݊௖,௜ ൑ ܿ௦ ൑ ௖,௜ሻݔܽ݉ ∧ 	ሺ݉݅݊௥௘௟,௜ ൑ ௦݈݁ݎ ൑  ௥௘௟,௜ሻሿሽݔܽ݉

If, for some service that is subject to adaptation, no candidates satisfying the thresholds are found (i.e. 

QPA(i)=), then the algorithm terminates producing no results, indicating thus that the constraints specified by 

the user cannot be satisfied. 

In our example, services Swiss Air, Olympic Airways, Air France and Lufthansa, satisfy the Sext rule, 

however service Olympic Airways fails to meet the QoS constraint regarding the maximum cost. Hence 

QPA(AirTravel)={Swiss Air, Air France, Lufthansa}. 

2. the algorithm computes the m-best solutions, with respect to the QoS value, with each solution being a set of 

concrete service assignments to the functionalities for which a recommendation has been requested. Since the 

service consumer’s QoS bounds per functionality are an input to the adaptation algorithm, service selection can 

proceed by exploiting these constraints, performing local selection so as to efficiently compute the optimal 

concrete service assignments for the functionalities under adaptation [59][58][60][61][62][63][64]. In this work, 

we adopt the concrete service utility function used in [59][61], which is: 

ܷ൫ݏ௝,௜൯ ൌ ෍
ܳ௠௔௫ሺ݆, ݇ሻ െ ௝,௜ሻݏ௞ሺݍ
ܳ௠௔௫ᇲሺ݇ሻ െ ܳ௠௜௡ᇲሺ݇ሻ

∗ ௞ݓ

ଷ

௞ୀଵ

 

where qk(sj,i) is the value of the kth QoS attribute of concrete service sj,i (the first QoS attribute being response 

time, the second one being cost and the third one being availability), wk being the weight assigned to the kth QoS 

attribute, ܳ௠௔௫ሺ݆, ݇ሻ ൌ max
௦∈ொ௉஺ሺ௝ሻ

 ሻ [i.e. the maximum value of QoS attribute k among possible concreteݏ௞ሺݍ

service assignments for functionality j], and ܳ௠௔௫ᇲሺ݇ሻ [resp. ܳ௠௜௡ᇲሺ݇ሻ] being the 	overall maximum (resp. 

minimum) value of QoS attribute k within the repository. Note that services with high QoS values have low 



utility function values. Given the utility function, the computation of the m-best solutions can be formulated as 

an integer programming optimization problem as follows: minimize the overall utility value given by: 

ܱܷ ொܸ௢ௌ ൌ෍෍ܷሺݏ௝,௜ሻ ∗ ௝,௜ݔ

்ሺ௜ሻ

௝ୀଵ

ி

௜ୀଵ

 

where F is the number of functionalities functk requiring adaptation, and each xj,i is a binary variable taking the 

value 1 if sj,i is selected for delivering functionality functj, and the value 0, otherwise. Since each functionality 

functj is delivered in the final execution plan by exactly one concrete service, the minimization of the overall 

utility value is subject to the constraint 

෍ݔ௝,௜ ൌ 1, 1 ൑

்ሺ௝ሻ

௜ୀଵ

݆ ൑  ܨ

Note that in the above problem formulation an additive formula is used for all QoS attributes, while the formulas 

listed in Table 1 for composite QoS service computation are not all additive; in particular the reliability attribute 

of a composite service is shown in Table 1 to be computed as a product, while the response time of a parallel 

composition is computed as the maximum of the constituent services’ response time. In order to transform the 

non-additive formulas to additive ones, suitable for use in the context of an integer programming problem, we 

have employed the following techniques: 

 regarding the product functions used for computing the reliability of a composite service, we have 

adopted the approach used in [4][73][74], according to which the logarithm of reliability, rather than 

the reliability itself is used when writing expressions. Through the use of the logarithm, the equality 

log	ሺෑݕݐ݈ܾ݈݅݅ܽ݅݁ݎሺ݅ሻ
௜

ሻ ൌ෍log	ሺݕݐ݈ܾ݈݅݅ܽ݅݁ݎሺ݅ሻሻ
௜

 

is exploited, and therefore the product function is transformed to a sum function. Observe also that in 

the computation of the ܷ൫ݏ௝,௜൯ function listed above, the literal value any QoS attribute (including 



reliability) is normalized taking into account the minimum and maximum values of the attribute, the 

range of the normalized attribute value used in the utility function is always in the range [0, 1]. 

 regarding the max function used in computing the response time of a parallel composition, it is possible 

to follow the method described in [75] to transform an objective minimization problem where the 

objective contains the max function (termed a minimax objective) to an integer programming problem. 

In brief, the transformation procedure of an objective function containing the term 

max
௞∈௄

෍ܿ௞௝ݔ௝
௝∈௃

 

involves the introduction of a new variable z representing the above term, and the introduction of the 

following extra constraints: 

෍ܿ௞௝ݔ௝
௝∈௃

൑ ,ݖ ∀݇ ∈  ܭ

A relevant example is given in [76]. It is however worth noting that the IBM ILOG CPLEX optimizer 

12.6.0.0 [65] used in our experiments, directly supports the usage of the max operator within the 

objective function, even in a recursive structure (i.e. the operands of a max operator may be max 

operators themselves, as would be the case with nested flow constructs in a BPEL scenario), hence we 

did not need to apply the transformation described above; the transformations can be used, if the integer 

programming optimization software used does not support the direct use of the max operator in the 

objective function. 

If service selection affinity needs to be maintained between functionalities functi and functj, then an additional 

constraint is added to the problem as follows: 

i. Let QPA(i)={si,1, si,2, …, si,L(i)} be the possible concrete service assignments for functi and QPA(j)={sj,1, sj,2, 

…, sj,L(j)} the possible concrete service assignments for functj, computed in step 1, above. Without loss of 



generality, we assume that the first k services in QPA(i) and QPA(j) are offered by the same service provider 

(i.e. services for which the host part of their endpoint address [1] is identical), while the remaining services 

are offered by different providers, or more formally: 

ቊ
௜,௔ሻݏሺݎ݁݀݅ݒ݋ݎ݌ ൌ ,௝,௔൯ݏ൫ݎ݁݀݅ݒ݋ݎ݌ 1 ൑ ܽ ൑ ݇

௜,௫ሻݏሺݎ݁݀݅ݒ݋ݎ݌ ് ,௝,௬൯ݏ൫ݎ݁݀݅ݒ݋ݎ݌ 1 ൑ ݔ ൑ ݇, 1 ൑ ݕ ൑ ݇, ݔ ് ݕ
 

In this case, implementing the functionalities (functi, functj) with any choice of services (si,a, sj,a) for 1≤a≤ k 

leads to maintenance of service selection affinity, while any other choice (i.e. a > k, or implementing the 

functionalities with a choice of services (si,x, sj,y) with x≠y) leads to a failure in maintaining service selection 

affinity. 

ii. The constraints 

௜,௔ݔ െ ௝,௔ݔ ൌ 0, 1	 ൑ ܽ	 ൑ 	݇ 

are added to the problem; under the presence of these constraints, a service xi,a implementing functionality 

functi and provided by service provider a will be selected if and only if for the realization of functionality 

functj the service xj.a  provided by the same provider is selected too. For optimization purposes, all elements 

corresponding to services si,b and ss,b: b > k are removed from the model, since they cannot be part of any 

feasible solution. 

This procedure can be generalized for cases that service selection affinity needs to be maintained between any 

number of functionalities: if service selection affinity needs to be maintained between functionalities functi1, 

functi2,…, functif, then the constraints 

௜ଵ,௔ݔ െ ௜ଶ,௔ݔ ൌ 0, 1	 ൑ ܽ	 ൑ 	݇ 

… 

௜ଵ,௔ݔ െ ௜௙,௔ݔ ൌ 0, 1	 ൑ ܽ	 ൑ 	݇ 



Similarly to the case of maintaining service selection affinity between two functionalities, we assume without 

loss of generality that 

ە
ۖ
۔

ۖ
௜ଵ,௔ሻݏሺݎ݁݀݅ݒ݋ݎ݌ۓ ൌ ,௜ଶ,௔൯ݏ൫ݎ݁݀݅ݒ݋ݎ݌ 1 ൑ ܽ ൑ ݇
…
௜ଵ,௔ሻݏሺݎ݁݀݅ݒ݋ݎ݌ ൌ ,௜௙,௔൯ݏ൫ݎ݁݀݅ݒ݋ݎ݌ 1 ൑ ܽ ൑ ݇

௣,௫ሻݏሺݎ݁݀݅ݒ݋ݎ݌ ് ,௤,௬൯ݏ൫ݎ݁݀݅ݒ݋ݎ݌ 1 ൑ ݌ ൑ ݂, 1 ൑ ݍ ൑ ݂, ݌ ് ,ݍ 1 ൑ ݔ ൑ ݇, 1 ൑ ݕ ൑ ݇, ݔ ് 	ݕ

 

Subsequently, the integer programming problem is solved, and the k best solutions are obtained. Obtaining the 

k best solutions can be achieved by solving the problem once, and then adding a constraint rendering the obtained 

solution infeasible (for the IBM ILOG CPLEX optimizer [65] used in our experiments, this procedure is 

described in [66]). In our implementation, we have set k to 20; the value of 20 has proven to be sufficient even 

for applying metasearch techniques to web search engines [68] (where the size of each individual list is 

considerably higher than the number of alternatives in our case), i.e. further increasing the number of solutions 

that each voting algorithm provides to the combination phase, does not improve the quality of the result 

computed by the combination step. 

In our example, a single functionality requires adaptation (AirTravel); the utility function for this functionality 

is 

ܷ൫ݏ஺௜௥்௥௔௩௘௟,௜൯ ൌ ෍
ܳ௠௔௫ሺ݈݁ݒܽݎܶݎ݅ܣ, ݇ሻ െ ஺௜௥்௥௔௩௘௟,௜ሻݏ௞ሺݍ

ܳ௠௔௫ᇲሺ݇ሻ െ ܳ௠௜௡ᇲሺ݇ሻ
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Substituting the values for Qmax(k), Qmax(k), Qmin(k) and wk, the utility function can be rewritten as: 

ܷ൫ݏ஺௜௥்௥௔௩௘௟,௜൯ ൌ 5 െ ஺௜௥்௥௔௩௘௟,௜൯ݏ൫ݐݎ
5 െ 4

∗ 0.2ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ൅

݁݉݅ݐ݊ݑݎ

8 െ ஺௜௥்௥௔௩௘௟,௜൯ݏ൫ݐݏ݋ܿ
9 െ 2

∗ 0.5ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ൅

ݐݏ݋ܿ

9 െ ஺௜௥்௥௔௩௘௟,௜൯ݏ൫݈݁ݎ
9 െ 4

∗ 0.3ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

ݕݐ݈ܾ݈݅݅ܽ݅݁ݎ

 

The utility function values for services in QPA(AirTravel) are as shown in Table 5. Since assignment is 

performed only for a single functionality, each possible solution obviously consists of selecting one of the 

candidates in QPA(AirTravel) to implement the AirTravel functionality. In terms of the integer programming 



problem solution, the variable xAirTravel,j for this service will be equal to 1 and the variables xAirTravel,k for the 

remaining services will be 0. The value of the overall utility function for a solution, coincides with this of the 

sole service selected in this solution. All possible solutions are kept, since their number is less than 20. 

Table 5. Utility function values and IP problem solutions for services in QPA(AirTravel) 

IP problem solution Selected sAirTravel,i U(sAirTravel,i) OUVQoS 

xAirTravel,SwissAir=1, xAirTravel,AirFrance=0, xAirTravel,Lufthansa=0 Swiss Air 0.231 0.231 

xAirTravel,SwissAir=0, xAirTravel,AirFrance=1, xAirTravel,Lufthansa=0 Air France 0.100 0.100 

xAirTravel,SwissAir=0, xAirTravel,AirFrance=0, xAirTravel,Lufthansa=1 Lufthansa 0.657 0.657 

 

3. The scores of the solutions produced by step 2, above, are then normalized in the range [0,1], to enable the 

combination step to function correctly. Normalization is performed by first computing the minimum and the 

maximum execution plan scores among all solutions formulated in step 3, above, and then applying the formula 

݋ܳ݀݁݉ݎ݋݊ ௌܵ௖௢௥௘௜ ൌ 1 െ
ௌ௖௢௥௘೔ܵ݋ܳ െ ݋ܳ݊݅݉ ௌܵ௖௢௥௘

݋ܳݔܽ݉ ௌܵ௖௢௥௘ െ ௌ௖௢௥௘ܵ݋ܳ݊݅݉
 

[58] (adapted from [57]; since the target of step (2) was to minimize the overall utility function OUVCF, here we 

subtract the normalization formula suggested in [57] from 1, in order to assign the normalized score 1 to the best 

solution and the normalized score 0 to the worst). The output of the algorithm is the set of candidate execution 

plans, with each execution plan being tagged with the relevant normalized score (QoS-score). 

In our example, the normalized solution scores are as shown in Table 6. 

Table 6. Normalized solution scores 

sAirTravel,i Normalized score 

Swiss Air 0.764 

Air France 1.000 

Lufthansa 0.000 



3.2 The collaborating filtering-based algorithm 

The collaborating filtering-based algorithm, upon each invocation of a WS-BPEL scenario, proposes sets of actual 

services that functionalities denoted as “to be recommended” could be bound to. Each proposal is tagged with a CF-

score, which is determined through a collaborative filtering process. Figure 5 illustrates the steps of the CF-based 

algorithm in the form of an activity diagram and Figure 6 describes the algorithm in pseudocode, while the following 

paragraphs provide details on the actions taken within each step. 

 

Figure 5. Activity diagram for the CF-based algorithm 

 

/* CF-based adaptation algorithm pseudocode  

Assumption: 

- Scenario includes functionalities (i.e. invocations to services) f1, f2, …, fn 

Inputs: 

- MIN and MAX (lower and upper bounds for QoS attributes) 

- Specification of bindings of functionalities to concrete services B=(b1, b2, …, bn) [bi == null if no binding provided, else id 
of service) 

- Specifications of functionalities not to be invoked O=(o1, o2, …, on) [oi == true if fi should not be invoked, false otherwise] 

- Specifications of functionalities for which recommendations are requested R=(r1, r2, …, rn) [ri == category of functionality 
if a recommendation is requested for fi, null otherwise] 

- Subsumption relation tree, including the QoS attribute value of services 

Outputs: 

- List of <execution plan, score> pairs, with “execution plan” binding services that recommendation is asked for to concrete 
services 



*/ 

/* 1. Build scenario-level functionality vector */ 

for (i = 1; i <= n; i++) 

 if (B[i] != null) then 

  F[i] = B[i]; /* set explicit binding information in the functionality vector */ 

 Else 

  F[i] = null; 

 end if 

end for 

/* 2. For each functionality that a recommendation is requested for, fetch matching scenario executions from the usage patterns 
repository */ 

for (i = 1; i <= n; i++) 

 if (R[i] != null) /* recommendation requested */ 

  /* Fetch matching rows from the usage patterns repository */ 

  matchingRows = selectFromUsageRepository row: R[i] exact row[i]  R[i] plugin row[i]; 

 /* Formulate FV[fi], to be used as the similarity yardstick for functionality fi */ 

  FV[fi] = F; 

  FV[fi][i] = R[i] 

/* 3, 4 drop rows not in bounds and compute score for remaining ones */ 

  foreach (row in matchingRows)  

   if (notInBounds(row, MIN, MAX) then 

    removeElement(matchingRows, row); 

   else 

    scores[row] = computeSimilarity(row, FV[fi]); 

  end for 

/* 5. Retain k-nearest scores and compute group scores */ 

  qualifyingRows = top30_Scores(matchingRows, scores); 

  /* formulate groupScores, containing the candidate services for delivering functionality fi and the respective scores */  

  groupedScores[fi] = groupRowScores(qualifyingRows, scores, fi); 

 end if /* recommendation requested */ 

end for 

/* 6. formulate and solve integer programming problem, obtaining the top-20 execution plans */ 

ipp = formulateIntegerProgrammingProblem(groupedScores[fi]: R[i] != null) 

CF_solutions = obtainTop20Solutions(ipp) 

/* 7. Finally, normalize scores */ 

CF_proposal = normaliseScores(CF_solutions); 

 

Figure 6. Pseudocode for the CF-based algorithm 
 



1. it formulates a scenario-level functionality vector F=(f1, f2, …, fn), where each fi corresponds to a functionality 

that is part of the WS-BPEL scenario. The values of the elements fi are determined as follows: 

 if functionality corresponding to element fi is bound to a specific service, then the value of fi is set to 

the identifier of this service. 

 in all other cases (i.e. if the corresponding functionality will not invoked in the context of the particular 

WS-BPEL scenario execution or a recommendation is requested for it), the value of fi is set to null. 

Regarding our example, the functionality vector would be set to F=(null, GrandResort, NBA). 

2. for each functionality functi(request) for which a recommendation is requested, the algorithm retrieves from the 

usage patterns repository the rows for which 

functi(request) exact functi(row) or functi(request) plugin functi(row) 

i.e. those patterns containing either an invocation to some identical functionality or a functionality to an 

invocation to a more specific one. These are the only rows that are useful for formulating a recommendation for 

functi(request), since they involve services that deliver the requested functionality. 

Additionally, a request-level functionality vector F(functi(request)) is formulated, by replacing the null value 

corresponding to functi in vector F with the category corresponding to functionality functi. The new functionality 

vector will be used to calculate the similarity of the current request with the usage patterns in the repository, as 

explained below. 

In our example, rows 1, 2, 5, 6 and 7 of Table 3 would be selected (rows 3 and 4 do not satisfy the subsumption 

relation criteria). The functionality being considered is functi=AirTravel and it corresponds to the first element 

of functionality vector F=(null, GrandResort, NBA) generated in step 1; hence, the functionality vector 

F(AirTravel) will be formulated with F(AirTravel)=(AirTravel, GrandResort, NBA). 



3. the rows for which the QoS characteristics of service functi(row) do not satisfy the bounds set through vectors 

MIN(functi) and MAX(functi) are dropped; effectively, these rows cannot be used in the recommendation, since 

they involve services whose QoS characteristics do not satisfy the consumer’s requirements. 

Regarding our example, row #1 would be dropped, since the OlympicAirways service implementing the 

functionality AirTravel does not satisfy the bounds related to the cost QoS attribute; therefore only rows 2, 5, 6 

and 7 would be retained. 

4. for each row retained by step 3, the algorithm computes a similarity score, indicating its similarity with the 

current request, as the latter is represented by the F(functi(request)) functionality vector. The similarity score is 

calculated using the Sørensen similarity index [40] (alternatively known as Dice's coefficient [41]), according 

to which the similarity of two sets A={a1, a2, …, an}, B={b1, b2, …, bm}, is equal to 
||||

||2
),(

BA

BA
BAS




 , 

properly modified to suit a domain with semantic similarities. The modification follows the approach used in 

the fuzzy set similarity index calculation, where the cardinality of the intersection of two sets (i.e. the nominator 

in the Sørensen similarity index formula) is computed as the sum of the probabilities that a member belongs to 

both sets [42]. Correspondingly, when set member similarity is considered, the nominator of the fraction is 

replaced by 
i

ii basim ),(*2 , where sim(ai, bi) is a metric measuring the similarity between ai and bi; 

analogous approaches are adopted in ontology alignment and ontology matching domains, e.g. [43]. Effectively, 

the cardinality of the sets’ intersection (i.e. the nominator of the fraction) used in cases that only the “equals” 

operator is available, is replaced by the sum of similarities of the corresponding elements. As a similarity metric 

between two functionalities (web services or categories), we adopt the one proposed in [39]: 

sim(s1,s2) = C–lw*PathLength – NumberOfDownDirection 

where: 



 C is a constant set to 8 [39][44]. 

 lw is the level weight for each path in subsumption tree (cf. Figure 1). The value of lw depends on the 

depth of the subsumption tree and the level of the node in it. To count the level weight lw, the formula 

ݓ݈ ൌ ௦௨௕்௥௘௘஽௘௣௧௛ିሺ௟௡ିଵሻ

௦௨௕்௥௘௘஽௘௣௧௛
 [39] is used, where subTreeDepth is the depth of the subsumption tree, and ln 

is the level of node s2 in the subsumption tree (the root node has a level equal to 1, its immediate 

children a level equal to 2 and so forth). 

 PathLength is the number of edges counted from functionality s1 to functionality s2. 

 NumberOfDownDirection is the number of edges counted in the directed path between functionality s1 

and s2 and whose direction is towards a lower level in the subsumption tree. 

We further normalize this similarity metric dividing the result computed in the above formula by 8; this way, the 

similarity metric is always in the range [0, 1] and so is the value of the modified Sørensen similarity index, 

consistently with its original definition. 

Regarding our example, the similarity measures between the F(AirTravel) functionality vector and the rows 

retained by the third step of the algorithm are: 

sim(F(AirTravel), row2) = (19/24, 19/24, 10.5/24) 

sim(F(AirTravel), row5) = (19/24, 14/24, 10.5/24) 

sim(F(AirTravel), row6) = (19/24, 19/24, 0) 

sim(F(AirTravel), row7) = (19/24, 14/24, 15/24) 

and consequently the modified Sørensen similarity index values between F(AirTravel) and these rows are: 

S(F(AirTravel), row2) = 2*(19/24+19/24+10.5/24) / 6 = 0.674 

S(F(AirTravel), row5) = 2*(19/24 + 14/24 + 10.5/24) / 6 = 0.604 

S(F(AirTravel), row6) = 2*(19/24+19/24+0) / 5 = 0.633 



S(F(AirTravel), row7) = 2*(19/24+14/24+15/24) / 6 = 0.667 

5. Finally, the algorithm retains only the K-nearest neighbors (i.e. the rows with the highest similarity scores), 

groups the retained rows by the value of the service implementing the functi(request) functionality and computes 

the sum of the scores within each group. Services implementing the functi(request) functionality that are 

associated with higher sums are deemed more suitable, in the sense of collaborative filtering, for being used in 

order to deliver the functionality functi(request). In our implementation, we have set K to 30. This value is higher 

than the commonly used value of 10 [45] (the value of 10 is also used in the original version of the 

algorithm [54]): the rationale behind choosing a higher value is to produce a longer list of services that are 

proposed by the collaborating filtering algorithm, providing thus step 6 that that follows with more options and 

allowing it to make a choice best suiting the user’s request. Effectively, for functionality functi(request) this step 

will compute a set of possible concrete service assignments CFPA(i)={si,1, si,2, …, si,L(i)}, with the cardinality of 

CFPA(i) = L(i) ≤ 30 (the number of proposed solutions may be less than 30, if less than 30 distinct services are 

recorded in the usage patterns repository to have been used for delivering functi(request)). For each possible 

concrete service assignment si,j, the respective similarity score CFS(si,j) has also been computed. 

In our example, all rows would be retained, since we only have three rows. Since in row 2 and row 7 the same 

service (SwissAir) is used to deliver the AirTravel functionality, their individual scores would be summed up to 

formulate the solution SwissAir with a score of 1.341. The AirFrance service is the second solution with a score 

of 0.633 (only row 6 contributes to it) and the Lufthansa service is the third solution with a score of 0.604 (only 

row 5 contributes to it).  

Steps 2-5 are repeated for each functionality functi(request) for which a recommendation is requested.  

6. After the lists of candidates for each individual service that is subject to adaptation have been computed, the 

algorithm selects the top-20 execution plans with respect to their CF-score. The rationale behind choosing the 

value of 20 has been discussed in subsection 3.1, above. Given an execution plan containing services (s1,i, s2,j, 



…, sN,k) with the similarity scores of the services computed in step 5 being (CFS(s1,i), CFS(s2,j), …, CFS(sN,k)), 

then the CF-score of the execution plan is equal to CFS(s1,i)+CFS(s2,j)+…+CFS(sN,k). Using the sum function to 

aggregate the individual service scores into the execution plan CF-score ensures that the final result reflects the 

matching scores of all involved services. Contrary, the use of the max function would reflect the matching score 

of the best matching service only and therefore would render the algorithm prone to selecting an execution plan 

for which a single service has a very high score, but all other services have very poor ones. 

Producing the top-20 execution plans is modelled as an integer programming optimization problem, which is 

formulated as follows: maximize the overall utility value given by: 

ܱܷ ஼ܸி ൌ෍෍ܵܨܥ൫ݏ௜,௝൯ ∗ ௜,௝ݔ
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where F is the number of functionalities functk(request) requiring adaptation, and each xi,j is a binary variable 

taking the value 1 if si,j is selected for delivering functionality functi(request), and the value 0, otherwise. Since 

each functionality functi(request) is delivered in the final execution plan by exactly one concrete service, the 

maximization of the utility value is subject to the constraint 

෍ݔ௜,௝ ൌ 1, 1 ൑

௅ሺ௜ሻ

௝ୀଵ

݅ ൑  ܨ

If service selection affinity needs to be maintained between functionalities functi(request) and functj(request), 

then an additional constraint is added to the problem, following the procedure described in subsection 3.1 (step 

2), above. 

Subsequently, the integer programming problem is solved, and the k best solutions are obtained. Obtaining the 

k best solutions can be achieved by solving the problem once, and then adding a constraint rendering the obtained 

solution infeasible (for the IBM ILOG CPLEX optimizer [65] used in our experiments, this procedure is 

described in [66]). In our implementation, we have set k equal to 20, as explained in subsection 3.1. 



In our example, adaptation has been requested for a single functionality, for which three possible solutions have 

been computed, therefore this step generates threesolutions, as shown 

Table 7. Utility function values and CF problem solutions for services in QPA(AirTravel) 

CF problem solution Selected sAirTravel,i CFS(sAirTravel,i) OUVCF 

xAirTravel,SwissAir=1, xAirTravel,AirFrance=0, xAirTravel,Lufthansa=0 Swiss Air 1.341 1.341 

xAirTravel,SwissAir=0, xAirTravel,AirFrance=1, xAirTravel,Lufthansa=0 Air France 0.633 0.633 

xAirTravel,SwissAir=0, xAirTravel,AirFrance=0, xAirTravel,Lufthansa=1 Lufthansa 0.604 0.604 

 

7. The final step in this algorithm is to normalize the range of the solution’s CF-scores, expressed through the 

respective values of the overall utility function, to the range [0, 1], in order for the combination step to function 

correctly. Normalization is again performed using the formula 

௜݁ݎ݋ܿܵ_ܨܥ݀݁݉ݎ݋݊ ൌ
௜݁ݎ݋ܿܵ_ܨܥ െ ݁ݎ݋ܿܵ_ܨܥ݊݅݉

݁ݎ݋ܿܵ_ܨܥݔܽ݉ െ ݁ݎ݋ܿܵ_ܨܥ݊݅݉
 

[58], where minCF_Score and maxCF_Score are the minimum and maximum scores, respectively, of the 

solutions produced in step 6. The output of the algorithm is the set of candidate execution plans, with each 

execution plan being tagged with the relevant normalized score (CF-score). 

Table 8. Normalized solution scores 

sAirTravel,i Normalized score 

Swiss Air 1.000 

Air France 0.039 

Lufthansa 0.000 

 

Note that the elimination of rows not satisfying the QoS bounds (step 3) is in this case merely an optimization step: 

indeed, these rows could be normally processed having their similarity scores computed, and would then be dropped in 

the combination step; however, performing the filtering at this stage saves unnecessary work (and thus improves 

performance), while it also facilitates the operation of the combination step, since it will not need to check whether the 

solutions proposed by each algorithm are conferment to the constraints set by the user. 



3.3 The combination step 

The role of the combination step is to synthesize the results given by individual algorithms to produce to a single result. 

Recall from the previous two subsections that each algorithm produces a set of candidate execution plans, with each 

execution plan being tagged with the relevant normalized score (QoS-score or CF-score). Figure 7 presents the steps 

taken into the combination step in the form of an activity diagram, while the following paragraphs provide details on 

the actions taken within each individual step. 

 

Figure 7. Activity diagram for the combination step 

 

In order to combine the scores, one could use any standard metasearch score combination algorithms, such as 

CombMIN (minimum of individual scores), CombSUM (sum of individual results), CombMNZ (CombSUM, 

multiplied by the number of individual algorithms actually suggesting a particular solution3) and so forth, with 

CombMNZ being identified as having the best performance [57]; [58] however suggests that CombSUM and 

CombMNZ are best suitable for combining results from individual algorithms with relative similar performance. [58] 

argues that if the individual algorithms have diverse performance, it is best to specify a certain belief about the quality 

of the recommendations from individual algorithms, proposing thus WCombSUM and WCombMNZ, which extend the 

                                                           
3 in our case, for an execution plan ep: 
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ە
ۖ
۔

ۖ
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1 ∗ CF_scoreሺ݁݌ሻ,	iff	ep	is	suggested	only	by	the	CF‐based	algorithm
0,	iff	݁݌	is	not	suggested	by	either	algorithm	

 



standard CombSUM and CombMNZ schemes by introducing a weight for the individual ratings produced by the 

algorithms. More specifically, 

ji,
1

i ScoreNormalized*WCombSUM 



im

j
jw  

where WCombSUMi is the final score for a particular result i, wj is a predefined weight associated with the proposing 

algorithm j, mi is the number of nonzero scores of result i (i.e. number of algorithms proposing the particular result), 

and NormalizedScorei,j is the normalized score for result i produced by algorithm j. Also, 

im*WCombSUMWCombMNZ ii   

[55] asserts that collaborating filtering is prone to producing results with low prediction accuracy when the sparsity (i.e. 

the ratio of empty cells to the total number of cells) of the rating matrix exceeds 99.5%. In more detail, [55] demonstrates 

that in the sparsity range [99.5%, 99.9%] the mean absolute rate of collaborative filtering increases sharply (and hence 

the recommendation quality drops) in a linear fashion, while beyond the sparsity limit of 99.9% there is no point in 

taking into account the results of collaborative filtering-based algorithms. For the sparsity range [0, 99.5%] [55] shows 

that collaborating filtering has inferior performance as compared to content-based collaborating filtering, exhibiting a 

mean absolute error rate higher by 6%-9%, with an average of 7.8%. 

Taking the above into account, we adopt a modified version of the WCombMNZ metasearch score combination 

algorithm, in which the weight assigned to each of the algorithms (the QoS-based one and the collaborating filtering-

based one) varies according to the sparsity of the rating matrix (i.e. the usage patterns repository). More specifically, 

the weights are calculated as follows: 

CFweightQoSweight

CFweight



















1
0.999 sparsity  if ,0

 0.999sparsity   0.995 if ,
0.004

sparsity)-(0.999*0.40
0.995 sparsity  if ,40.0

 



Note here that the sparsity metric is calculated against the rows of the usage patterns repository that are retained by 

step (3) of the CF-based algorithm described in subsection 3.2, therefore the weights are individualized for each distinct 

adaptation. For efficiency purposes, the calculation of the sparsity is performed during the execution of the CF-based 

algorithm described in subsection 3.2, where the pertinent data are readily available, and is forwarded to the 

combination step, along with the list of the execution plans. 

In this weight assignment setting, we consider the QoS-based algorithm as a counterpart of the content-based 

collaborating filtering algorithm examined in [55], under the analogy that the QoS-based algorithm examines the values 

of item metadata (QoS attribute value of services), instead of the item contents. The value of 0.40 for CFweight in the 

range [0, 0.995] has been selected due to the fact that collaborating filtering exhibits higher mean absolute error rate as 

compared to the content-based collaborating filtering algorithm, and hence its weight should be set lower than 0.5, 

according to the rationale of the WCombMNZ metasearch score combination algorithm. On the other hand, the value 

of 0.4 is large enough to allow the collaborative filtering algorithm to influence the final result. The appropriateness of 

value 0.4 has been also experimentally verified, as described in subsection 5.1. 

After computing the WCombMNZ metasearch for all candidate execution plans, the combination step selects the 

execution plan with the highest score, which will be used to drive the adaptation process. If more than one candidate 

execution plans have the same score, one of them is selected randomly. 

In our example, the sparsity of the table consisting of rows 2, 5, 6 and 7 is equal to 0.891. This stems from the facts 

that (a) each row in the usage patterns repository has 23 columns, i.e. equal to the number of concrete services in the 

subsumption tree4, (b) rows 2 and 7 have 3 cells equal to “1” and (c) rows 5 and 6 have 2 cells equal to “1”, making 

                                                           
4 Note that the “compact notation” used in Table 3 to represent the usage pattern repository has been employed for 

notational convenience only; the usage pattern repository is analogous to the ratings matrix [22] used in collaborative 

filtering algorithms, as noted in subsection 2.4. 



thus a total of 10 cells having a value of “1” out of a total of 92, or, inversely, 82/92 cells are empty, leading to a sparsity 

of 0.891. Using the rules for computing CFweight and QoSweight given above, we get CFweight=0.40 and 

QoSweight = 0.6. 

Using these weights, we may now compute the WCombMNZ value for each solution, as shown in Table 9. 

Table 9. Computing the WCombMNZ score for the solutions 

Solution QoS-based 
algorithm score 

CF-based 
algorithm score 

WCombMNZ formula WCombMNZ score 

Swiss Air 0.764 1.000 2 * (0.6 * 0.764 + 0.4 * 1.000) 1.717 

Air France 1.000 0.039 2 * (0.6 * 1.000 + 0.4 * 0.039) 1.231 

Lufthansa 0.000 0.000 2 * (0.6 * 0.000 + 0.5 * 0.000) 0 

4 The execution adaptation architecture 

The execution adaptation architecture follows the middleware-based approach, which is common in QoS-based 

adaptation frameworks (e.g. [5][11][46]). In this approach, an adaptation layer intervenes between the BPEL execution 

engine and the actual service providers, selecting the services that will actually be invoked in the context of any single 

WS-BPEL scenario execution, using the algorithm described in section 3 and arranging for redirecting the actual 

invocations to the selected services. Redirection is performed through a specially crafted web service, namely 

adaptInvocation. The adaptation layer implements three additional utility web services, namely getSessionId (assigning 

unique session identifiers to individual WS-BPEL scenario executions), prepareAdaptation (accepting information 

about the invocations that should be adapted, QoS bounds and service binding information, and executing the algorithm 

of section 3 to determine the execution plan that should be followed in the particular WS-BPEL scenario execution) 

and releaseSession (cleaning up the information regarding the WS-BPEL scenario execution, upon its termination). 

Furthermore, the execution adaptation architecture includes a preprocessor module which transforms “ordinary” (i.e. 

nonadaptive) WS-BPEL scenarios to a form that their execution can be readily adapted by the middleware. The 

preprocessor module relieves the burden of having to redesign the BPEL scenarios, limiting the necessary changes to 



(a) allowing the user to specify the QoS requirements and the service bindings (including requests for recommendation) 

at the front-end application (e.g. a web form) and (b) preprocessing and redeploying the WS-BPEL scenarios. Using 

existing WS-BPEL scenario, where functionality invocations are specified by means of concrete services, allows for 

using standard WS-BPEL scenario editors, instead of specialized software that would be required if functionalities were 

specified by means of abstract tasks. 

Figure 8 presents the overall execution adaptation architecture. In the following, we will elaborate on the operation 

of the preprocessor and the operation of the adaptation layer. 

4.1 Specifying the QoS information in the scenario 

The first step towards enabling the QoS-based adaptation is the specification of the required QoS bounds for service 

invocations and the specification of the weights of each QoS attribute. In order to provide this feature in a WS-BPEL 

compliant fashion, the proposed framework adopts the following conventions: 

1. the designer should use the WS-BPEL variable QoS_weights to designate the weight vector W, i.e. the vector 

designating the weights of all QoS attributes (cf. subsection 2.1). The BPEL designer may set the value of these 

variables after inspecting input parameters to the scenario (e.g. “choose=cheapest”), arranging thus for tailoring 

the QoS specification to the invoking user’s preferences. 

2. the designer should include in each invoke construct in the WS-BPEL scenario the optional attribute name [1], 

assigning distinct names to the invoke constructs. 

3. for the invoke construct having name invX, the designer should use the WS-BPEL variables QoSmax_invX and 

QoSmin_invX, which define the respective QoS specifications for the particular invocation. Similarly to the 

QoS_weights variable, the designer may set the values of the QoSmax_invX and QoSmin_invX variables after 

inspecting input parameters to the scenario. 



Note that the setting above allows the designer to set different QoS bounds for each distinct invocation. This provides 

more flexibility with the adaptation of the scenario, e.g. in the travel planning scenario considered in subsection 2.2, 

the bounds for the event attendance functionality may be set to high values (e.g. min=0.8, max=1), while the bounds 

for ticket booking and hotel booking may be set to low values, to indicate that the client wants good seats for the event 

to be attended, but economy travel tickets and an inexpensive hotel to limit the overall cost. On the other hand, the 

weights apply to the whole composition, rather than to individual services, since they reflect the client’s perceived 

importance of each QoS attribute dimension on the process as a whole, and not its constituent parts [4]. 

Listing 3 presents an excerpt of a BPEL scenario setting QoS specifications for an invocation (named invoke1). 

Since variable QoSmin_bookTicket does not include a setting for respTime and cost, no lower bounds will be considered 

for these attribute values in the process of adapting the service invocation bookTicket. Similarly, since the 

QoSmax_bookTicket does not include a setting for the reliability QoS attribute, no upper bound for this attribute value 

will be considered in the process of adapting the service invocation bookTicket. 

 

Figure 8. The Execution Adaptation Architecture 



<!-- assign global weights --> 
<assign> 
 <copy> 
  <from><literal>respTime: 0.3; cost:-0.5; reliability: 0.2</literal></from> 
  <to variable="QoSweights"/>  
 </copy> 
</assign> 
<!-- assign invocation-specific bounds for invocation “bookTicket”--> 
<assign> 
 <copy> 
  <from><literal>respTime:0.5;cost:0.3</literal></from> 
  <to variable="QoSmax_bookTicket"/> 
 </copy> 
 <copy> 
  <from><literal> reliability: 0.6</literal></from> 
  <to variable="QoSmin_bookTicket"/> 
 </copy> 
</assign> 
<invoke name="bookTicket" partnerLink="lnk1" portType="port1" operation="op1" inputVariable="input1" outputVariable="output2"/> 

Listing 3. QoS specification in the BPEL scenario 

4.2 Preprocessing the WS-BPEL scenario 

As stated above, the preprocessor accepts as input a WS-BPEL scenario and transforms it into an “adaptation-ready” 

form. More specifically, the transformed scenario differs from the original one into the following respects: 

1. it includes, as its first operation an invocation to the web service getSessionId provided by the middleware; the 

result of the invocation is stored in a variable and used in subsequent operations. 

2. it collects the information regarding (a) the QoS bounds for the functionalities, (b) the QoS attribute weights and 

(c) which functionalities should be bound to specific services, which will not be invoked and for which a 

recommendation is requested. This information is then transmitted, together with the result of the getSessionId 

invocation, to the adaptation layer, through an invocation to the prepareAdaptation WS. 

As stated in subsection 4.1, the QoS bounds for a functionality used in the WS-BPEL scenario are represented 

using input parameters QoSmax_invName and QOSmin_invName, where invName is the value of the name 

attribute in the <invoke> construct realizing the functionality (<invoke name="invName" partnerLink="lnk1” 

…>), while the QoS attribute weights are stored in variable QoSweights. Similarly, the designations regarding 



functionality bindings are represented using variables BINDING_invName, which will again be set by the 

designer, probably after examining some input parameters. The value of a BINDING_invName variable may be 

one of (i) the id of the service to which the functionality should be bound, (ii) the literal SKIP if the functionality 

should not be invoked and (iii) the literal RECOMMEND, if a recommendation is requested for the specific 

functionality. 

Regarding our example in section 2.2 (where a user wants to stay in Grand Resort and attend the NBA Finals, 

and requests a recommendation for ticket booking), we will assume that the names of the invoke constructs 

corresponding to the ticket booking, hotel booking, and event attendance functionalities are bookTicket, 

bookHotel and attendEvent, respectively. If the QoS attribute weights and QoS bounds for the bookTicket service 

were as shown in Listing 3, the information transmitted to the middleware through the prepareAdaptation WS 

would be as follows: 

 

SessionId=<as returned by getSessionId> 
QoSweights=respTime: 0.3; cost:-0.5; reliability: 0.2 
QoSmax_bookTicket=respTime:0.5;cost:0.3 
QoSmin_bookTicket=reliability:0.6 
BINDING_bookTicket=RECOMMEND 
BINDING_bookHOTEL=GrandResort 
BINDING_attendEvent=NBAFinals 
 

This information, together with the data contained in the semantic service repository and the usage patterns 

repository are adequate for the middleware layer to execute the algorithm described in section 3 and determine 

the execution plan to be used. The implementation arranges for executing the QoS-based and the CF-based parts 

in parallel, so that the optimization step can benefit from the presence of multiple processors and/or cores (a 

commodity in contemporary hardware). 



The invocation to the prepareAdaptation WS is inserted before the first <invoke> construct of the original WS-

BPEL scenario, to ascertain that the adaptation-related information have been transferred to the adaptation layer 

(and processed by it) before the first invocation is intercepted and adapted. 

3. each service invocation is redirected to the adaptInvocation service, complemented with a header which includes 

the session id for the current WS-BPEL scenario execution (the value returned by the getSessionId WS) and the 

value of the name attribute of the particular invoke construct. Although header manipulation not a standard WS-

BPEL feature, contemporary WS-BPEL orchestration engines provide means to set request headers, 

e.g. [47][48]. 

4. an invocation to the releaseSession service of the adaptation layer is included as a final operation in the 

transformed scenario. 

The adaptation-ready WS-BPEL scenario, as produced by the preprocessor, is then deployed to the WS-BPEL 

orchestration engine and made available for execution. 

4.3 Executing the WS-BPEL scenario 

When a WS-BPEL scenario commences execution, its first action will be to invoke the getSessionId web service 

hosted in the adaptation layer, so as to retrieve a unique session identifier. Afterwards, it invokes the prepareAdaptation 

web service of the adaptation layer, transmitting to it (i) the session identifier (b) the information regarding the QoS 

bounds for each functionality, (c) the QoS weights and (d) the functionality binding and the recommendation request 

information. At this point, the adaptation layer has all the information needed to execute the algorithm described in 

section 03, so as to produce the execution plan to be followed in the current instance of the WS-BPEL scenario. After 

the algorithm has been applied, all service bindings (both those specified by the consumer and which were provided as 

input to the prepareAdaptation web service, as well as those produced as output of the adaptation algorithm) are stored 

into the session memory, tagged with the session identifier. Effectively, the consumer session memory stores, for each 



session, the mappings between functionality invocations within the particular session and the concrete services that 

these invocations should be directed to. Assuming that in the example presented in subsection 4.2 the algorithm would 

determine that the bookTicket functionality should be bound to the Swissair service, the information that would be 

inserted into the session memory would be as shown in Listing 4.  

(Session: <as returned by getSessionId>; 
Bindings: ( bookTicket: Swissair; 
 bookHotel: GrandResort; 
 attendEvent: NBAFinals) ) 

Listing 4. Information inserted in session memory 

The prepareAdaptation web service finally stores the service bindings it received as input parameters into the usage 

patterns repository, making thus the usage information available for future recommendation formulations. 

When the WS-BPEL orchestration engine executes an invoke construct, the invocation is directed to the 

adaptInvocation service of the adaptation layer, due to the transformations made by the preprocessor (cf. item 3 in 

subsection 4.2, above). Upon reception of an incoming request, the adaptInvocation service proceeds as follows: 

1. it extracts from the request headers the session identifier and name of the invoke construct. 

2. Using the session identifier, it retrieves from the session memory the service bindings pertinent to the particular 

session, and then it uses the name of the invoke construct to extract the binding of the specific functionality. 

3. The request is then forwarded to the service indicated by the binding, the result is collected and finally it is 

returned to the WS-BPEL orchestration engine, as a reply to the original invocation. 

Finally, when the WS-BPEL scenario reaches its end, it invokes the releaseSession web service, providing the 

session identifier as a parameter. The releaseSession service will then remove from the session memory all information 

pertaining to this session. 



5 Experimental evaluation 

In order to determine the optimal value for parameter CFweight and assess the performance of our approach and the 

quality of the adaptations it produces, we have conducted a set of experiments. The first experiment aimed to offer 

insight on the effect of the CFweight parameter on the formulation of the solution chosen by the algorithm and the 

solution’s quality. The performance-related experiments aim to measure and quantify the overhead incurred due to the 

introduction of the middleware. On the other hand, the experiments assessing the quality of the adaptations aim to 

provide insight on how the QoS of the execution plan proposed by the algorithm in section 03 compares with the QoS 

of the execution plans proposed by the plain QoS-based algorithm (which is optimal) and the plain CF-based algorithm. 

In this experiment we have also included a “random” algorithm (i.e. randomly select a service fulfilling the QoS 

constraints specified by the user), in order to determine whether how the QoS of the execution plans formulated by the 

algorithm in section 3 compares with the average execution plan. 

In more detail, in the performance-related experiments we have evaluated the overhead imposed due to the following 

activities executed in the proposed scheme: (a) execution plan formulation (invocation of the prepareAdaptation 

service) (b) invocation redirection (the extra network messages to and from the middleware during each service 

invocation and the querying of the session memory) and (c) housekeeping activities (i.e. invocations to getSessionId 

and releaseSession services, as well as update of the usage patterns repository). In these experiments we have varied 

the following parameters: 

1. the number of concurrent invocations, 

2. the size of the usage patterns repository, 

3. the number of functionalities in the WS-BPEL scenario and 

4. the number of recommendations requested per invocation. 



The time needed by the preprocessor to transform the original WS-BPEL scenario into its “adaptation-ready” form 

has not been included in this evaluation, because the preprocessor operates in an offline fashion, not imposing thus any 

overhead to the performance of the production system. 

In all experiments, the semantic service repository was populated with synthetic data having an overall size of 2.000 

web services5; these services account for 20 different functionalities, with each functionality having 100 alternative 

providers. The QoS attribute values in this repository were uniformly drawn from the domain [0, 1]. When conducting 

a test for a particular number of functionalities, we synthetically generated 20 BPEL scenarios, randomly drawing 

implementations of distinct functionalities from the repository, and the performance evaluation tests were run for each 

of the generated scenarios. In the scenario generation process, two consecutive functionality invocations were selected 

to be executed sequentially (<sequence> construct) with a probability of 0.8 and in parallel (<flow> construct), with a 

probability of 0.2. Therefore, in all cases, there existed BPEL scenarios involving parallel invocations. 

                                                           
5 Since in our experiment we used a single machine to host the target web services, and deploying 2,000 target web 

services on a single machine would degrade its performance, for the experiment purposes it was arranged that within 

the semantic service repository all services delivering exactly the same functionality were mapped to the same 

implementation on the machine hosting the services. We used DNS aliases to make the service endpoints different at 

the repository level (e.g. a service implementation svc1 deployed on the second machine would appear in 100 entries 

in repository as http://exp1.sdbs.uop.gr/svc1/endpoint, …, http://exp100.sdbs.uop.gr/svc1/endpoint, with all addresses 

exp1.sdbs.uop.gr, …, exp100.sdbs.uop.gr resolving to the same IP address). This arrangement reduced the number 

deployed services to 20, and does not affect the adaptation algorithm operation, since endpoints are only considered in 

the execution phase, after the adaptation is performed. Note also that in a real-world setting, these services would be 

deployed on different machines (the alternative providers’ machines). 



The differences observed, regarding the execution time, when the performance evaluation tests were conducted on 

different BPEL scenarios involving the same number of functionalities were negligible (less than 2% of the overall 

time). Some differences were observed in the quality of the proposed solution, which depend on the functionalities that 

were actually included in the services and the contents of the usage patterns repository; this is to be expected, since the 

score computed by the collaborative filtering algorithm . Each unique performance evaluation test was run 100 times, 

and the average value was computed and is shown in the following diagrams; error bars are used in the diagrams to 

show the minimum and maximum values. The lower QoS bounds for the functionalities were randomly drawn from 

the domain [0,0.4], while the upper QoS bounds for the functionalities were randomly drawn from the domain [0.6,1]. 

The weights of the QoS attributes were again randomly selected from the domain [0,1]. In all cases, a uniform 

distribution was used.  

For our experiments we used two machines: the first one (a workstation equipped with one Intel Xeon E5-

2620@2.0GHz / 6 cores CPU and 16 GB of RAM) hosted the preprocessor and the clients, while the second one (a 

workstation with identical configuration to the first, except for the memory which was 64GBytes) hosted the BPEL 

orchestration engine (a Glassfish application server [49] using the Metro web service stack [50]), the adaptation layer, 

the target web services, the service repository (which included the tree representation of the subsumption relations and 

the services’ QoS characteristics) and the usage patterns repository. The machines were connected through a 100Mbps 

local area network. Both repositories (the semantic service repository and the usage patterns repository) were 

implemented as in-memory hash-based structures, which proved more efficient that using a separate, in-memory 

database engine (e.g. HSQLDB [51] used in [53] and [54]). The new rows of the usage patterns repository are written 

periodically to the disk to ensure persistence, while provisions have been made to allow for reloading the semantic 

service repository in case it changes (e.g. addition or deletion of services, or changes in the QoS values). 



5.1 Determination of CFweight 

In this experiment, we randomly generated 1,000 BPEL scenarios, and for each scenario we ran the adaptation 

algorithm varying the values of the CFweight parameter from 0% to 60%. In the scenario generation process, two 

consecutive functionality invocations were selected to be executed sequentially (<sequence> construct) with a 

probability of 0.8 and in parallel (<flow> construct), with a probability of 0.2. For each value of the CFweight 

parameter, we collected the following metrics: 

1. percentage of solutions affected by the CF-based dimension: this metric is computed as the ratio of solutions 

where the final solution chosen was different than the one proposed by the QoS-based algorithm to the 

number of examined cases, and it is a measure of the effect that the CF-based component has on the 

formulation of the final solution. Since the introduction of the CF-based component aimed to allow for 

taking into account the users’ subjective ratings (quality of experience), we would like to increase this 

effect. 

2. Normalized quality of the solution: this metric is computed as the ratio of QoS-based overall utility value 

(OUVQoS) of the chosen solution to the maximum QoS-based utility value computed by the QoS-based 

algorithm. Effectively, this metric represents how close the finally chosen solution is to the optimal QoS. 

Naturally, we would like this metric to be as high as possible. 

Figure 9 presents the findings of our experiment. For values of CFweight ≤ 20%, the normalized quality of the 

solution is very close to the optimal (97.3% for CFweight=20%), however only up to 18.7% of the solutions are affected 

by the CF-based dimension (or, equivalently, the proposal of the QoS-based algorithm is adopted in the 81.3% of the 

adaptations); this indicates that when the value of CFweight falls in this range, the result of the CF-based algorithm is 

not adequately taken into account. 



For values of CFweight ≥ 50%, the majority of decisions is affected by the QoS-based dimension (53.1% for 

CFweight=50% and 60. 3% for CFweight=60%) however the normalized quality of the solution drops to 76.20% for 

CFweight=50% and to 67.47% for CFweight=60%. 

 
Figure 9. The effect of the CFweight parameter on the on the formulation of the solution and the solution’s quality 

Setting CFweight to one of the values (30%, 40%) appears to provide a good balance between the goals of 

maximizing the effect of the CF-based dimension and maintaining a high normalized quality of the solution. If a value 

of 30% is used, 28.1% of the solutions are affected by the CF-based dimension and the normalized quality of the 

solution is 93.07, while the respective numbers for CFweight=40% are 40.60% and 88.43% respectively. Considering 

that a value of 88.43% for the normalized quality is acceptable, we have set CFweight to 40%, in order to maximize 

the effect of the CF-based dimension. 

5.2 Execution time 

Figure 10 presents the execution plan formulation and housekeeping overhead, i.e. the overhead imposed by the use 

of the invocations to the getSessionId, prepareAdaptation and releaseSession web services, for a varying degree of 
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concurrent WS-BPEL scenario invocation requests arriving to the WS-BPEL orchestration engine. In this experiment, 

the usage patterns repository was set to include 1,000 qualifying entries (i.e. the usage patterns repository contained 

1,000 entries matching the functionality for which a recommendation was requested), the number of functionalities in 

the WS-BPEL scenario was set to 10 and one recommendation was requested (i.e. 9 service bindings were fixed by the 

consumer). We can notice that the overhead is increasing linearly with the number of concurrent invocations, while we 

can also observe that even with 250 concurrent invocations the overhead is less than one second. 

 

Figure 10. Execution plan formulation and housekeeping overhead for varying degrees of concurrency 

Figure 11 illustrates the time needed to perform the computation of the execution plan and the housekeeping tasks 

under a varying number of functionalities within the WS-BPEL scenario and for different counts of qualifying records 

in the usage patterns repository (250, 500 and 1000 records). In all cases, the concurrency level was set to one (a single 

request was submitted and processed) and one recommendation was requested. The recorded times were found to 

increase between 8% and 14% when the number of functionalities increases by one; this is owing to the time needed 

for the extra processing to compute the similarity score for the extra service, since the integer programming problems 

formulated in both cases are identical and therefore their solution time is not affected. The time to compute the similarity 

score has been optimized, by keeping the similarity metrics between all service/category pairs pre-computed in a hash 
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table and looking them up as needed, instead of computing them on demand. The hash table is populated when the 

middleware bootstraps and when the service repository is reloaded. 

 

Figure 11. Execution plan formulation overhead for varying number of functionalities within the WS-BPEL scenario and qualifying usage patterns 

In Figure 11 we can also notice that the execution plan formulation overhead is increasing at a slower with respect 

to the number of the qualifying usage patterns increases (on average, an increase of 45.68% when the number of 

qualifying usage patterns increases by 4). This indicates that the algorithm scales well with the size of the usage patterns 

repository, however for large usage patterns repository sizes, techniques reducing the execution time, such as the one 

proposed in [70] can be employed. 

Figure 12 illustrates the time needed to formulate the execution plan, with respect to the number of qualifying records 

in the usage patterns repository and the number of recommendations requested in a single WS-BPEL scenario 

invocation. In all cases, the concurrency level was set to one (a single request was submitted and processed) and the 

WS-BPEL scenario whose execution (and adaptation) was requested contained 10 functionalities. We can observe that 

the time needed for each recommendation is fairly stable, e.g. the time needed for making three recommendations is 

approximately triple the time needed for making one recommendation when the size of the usage patterns repository 

7

8

9

10

11

12

13

6 7 8 9

ti
m

e 
(m

s)

# functionalities in WS-BPEL scenario

250 500 1000# usage patterns:



remains stable. This is due to the fact that each recommendation in the CF-based is made individually by repeating the 

same steps of the algorithm, and this extra time is merely added to the overall algorithm execution time. The behavior 

regarding the number of qualifying usage patterns is analogous to the one observed in Figure 11. In summary, the 

recommendation overhead increases linearly with respect to the number of recommendations requested, hence the 

proposed approach is scalable. 

 

Figure 12. Recommendation overhead for varying number of qualifying usage patterns and number of requested recommendations 

Figure 13 evaluates the overall overhead incurred for the execution of a BPEL scenario due to the introduction of 

the adaptation mechanism proposed in this paper, and compares this overhead to the overhead introduced by the 

algorithm described in [5] (without the XSLT transformation feature) which is only based on the QoS features; the 

latter algorithm was deployed and run in the same test environment. The overall overhead accounts for (a) the time to 

compute the service that each invocation should be redirected to (b) housekeeping activities such as session 

establishment and release (c) transmission and processing time of the two extra messages per service invocation, which 

are introduced due to the presence of the middleware. The overall overhead is the only metric that can be used for 

comparing the performance of the two algorithms, since the algorithm in [5] operates in a greedy fashion, selecting the 
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service to be invoked at the time the request to execute some functionality is made, while the algorithm presented in 

this paper computes the overall execution plan before any actual functionality invocations are made. [5] was chosen for 

among the works listed in the related work section (section 6) to perform this comparison, because it is one of the few 

works that describe not only the adaptation algorithm but the execution architecture as well.  

In this comparison, a scenario with 10 functionalities was used, and the number of adaptations performed was varied 

from 1 to 5. Note that the algorithm in [5] adapts by default all functionalities; for the cases however that service 

selection affinity should be maintained among a group of services, adaptation is only performed on first invoked 

functionality and the subsequent ones are bound to the provider selected during the first adaptation, due to the greedy 

nature of the algorithm. This mode of operation was exploited to set the number of adaptations performed within the 

BPEL scenario execution: using a BPEL scenario necessitating the maintenance of service selection affinity across all 

10 functionalities (by having all invocations pointing to endpoints of a single service provider), leads to the execution 

of a single adaptation (upon the first invocation); using a BPEL scenario necessitating the maintenance of service 

selection affinity across 9 services (by having 9 services pointing to endpoints of a single service provider and one 

service pointing to a different service provider) leads to the execution of two adaptations (one upon the first invocation 

to a member of the group of the 9 services and one upon the invocation of the tenth service, which is adapted in 

isolation); and so forth. Again, 20 randomly generated BPEL scenarios were used, and experiments for each scenario 

were run 100 times. 

In Figure 13 we can observe that the overall overhead incurred when the proposed adaptation scheme is used (lines 

p(250) and p(1000) in the diagram, where p(X) represents the execution of the proposed adaptation scheme with the 

usage patterns repository containing X matching records per service adaptation) is 26.1%-35.4% higher than the one 

incurred when the QoS-based scheme proposed in [5] (line q in the diagram) is employed. In absolute numbers, this 

accounts for an increase ranging from 36.2 to 47.66 msec, which is acceptable, considering the fact that the proposed 

algorithm introduces new functionality (the CF-based dimension). Note that the algorithm in [5] follows a greedy 



strategy, therefore it exhibits good performance, running however the risk that the adaptations it computes can be 

suboptimal in terms of the QoS dimension. On the contrary, both the QoS-based and the CF-based parts of the algorithm 

proposed in this paper use integer programming strategies to examine all adaptations combinatorially, hence this risk 

is avoided. 

 

Figure 13. Performance comparison of the proposed algorithm against the QoS-based algorithm in [5] 

Finally, since the computation of the execution plan involves the solution of integer programming problems, and the 

complexity of solving integer programming problems is varying depending on the structural properties of the 

problem [71], we have conducted an experiment to verify that the optimization times observed are not coincidental (i.e. 

owing to the fact that the tested scenarios have favorable properties), but correspond to the standard behavior of the 

algorithm. To this end, we have synthetically generated 5,000 BPEL scenarios, with 10 functionalities, and measured 

the overall overhead incurred when the proposed adaptation scheme is used, again considering cases when the number 

of matching lines from the usage patterns repository are (a) 250 and (b) 1000, and when the number of requested 

adaptations ranges from 1 to 5, similarly to the case of Figure 13. In the scenario generation process, two consecutive 

functionality invocations were selected to be executed sequentially (<sequence> construct) with a probability of 0.8 
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and in parallel (<flow> construct), with a probability of 0.2. The results of this experiment are depicted in Figure 14, 

and their similarity with the results of Figure 13 indicates that the algorithm performs fairly stable, regardless of the 

specific scenario that it makes recommendations on. 

 

Figure 14. Validating the stability of the proposed algorithm’s performance 

5.3 Execution plan QoS 

Figure 15 depicts the QoS of the execution plan formulated by different algorithms for a number of trial cases, 

aiming to provide insight on how the QoS of the execution plan proposed by the algorithm in section 03 compares with 

the QoS of the execution plans proposed by the plain QoS-based algorithm described in [53] and the plain CF-based 

algorithm described in [54]; as stated above, a “random” algorithm is also included in order to determine whether how 

the QoS of the execution plans formulated by the algorithm in section 3 compares with the average execution plan. 
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Figure 15. QoS of the execution plans proposed by different algorithms for ten trial cases 

The trial cases in this diagram correspond to the invocation of a WS-BPEL scenario containing 10 functionalities in 

total and requesting 1 recommendation (the remaining 9 functionalities were bound to specific services). The lower 

QoS bounds for the functionalities were randomly drawn from the domain [0,0.4], while the upper QoS bounds for the 

functionalities were randomly drawn from the domain [0.6,1]. The weights of the QoS attributes were again randomly 

selected from the domain [0,1]. In all cases, a uniform distribution was used.  

Note that since the QoS-based and the CF-based algorithms, as described in subsections 3.1 and 3.2 respectively, 

formulate lists of execution plans, the QoS value shown in the diagram for these algorithms is the one corresponding to 

the execution plan that has attained the biggest score, i.e. the execution plan that would be selected by each algorithm, 

if it were to decide on its own for the adaptation. Note also that since the random algorithm is non-deterministic, each 

test case for this algorithm was run 100 times and the mean execution plan QoS was used in the diagram. 
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In the diagram we can notice that the combined algorithm chooses execution plans whose QoS are very close to the 

optimal ones: the ratio (combinedQos / optimalQoS) varies between 0.75 and 1, with an average of 0.92. This is 

considerably higher that the corresponding ratio achieved by the CF-based algorithm (min: 0.34, max: 1, average: 0.65; 

this is in-line with the results presented in [55]) and the ratio attained by the random algorithm (min: 0.62, max: 0.75, 

average: 0.65). In all cases, the combined algorithm achieves a QoS equal or higher than pure CF-based one, indicating 

its ability to tailor the execution considering the proposals of the CF-based algorithm and at the same time maintain a 

high QoS. 

Of particular interest in Figure 15 are trials 2, 5 and 6, in which the deviation between the QoS computed by the CF-

based and the QoS-based algorithms is high, however the QoS of the composition is equal to the one proposed by the 

QoS-based algorithm: these cases correspond to occasions that the usage patterns repository sparsity is high, and 

therefore the confidence to the proposal of the CF-based algorithm is low, leading the combination step to practically 

disregard the CF-based algorithm’s proposals. In trial 3 sparsity was low, however the execution plan proposed by the 

QoS-based algorithm was finally adopted: this is because the same execution plan was ranked third by the CF-based 

algorithm, and hence it achieved the highest WCombMNZ score in the combination step. Conversely in trial 8 the 

proposal of the CF-based algorithm was adopted, being the fourth runner up in the QoS-based algorithm list and 

achieving the highest WCombMNZ score in the combination step. In trial 4, both algorithms ranked first the same 

execution plan, and hence it was selected. In all other trials, an execution plan that was high in the list of both algorithms, 

but not first in either list, was selected. 

6 Related work 

As stated in section 1, adaptation approaches presented insofar follow either the horizontal and vertical level 

adaptation [2]. AgFlow, introduced in [4] provides WS-BPEL clients with QoS constrains, by revising the execution 



plan (i.e. the set of bindings of functionalities referenced in the WS-BPEL scenario to concrete services [4]) either on 

a global or a local planning. In case of local planning, web service selection is done during execution time and conforms 

to a greedy strategy. On the other hand, in case of global planning, WS-BPEL scenario is partitioned in regions of 

collaboration and web service selection strategy is concentrated on a group of actions. Work in [11], introduces 

VieDAME, which adapts the execution of BPEL scenarios according to QoS parameters; however these parameters 

and the selection strategy are pre-determined through pluggable modules. Additionally, VieDAME does not support 

service selection affinity and is platform-dependent since it relies on extensions of the ActiveBPEL engine. 

Work in [12] considers service selection in the presence of QoS constraints and aiming to minimize an objective 

function for the entire orchestration employing both brute force (OPTIM_S) and heuristic (OPTIM_HWEIGHT) 

algorithms. This work presents the service selection algorithms but does not propose an architecture on top of which 

the adaptation can be realized, while it additionally does not consider service selection affinity. [13] introduces the 

MOSES approach, which performs web service selection by means of formulating and solving an integer programming 

problem, considering different patterns [par_or (i.e. concurrent execution of atomic services, with the construct 

successfully concluding when one service execution finishes successfully), par_and (i.e. concurrent execution of atomic 

services, with the construct successfully concluding when all services finish their execution successfully) etc.], and 

monitoring QoS execution during runtime. MOSES assumes that business processes are written as abstract 

compositions (contrary to our approach where business processes are specified through actual WS-BPEL scenarios, 

enabling the use of existing ones without any modification), while QoS requirements are stated through an SLA, giving 

the average value of QoS attributes, not allowing distinct QoS specifications per web service invocation. [72] presents 

a technique based on mixed-integer programming for QoS-based web service matchmaking, and argues that mixed-

integer programming (MIP) should be used as a matchmaking technique instead of constraint programming, since it 

proves to be more efficient. 



Several works exist which not only optimize business processes, but also implement exception handling mechanisms 

in order to provide solutions in unpredicted run time environments. More specifically, the framework proposed in [14] 

uses autonomic computing concepts for providing execution plan formulation for business processes, taking into 

account QoS parameters, monitors dynamically QoS violations at runtime and provides instrumentation for the handling 

of these exceptions. The work in [5] combines adaptation to QoS specifications and exception resolution (reverting to 

wherever possible to suboptimal plans, in the presence of exceptions), undertaking however a greedy strategy to service 

binding, which may lead to suboptimal solutions. [53] arranges for performing horizontal adaptation based on QoS 

criteria, taking into account the sequential and parallel execution structures within the BPEL scenario, while catering 

for preservation of service selection affinity. Work in [16] proposes a multi-tier architecture, TailorBPEL, which 

supports the tailoring of personalized BPEL-based workflow compositions, enabling end-users to tailor personalized 

BPEL-based workflow compositions at runtime. 

Note that none of the approaches listed above incorporates collaborative filtering techniques to enhance the quality 

of the adaptation. Interestingly, [15] uses techniques from the collaborative filtering domain for generating 

recommendations in the context of BPEL scenario adaptation, however the work reported therein is based on QoS data 

contributed by users, as opposed to our work which is based on previous personalizations of BPEL scenario 

executions. [54] employs collaborative filtering techniques to drive the adaptation, and presents an associated execution 

framework. This work however uses very limited QoS-based criteria (only a lower and an upper bound optionally 

specified for each QoS attribute), hence it runs the risk of formulating solutions whose overall QoS is much inferior to 

the optimal composition QoS that can be attained, especially in the cases that collaborative filtering has known issues 

(e.g. cold start and gray sheep). 

In order to perform adaptation, exception resolution, or collaborative filtering-based adaptation, all approaches 

employ some means to formally specify the services’ functionality; techniques involving QoS characteristics need 

additionally to have access the services’ QoS attribute values. Regarding services’ functionality, some approaches need 



only record which services are equivalent [17], while others use more elaborate schemes, such as the one described 

in [18][19], according to which a service A may be related a service B through one of the following subsumption 

relations: exact (services have identical functionality, e.g. they both book a flight), plugin (service A is more specific 

than B and can thus be used in its place; for instance, if service A is “book a flight” and service B is “book transport”, 

then we can use A in the place of B since A actually books a transport), subsume (service A is more general than B and 

therefore cannot always be used in its place; e.g. if A books a transport and B books a flight, we cannot always use A 

in the place of B since A may lead to booking a trip by ship instead of a trip by plane) and fail (none of the exact, plugin 

and subsume relations holds). [19] details on how a service matchmaker can operate over an OWL-S ontology to 

computes the degree of semantic matching for a given pair of service advertisement and request, using subsumptions. 

METEOR-S [20] can be used for storing and querying both service functionalities and QoS characteristics. Since 

METEOR-S adopts ontologies for representing information about services, it is powerful enough to express both the 

service equivalence notions and the subsumption relations; WSMO [21] is another widely adopted option with similar 

expressive power, regarding the features listed above. [33] describes the OPUCE platform repository, which could be 

used to provide both the necessary QoS data and the subsumption relations. In the OPUCE platform repository, service 

functionalities are described by means of an ontology concept, which can be subclassed to provide the taxonomy 

illustrated in Figure 1. 

In the collaborative filtering domain, several methods have been proposed, however their incorporation in the WS-

BPEL execution adaptation process has only received little attention. [22] surveys collaborative filtering, focusing on 

is use within the adaptive web. Interestingly, [22] lists the basic properties of domains suitable for collaborative filtering 

classified under three major categories (data distribution; underlying meaning; data persistence) and all the listed 

properties hold for the context of WS-BPEL scenario adaptation. [23] presents an evaluation of collaborative filtering 

algorithms. Collaborative filtering is in many cases combined with another personalization technique, namely content 

based filtering; [24] and [25] are examples of such approaches. However, content-based filtering needs items with 



content to analyze [22], and in the context of WS-BPEL scenario adaptation we cannot use the items’ content (responses 

of individual web services) since the responses of equivalent web services are identical (apart from invocation-specific 

data), hence they are not useful for choosing between different service implementations. Moreover, the responses 

contain personal data (and some of them sensitive data, e.g. credit card numbers or health-related data), and therefore 

they cannot be retained to be used in further analysis. Thus, in this work we use only the collaborative filtering approach, 

retaining only service usage patterns, in an anonymized form. Finally, [26] examines the use of collaborative filtering 

techniques for suggesting web services to the users. The work in [26] however considers individual web services, not 

WS-BPEL scenarios (being however able to suggest compositions of services), and suggestions are forwarded to the 

user, and not integrated into the scenario execution adaptation process. As stated above, the work in [54] uses 

collaborative filtering techniques for adapting the execution of WS-BPEL scenarios, uses only limited QoS criteria, 

running thus the risk of formulating suboptimal solutions. 

7 CONCLUSION AND FUTURE WORK 

In this paper we have presented a framework for adapting the execution of WS-BPEL scenarios, taking into account 

both the QoS requirements of the invoking users and the behavior of other users having invoked the same scenario in 

the past. The algorithm used for performing the adaptation follows the metasearch algorithm paradigm, using two 

different candidate adaptation ranking algorithms, the first examining the QoS aspects only and the second being based 

on collaborative filtering techniques. The adaptation rankings produced by these two algorithms are combined to 

generate the overall ranking, which then drives the adaptation. The proposed framework is complemented with an 

execution architecture for enacting the adaptation. The execution architecture includes a scenario preprocessing step, 

which transforms existing WS-BPEL scenarios into an “adaptation ready” form, and an adaptation layer (a middleware 

component intervening between the WS-BPEL execution engine and the actual service implementation), which 

undertakes the tasks of executing the adaptation algorithm and redirecting invocations to the selected services. 



The proposed framework has been experimentally evaluated, both in terms of performance and in terms of the QoS 

of the adaptation it produces. The overhead imposed for performing the adaptation has been found to be small 

(approximately 5msec per concurrent user), while the execution architecture’s scalability has also proven to be 

satisfactory, exhibiting a linear increase for all tested factors (concurrent users, size of usage patterns repository, number 

of recommendations requested per invocation and number of functionalities within the WS-BPEL scenario). The 

proposed algorithm has also been found to choose execution plans whose QoS are very close to the optimal ones, while 

at the same time crafting the execution plans taking into account the proposals of the CF-based algorithm. 

Our future work will focus on the integration of QoS-adherence monitoring mechanisms, such as those described 

in [11], as well as gathering and utilizing statistical information from prior scenario executions as information sources 

to the adaptation process. This statistical information will be used to quantify aspects regarding the execution of control 

constructs in the scenario, e.g. the probability that a conditional branch is executed or the distribution of the number of 

executions of a loop. These quantities will be then taken into account by the adaptation algorithm. QoS-adherence 

monitoring mechanisms could also provide feedback to the adaptation algorithm, by either changing the services’ QoS 

parameters in the repository (e.g. increasing the value of a services’ response time QoS attribute if it consistently 

exhibits worse response time than the one recorded in the repository) or by instructing the algorithm to refrain 

temporarily from choosing a service (e.g. if the service has been recently invoked many times and its degraded 

performance could thus be attributed to a temporary overload condition). We also plan to examine how the algorithm 

can be extended to consider different adaptation strategies [69], and to evaluate the performance of these strategies. 

Finally, a user survey is planned to assess the degree to which users are satisfied by the plans generated by the various 

adaptation algorithms; work in this direction will consider recent results in the area of exploiting social networks for 

software evaluations, as described in [52]. 
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