

IMPLEMENTATION OF TRANSACTION AND CONCURRENCY CONTROL
SUPPORT IN A TEMPORAL DBMS

COSTAS VASSILAKIS1, NIKOS LORENTZOS2, PANAGIOTIS GEORGIADIS1
1 Department of Informatics, University of Athens, TYPA Builds., 157 71, Zografou, Athens, Greece

2 Informatics Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece

Abstract  Transactions and concurrency control are significant features in database systems, facilitating functions both at
user and system level. However, the support of these features in a temporal DBMS has not yet received adequate research
attention. In this paper, we describe the techniques developed in order to support transaction and concurrency control in a
temporal DBMS that was implemented as an additional layer to a commercial DBMS. The proposed techniques make direct
use of the transaction mechanisms of the DBMS. In addition, they overcome a number of limitations such as automatic commit
points, lock release and log size increment, which are imposed by the underlying DBMS. Our measurements have shown that
the overhead introduced by these techniques is negligible, less than 1% in all cases. The approach undertaken is of general
interest, it can also be applied to non-temporal DBMS extensions.

Key words: Data Modelling, Temporal Databases, Transactions, Concurrency control.

1. INTRODUCTION

Transactions and support of concurrency control represent features of a Database Management
System (DBMS) which are of major practical importance. Concurrency control support is significant
because it increases the degree of parallelism and system throughput, protecting against operation
interference which can lead to inconsistencies in the database and/or production of erroneous results [1].
Transactions at system level constitute the unit of sharing and recovery [2] since locks acquired during
a DBMS session are released at the end of the current transaction and, when a system failure occurs, the
database is restored to a previous state, at a COMMIT point. At user level, transactions provide an
atomic operation abstraction [3], which eases programming tasks. They constitute the unit of integrity
[2], by allowing the transition from one valid database state to another, via an invalid state, and they
facilitate undoing erroneous changes.

Today, commercial DBMSs do support transactions and concurrency control. However, the literature
reveals many prototype implementations, aiming at extending the functionality of such a DBMS, to
areas of special interest. Such implementations often include new relational algebra operations, usually
developed on top of the DBMS. As a consequence, these extensions cannot take advantage of the
transaction and concurrency control support, provided by the DBMS, for the following reasons:
1. In some cases the new algebraic operations create temporary tables, to store temporary results. In

some DBMSs, however, issuing a DDL statement like CREATE TABLE results in an implicit commit
point [4]. This deprives the ability to use the ROLLBACK statement and undo changes up to the
database state before the implicit commit point. In some other DBMSs, the usage of DDL statements
in multi-statement transactions is disallowed [5].

2. Writing results to temporary tables constitutes a change to the database state, thus writing is logged.
Since the algorithms used to execute an enhanced operation may produce a considerable amount of
temporary data, the requirements for log space may increase dramatically. Thus, techniques have to
be developed, to reduce log space requirements.

3. Locks acquired during a session should persist along commit points introduced either implicitly by
the DBMS or explicitly by the enhanced operations, in order to (i) protect from interference between
operations and (ii) guarantee that only legal states of the database are visible.

The above observations also apply to temporal extensions to the relational model, an area that has
attracted the interest of many researchers in recent years: Two international workshops have been
organised (Texas, 14-16 June 1993; Zurich, 17-18 Sept. 1995), one international seminar (Dagstuhl, 23-
27 June, 1997) and a book has been published [6], all of them dedicated to this area. It can be noticed,
however, that although many temporal models have been proposed for the management of temporal data
([7-13], are only some representative approaches), few of them have been implemented [14]. Moreover,
to our knowledge, nothing has been reported on the transaction and concurrency control support in a
temporal DBMS.

This paper aims at filling in this gap, by providing a description of the algorithms implemented in
an actual development of a layered temporal DBMS. The language of the temporal DBMS is VT-SQL
[15], a consistent Valid Time Extension to SQL89. The specification of VT-SQL has been based on the
IXRM model [16]. A further extension of VT-SQL can be found in [17]. Details on the design and
implementation of the temporal DBMS and VT-SQL can be found in [18].

User

Input Manager
Parser
Lexical analysis Syntax checking

Execution procedures

VT-RA libraryTemporal engine

RDBMS
Extended INGRES

kernel
Databases

Fig. Error! Unknown switch argument.. Architecture of the temporal DBMS.

The overall architecture of the temporal DBMS can be seen in Figure 1. The temporal DBMS
consists of two layers: The upper layer is the Temporal Engine. This layer contains, amongst others, the
VT-RA library, which implements the operations of Valid Time Relational Algebra [16, 19]. It can
easily be ported to other DBMSs, since it has been coded in C and embedded SQL and thus it is
independent of the internal DBMS architecture. The lower layer is the INGRES DBMS, whose kernel
has been extended to support one additional data type, DATEINTERVAL, along with predicates and
functions. The Temporal Engine and the Extended INGRES kernel have been implemented within the
ORES project. The algorithms for transaction and concurrency control support which are described in
the present paper were designed and implemented in a follow-up research work. These algorithms
concern an implementation based on INGRES. However, the following should be noted:
1. Wherever necessary, it is explained how equivalent results can be obtained in implementations based

on commercial DBMSs other than INGRES.
2. The algorithms are of general interest, since they can be adapted appropriately, to commercial

DBMS extensions other than temporal.
3. The algorithms do not introduce additional mechanisms for transaction and concurrency control

support, but exploit the ones offered by the underlying DBMS, thus minimising the introduced
overheads.
The remainder of the paper is organised as follows: In section 2, VT-RA is presented in brief.

Section 3 outlines the syntax and semantics of VT-SQL. Section 4 presents the algorithms developed for
the execution of the VT-SQL DML statements which provide transaction and concurrency control
support. Graphs are also plotted, which allow an estimation of the time overhead introduced by the
presented techniques. Conclusions and future work are outlined in the last section.

2. VALID TIME RELATIONAL ALGEBRA

The theoretical foundation of the temporal DBMS is Valid Time Relational Algebra (VT-RA) [16], a
consistent extension to Codd’s algebra [20]. Time is represented using two new data types, namely

DATE and DATEINTERVAL. The YYYY-MM-DD format is used for date literals, which is a more
readable form of the ANSI standard YYYYMMDD. The notation [di, dj) is used to represent values of
type DATEINTERVAL, where di and dj are dates and dj is greater than di. The first of these dates (di) is
called the start whereas the second (dj) is called the stop of [di, dj). A DATEINTERVAL value contains
all the dates from di and up to, but not including dj. VT-RA defines predicates for interval comparison,
transformations between the representations of time (points and intervals) and temporally extended
versions of operations UNION and EXCEPT, which can be applied to relations containing attributes of
type DATE and/or DATEINTERVAL. These operations are described briefly in the subsections that
follow. For a more detailed presentation, see [16, 19].

2.1. Operation Fold

Let R be a relation whose schema is (A1, A2, ..., An) and assume that the domain of attribute A i is
either DATE or DATEINTERVAL. When R is folded on column Ai (denoted as FOLD[Ai] (R)), all its
tuples (i) whose Aj columns have identical values ∀ j ≠ i, and (ii) their Ai columns can merge (i.e. they
can form a single DATEINTERVAL) are replaced in the resulting relation by a single tuple, with the
same values in all Aj columns, ∀ j ≠ i, but the value of the Ai column is formed by the merging of the Ai
column of these tuples. For example, if ASSIGNMENT is any of the relations in Figure 2, then
FOLD[Time] (ASSIGNMENT) yields the relation in Figure 3.

Operation FOLD may be applied to a relation R on multiple columns A i1, Ai2, ..., Ainof a DATE or
DATEINTERVAL type. This is denoted as FOLD [Ai1, Ai2, ..., Ain] (R) and is equivalent to folding
relation R on column Ai1, then on column Ai2 and so on up to column Ain.

ASSIGNMENT ASSIGNMENT
Name Department Time Name Department Time

Mary Toys d1 Mary Toys [d1, d3)
Mary Toys d2 Mary Toys [d2, d5)
... Mary Toys [d10, d15)
Mary Toys d4 John Sales [d1, d10)
Mary Toys d10 John Sales [d10, d15)
... John Sales [d15, d18)
Mary Toys d14 John Sales [d16, d20)
John Sales d1
...
John Sales d19

(a) (b)
Fig. 2. Two valid time relations.

ASSIGNMENT
Name Department Time
Mary Toys [d1, d5)
Mary Toys [d10, d15)
John Sales [d1, d20)

Fig. 3. A valid time relation.

2.2. Operation Unfold

Let R be a relation whose schema is (A1, A2, ..., An) and assume that the domain of some attribute A i
is DATE or DATEINTERVAL. Notice that if Ai is of type DATE and tj is a value recorded in Ai, then tj
can be seen as a trivial interval [tj, tj+1) that contains exactly one date, t j. Hence, when R is unfolded on
attribute Ai (denoted as UNFOLD [Ai] (R)), each tuple (t1, ..., ti-1, ti, ti+1, ..., tn) of R is replaced in the
resulting relation by a family of tuples (t1, ..., ti-1, tij, ti+1, ..., tn), where each tij is a date included in ti.
For example, if ASSIGNMENT is the relation in Figure 3, then UNFOLD[Time] (ASSIGNMENT)
yields the relation in Figure 2(a). An UNFOLD may apply to multiple columns of either a DATE or

DATEINTERVAL type; this is denoted as UNFOLD [Ai1, Ai2, ..., Ain] (R) and is equivalent to
unfolding relation R on column Ai1, then on column Ai2 and so on up to column Ain.

2.3. Operation Normalise

Operation NORMALISE is a synthesis of the FOLD and UNFOLD operations and may be applied on
multiple columns Ai1, Ai2, ..., Ain

of type DATE or DATEINTERVAL. It is denoted as
NORMALISE [Ai1, ..., Ain] (R) and is semantically equivalent to

FOLD [Ai1, ..., Ain] (UNFOLD [Ai1, ..., Ain] (R)).

2.4. Operation PUnion

The PUNION (point-union) operation can be applied to two union-compatible relations and operates
on multiple columns of type DATE or DATEINTERVAL. Two relations R and S are union-compatible
if:
1. The number of columns in R is the same as the number of columns in S and
2. Column Ri is type-compatible with column Si, ∀ i.

The PUNION operation of two relations R and S is denoted as R PUNION [Ai1, ..., Ain] S, where
Ai1, Ai2, ..., Ain are of a DATE or DATEINTERVAL type. This operation is semantically equivalent to

NORMALISE [Ai1, ..., Ain] (R UNION S)
For example, if a relation S has a single tuple,

(Mary, Toys, [d3, d12))
and ASSIGNMENT is the table in Figure 3, then the result of ASSIGNMENT PUNION [Time] S
consists of the two tuples

(Mary, Toys, [d1, d15))
(John, Sales, [d1, d20))

2.5. Operation PExcept

Operation PEXCEPT (point-except) can be applied to two union-compatible relations and operates on
multiple columns of type DATE or DATEINTERVAL. The application of PEXCEPT on two relations R
and S is denoted as R PEXCEPT [Ai1, ..., Ain] S where Ai1, Ai2, ..., Ain are of type DATE or
DATEINTERVAL. This operation is semantically equivalent to

FOLD [Ai1, ..., Ain](UNFOLD [Ai1, ..., Ain] (R) EXCEPT UNFOLD [Ai1, ..., Ain] (S)).
For example, if a relation S consists of the two tuples

(Mary, Toys, [d10, d15))
(John, Sales, [d10, d15))

and ASSIGNMENT is the table in Figure 3, then ASSIGNMENT PEXCEPT [Time] S consists of the
tuples

(Mary, Toys, [d1, d5))
(John, Sales, [d1, d10))
(John, Sales, [d15, d20))

Tables for which data insertion and deletion is performed via PUNION and PEXCEPT rather than via
UNION and EXCEPT, respectively, are called normalised.

3. THE VT-SQL LANGUAGE

In general, VT-SQL does not extend the DDL statements of SQL. One exception is the CREATE
TABLE statement whose extension (see section 3.2, below) accommodates new clauses associated to the
semantics of valid time tables and the specification of the primary key of such a table. Hence, the syntax
and semantics of the VT-SQL DML statements are presented in the subsections that follow. For a
complete presentation of the VT-SQL syntax and semantics, the user is referred to [15]. The following
conventions are used for the syntax presented hereinafter: Terms enclosed in square brackets ([]) are

optional. Braces ({}) are used for items that may be repeated zero or more times. Parentheses are used
for grouping. Single quotes are used for parentheses that must be typed literally. Capitals indicate
reserved words. Finally, italics denote user-provided values.

3.1. Statement Select

The syntax for the VT-SQL SELECT statement is
extended-select
[(UNION | UNION ALL | EXCEPT) [ResultColumnList]
[extended-select]]
[ORDER BY ResultColumn [ASC | DESC]
{, ResultColumn [ASC | DESC]}]

The extended-select is defined as
sql-select

[REFORMAT AS [(FOLD | UNFOLD) columnList
{(FOLD | UNFOLD) ResultColumnList}]
[NORMALISE ON ResultColumnList]

(Note that in [15] another version of UNFOLD, namely UNFOLD ALL, is also described but has been
omitted here, for brevity reasons.) An extended-select is executed by evaluating its sql-select part and
then applying the REFORMAT and/or NORMALISE operations stated in the corresponding clauses. If the
VT-SQL select statement includes a second extended-select, then the result of each of the two extended-
select is evaluated. Assuming that the schemata of the results of the two extended-selects are union-
compatible, the relevant VT-RA infix operation (some version of UNION or EXCEPT) is applied to them
in order to evaluate the final query outcome. From these operations, UNION specifies that either the VT-
RA PUNION or the standard UNION operation should be applied, depending on whether the keyword
UNION is followed by a column list or not, respectively. In the former case, the column list specifies the
columns on which PUNION will normalise the final result; these columns must be of type
DATEINTERVAL or DATE. The ALL keyword may follow the UNION keyword, indicating that
duplicate occurrences of result tuples should be retained. However, UNION ALL
ResultColumnList returns the same result with UNION ResultColumnList. Analogously,
the EXCEPT keyword specifies that either PEXCEPT or EXCEPT must be applied, depending on whether
the keyword is followed by a column list or not. Finally, the ORDER BY clause follows the SQL89
specification.

3.2. Statement Insert

The syntax of the VT-SQL INSERT statement is identical with its SQL counterpart, except when the
tuples to be inserted are specified by a query. In this case the query may be an extended-select, i.e. it
may include the REFORMAT AS and/or NORMALISE clause. When data are inserted into a non-
normalised table, the semantics of the INSERT statement are identical with the semantics of its SQL
counterpart. If, however, the tuples are inserted into a normalised table (see definition at end of
Subsection 2.5), then the insertion of the specified data is followed by a NORMALISE operation on the
appropriate columns.

A normalised table may optionally have a key. For example, the key of ASSIGNMENT, in Figure 3,
is <Name, Time-p>, which means that table ASSIGNMENT may never contain two tuples, t1 and t2,
which satisfy both (i) t1.Name = t2.Name and (ii) t1.Time and t2.Time are two DATEINTERVAL
values which have at least one date in common. We say that within table ASSIGNMENT primary key
uniqueness is preserved at a date level.

If a normalised relation R has a primary key and an attempt is made to insert into it a piece of data
that has already been recorded in R, then the insertion fails. For example consider ASSIGNMENT, in
Figure 3, with key <Name, Time-p>. If we issue the command

INSERT INTO ASSIGNMENT
VALUES (’Mary’, Toys, ’[d4, d10)’)

then the insertion will fail, because Mary's assignment for date d4 is already recorded in
ASSIGNMENT. This convention is a consistent extension to standard SQL.

3.3. Statement Delete

In VT-SQL the syntax of statement DELETE has been extended and includes an optional P ORTION
clause, which may be used when deleting data only from a normalised table. If this clause is missing the
deletion applies in the known way. If the DELETE statement contains the PORTION clause then the
deletion applies to the valid time period specified by this clause. For example, after the execution of the
command

DELETE FROM ASSIGNMENT
PORTION Time = ’[d3, d12)’
WHERE Name = ’Mary’

table ASSIGNMENT, in Figure 3, will consist of the tuples
(Mary, Toys, [d1, d3))
(Mary, Toys, [d12, d15))
(John, Sales, [d1, d20))

3.4. Statement Update

If an update statement is issued against a non-normalised table, then the standard SQL semantics
apply to the update operation. If, however, the statement is issued against a normalised table, then data
modification is always followed by a NORMALISE operation on the appropriate columns. Analogously to
the DELETE statement, when the UPDATE statement is applied to a normalised table it may optionally
contain a PORTION clause, which designates the valid time period during which the update is applicable.
For example, the command

UPDATE ASSIGNMENT
PORTION Time = ’[d3, d5)’
SET Name = ’Tom’
WHERE Name = ’Mary’

will result in that ASSIGNMENT, in Figure 3, will consist of the tuples
(Mary, Toys, [d1, d3))
(Mary, Toys, [d10, d15))
(Tom, Toys, [d3, d5))
(John, Sales, [d1, d20))

If primary key uniqueness of the updated table is preserved at a date level, the update is again
rejected whenever this uniqueness is violated.

4. TRANSACTION AND CONCURRENCY CONTROL SUPPORT

In a layered temporal DBMS, transaction and concurrency control support can be implemented by
using two sessions between the Temporal Engine and the DBMS. The first session is the system session,
which is used to create and modify the temporary tables. The second session is the user session, which is
used to access and modify the user tables. The user session may access the temporary tables for reading
only.

Since temporary tables are created and modified through the system session, no implicit commit
points are introduced for the user session. Also, the increment of the user session's log size is kept low.
Finally, the acquired locks will not be released until the current transaction of the user session is
explicitly committed or rolled back. However, since different sessions to the DBMS are competing for
locks on the data, care must be taken so that the access scheme through the two sessions does not lead to
deadlocks.

The usage of the two sessions that provide transaction and concurrency control support is described
in the subsections that follow. Lock acquisition on behalf of the Temporal Engine is analysed and it is
shown that the temporal DBMS guarantees serialisability of operations, if the underlying DBMS
provides serialisable transactions. For a discussion, on how the following algorithms are used for
transaction support as well as for a protection and recovery scheme for temporary tables, see [21].

The algorithms presented in this section may be implemented on top of any DBMS which provides
savepoints and elementary lock control statements. They have been implemented on a Sun SPARC ELC
workstation, running SunOS 4.1.3, and INGRES 6.4. They have proved to be efficient. Compared in
particular with an implementation which uses a single session to the underlying DBMS (and thus does
not support transactions or concurrency control), the performance of the algorithms is only up to 0.95%
worse than their single-session counterparts. The subsections for statements INSERT, DELETE and
UPDATE include performance figures that indicate performance measures of the respective algorithms.

4.1. Statement Select

Three cases are considered for the evaluation of the SELECT statement (for a complete description,
see [15]):
Case (i): The user’s query includes only algebraic operations supported directly by the RDBMS.

In this case the SELECT statement matches that of standard SQL, except that it may also contain
DATE and/or DATEINTERVAL predicates and functions. Then the Temporal Engine opens a
cursor through the user session, which retrieves the result of the user query. The result tuples are
fetched through this cursor and presented to the user.

Case (ii): The user’s query is a single extended-select.
In this case the query has the form SELECT-FROM-WHERE- GROUP BY-HAVING followed by a
REFORMAT AS and/or a NORMALISE ON clause. Then the following steps are taken:
A. The system session is used to create a temporary table whose schema matches the schema of the

table resulting from the sql-select part of the extended-select. A cursor is opened through the
user session, retrieving the result of the sql-select part of the user query.

B. The result tuples of the sql-select are fetched through the cursor opened in step (A) and are
subsequently inserted into the temporary table through the system session. When all result tuples
have been inserted into the temporary table, the system session commits, emptying its log space.

C. The system session is used to execute the operations specified by the REFORMAT and/or
NORMALISE clauses. As soon as each operation stated in these clauses completes, the temporary
table holding the result of the previous step is dropped through the system session and the system
session commits.

D. The tuples contained in the final temporary table are fetched through the system session and
forwarded to the user. When all data have been exhausted, the final temporary table is dropped
through the system session and the system session commits.

Case (iii): The user’s query consists of two extended-select statements.
In this case the two statements are combined by some version of either UNION or EXCEPT. Then the
following procedure is used:
A. Steps (A)-(C) of Case (ii) above are performed to evaluate each of the extended-select statements,

storing the results in temporary tables. (If the extended-select does not contain the REFORMAT
and NORMALISE clauses, then only steps (A) and (B) are performed).

B. The system session is used to apply the appropriate binary operation (some version of either
UNION or EXCEPT) to the temporary tables produced in step (A), and the result is stored in a
temporary table. Upon operation completion, the temporary tables produced in step (A) are
dropped through the system session and the system session commits.

C. The tuples contained in the temporary table created in step (B) are fetched through the system
session and forwarded to the user. Finally, the temporary table is dropped through the system
session and the system session commits.

Data in user tables, which contain the final query outcome, are accessed through the user session in
the procedure described above. Thus the user session will acquire shared locks on that data, making
them unavailable for modification through other sessions, while the current transaction of the user
session is active (i.e. has not been committed or rolled back).

4.2. Statement Insert

In order to execute an INSERT statement, the normalisation status of the target table is checked and,
depending on whether the target table is normalised or not, the appropriate algorithm is selected, as
described in the next two subsections. In the following, the table into which data will be inserted is
denoted as R. The columns of any valid time table T are denoted as Tc1, Tc2, ..., TcN, Tvt, with Tvt being
the column storing the valid time of the tuple. All the columns from those in Tc1 through TcN that do not
participate in the primary key are denoted as T¬key. If no primary key is defined on T, then T¬key includes
all the columns from Tc1 through TcN. Except for Tvt, all other columns participating in the primary key
are referenced as Tkey.

4.2.1. The target table is not normalised

Two sub-cases are considered, depending on how the values to be inserted are specified:
Case (i): The values to be inserted are specified either by means of the VALUES clause or by a
SELECT statement that does not contain the REFORMAT and NORMALISE clauses .

In this case the DBMS can handle the data insertion on its own, so the Temporal Engine forwards
the INSERT statement to the DBMS through the user session. The DBMS executes the command,
imposing the appropriate locks on behalf of the user session (i.e. exclusive locks on the inserted data; if
the inserted values are specified by means of a SELECT statement shared locks on the used data are also
imposed).
Case (ii): The values to be inserted are specified by means of an extended SELECT statement
containing the REFORMAT and/or NORMALISE clauses .

In this case the extended-select statement is evaluated, following the steps (A)-(C) of Case (ii) of the
SELECT statement execution algorithm, and the resulting tuples are stored into a temporary table
denoted here as T1. (The name of the table is actually a unique string, computed by the Temporal
Engine. The string contains the system session's session identifier and the current timestamp, ensuring
in this way that different sessions to the DBMS will use different temporary table names.) Subsequently,
the command

INSERT INTO R SELECT * FROM T1
is forwarded to the DBMS through the user session. Finally, the system session is used to drop table T1
and the system session commits.

Since the INSERT command which is forwarded to the DBMS through the user session accesses
table T1, which is subsequently dropped through the system session, it is important that this access does
not result in lock imposition on the accessed data because a deadlock will then occur. In order to achieve
this, the command

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK
is forwarded to the DBMS, through the user session, prior to the INSERT command. (The SET
LOCKMODE statement is an INGRES extension to SQL89 ([22]); the syntax in other DBMSs is
different.)

In the algorithm presented here, the user session will acquire shared locks on the used data during
the query evaluation phase. Additionally, during the insertion phase the same session will obtain
exclusive locks on the inserted tuples making them unavailable for update and access, while the current
transaction of the user session is active.

4.2.2. The target table is normalised

In this case four distinct sub-cases are considered, depending on (i) whether a primary key is defined
for the table and (ii) how the values to be inserted are specified:
Case (i): The values to be inserted are specified by means of the VALUES clause, and no primary key is
defined on table R.

The Temporal Engine creates an insertion tuple, holding the values specified in the VALUES
clause. It also opens a cursor ins_cur on table R through the user session, selecting all the tuples which
are value equivalent to the insertion tuple (i.e. each column in R¬key is equal to the corresponding
column in the insertion tuple) and have overlapping or adjacent valid times. Each selected tuple is

deleted from table R using cursor ins_cur (for which the selected tuple is current) and the valid time of
the insertion tuple is replaced by the union of its former value and the valid time of the deleted tuple.
(The union of two adjacent or overlapping dateintervals is a dateinterval containing all the time points
in both arguments). Finally, the insertion tuple is appended to R through the user session.

In the procedure described above, the user session obtains exclusive locks for both the deleted tuples
and the inserted tuple. Thus these pieces of data are unavailable to other sessions, while the current
transaction of the user session is active.
Case (ii): The values to be inserted are specified by means of the VALUES clause, and a primary key has
been defined on table R .

As in the previous case, the Temporal Engine creates an insertion tuple, holding the values specified
in the VALUES clause. A savepoint InsSave is created for the user session and a cursor ins_cur is opened
on R through the user session, selecting all the tuples for which: (i) All the columns in Rkey have values
equal to the values of the corresponding table in the insertion tuple. (ii) Their valid times are adjacent or
overlapping to the timestamp of the insertion tuple. For each qualifying tuple, the values for R¬key and
Rvt are fetched into the Temporal Engine's memory, and the following checks are made:
1. If the valid time of the fetched tuple is overlapping with the valid time of the insertion tuple, then the

INSERT statement violates primary key uniqueness. The user session is rolled back to the savepoint
InsSave, by issuing a

ROLLBACK TO InsSave
statement through the user session. Further processing is aborted.

2. If all columns in R¬key of the fetched tuple have values equal to the corresponding columns of the
insertion tuple, then: Firstly, the fetched tuple is deleted from R through cursor ins_cur. Secondly,
the valid time of the insertion tuple is replaced by the union of its former value and the value of the
fetched tuple's valid time.

3. In all other cases, i.e. if any column in R¬key of the fetched tuple is not equal to the corresponding
column of the insertion tuple, the algorithm continues with the next tuple.
When no more tuples can be fetched through the cursor, the insertion tuple is appended to the table

through the user session.
In the above algorithm, the user session acquires exclusive locks both on the deleted tuples and the

inserted tuple, making them all unavailable to other sessions, while the current transaction of the user
session is active. However, shared locks will be placed on the tuples which will be selected by cursor
ins_cur but cannot be coalesced with the insertion tuple, in the case that the value of some column of
R¬key is different in the insertion tuple and the selected tuple. These extra locks are not a major problem
for the following reasons:
1. Considering that a primary key has been defined on table R, the number of tuples that will

unnecessarily be locked is restricted to at most two (one tuple whose valid time ends at the start of
the insertion tuple's valid time, and another whose valid time starts at the end of the insertion tuple's
valid time).

2. If these two tuples do exist, they will probably be located in the disk page where the insertion tuple
will be inserted. The reason is that the storage structures usually used for tables on which primary
keys are defined, partition tuples with respect to their primary key values (e.g. B-tree or ISAM on the
columns participating in the primary key). Considering that DBMSs usually place locks at disk page
level rather than at tuple level, the exclusive lock on the inserted tuple would affect these tuples, in
any case.

Case (iii): The values to be inserted are specified by means of a (perhaps extended-) select query, and
no primary key has been defined on table R.

The extended-select is evaluated as described in Subsection 4.1 and the result is stored in a
temporary table, by following steps (A)-(C) of Case (ii) of the SELECT statement execution algorithm.
(If the extended-select does not contain the REFORMAT and NORMALISE clauses, then only steps (A)
and (B) are performed). In the sequel, this temporary table is denoted as T1. Subsequently, the Temporal
Engine opens a cursor on table R through the user session, selecting all tuples which can be coalesced
with any tuple in T1 (i.e. tuples for which every column in R¬key has value equal to the corresponding
column in T1¬key and the value of Rvt is overlapping or adjacent to the value of T1vt.). Since evaluating
the query associated with this cursor implies access to table T1, which will be dropped afterwards

through the system session, it is important that this access does result in lock placing on the tuples of
T1. This is accomplished by issuing a statement

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK;
through the user session, prior to opening the cursor. Each qualifying tuple is fetched into memory and
deleted from R through the user session and subsequently inserted through the system session into table
T1. Afterwards, the system session is used to execute FOLD [T1vt] (T1), each tuple of the FOLD
operation's result is fetched into memory through the system session and inserted into R through the
user session. Finally, the temporary tables are dropped through the system session and the system
session commits.

In the procedure described above, the user session acquires shared locks on the tuples which are used
to compute the query result during the evaluation of the (extended-) select and during the insertion
phase. The user session obtains exclusive locks on the tuples that are deleted from table R or inserted
into it; thus these tuples are not accessible by other sessions, while the current transaction of the user
session is active.
Case (iv): The values to be inserted are specified by means of a (perhaps extended-) select query, and a
primary key has been defined on table R .

A savepoint is introduced for the user session, the extended-select is evaluated and the result is
stored in a temporary table T1, as in the previous case. Afterwards, the statement

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK;
is forwarded to the DBMS through the user session, specifying that accesses to table T1 should not place
locks; the same session is used to open a cursor on the join of R with T1, enabling to select subsequently
from R those tuples for which (i) all columns in Rkey have values equal to the corresponding columns of
some tuple in table T1 and (ii) Rvt is either overlapping or adjacent to the valid time of the same tuple of
table T1. For each one of these tuples, the values on all the columns of table R and on all the columns of
T1¬key and T1vt are fetched into main memory. Next, the following checks are made:
1. If the values of Rvt and T1vt overlap then the insert operation is aborted, due to the presence of

duplicate keys; the database is rolled back to the savepoint introduced at the beginning of the
algorithm, and further processing is aborted. Table T1 is dropped and the system session commits.

2. If the values of Rvt and T1vt are adjacent and all columns in R¬key have values equal to the
corresponding columns in T1¬key, then the current tuple of R is deleted through the user session and
it is subsequently inserted into T1 through the system session. (Note that the values are currently into
the main memory, so they can be inserted immediately).

3. In all other cases, i.e. if the values of Rvt and T1vt are adjacent and some column in R¬key is not equal
to the corresponding column of T¬key, the fetched tuple is ignored.
When this process completes, the system session commits and a cursor is opened on table T1 through

the system session, fetching all the fields of each row, sorted on columns T1key, T1vt, T1¬key, in that order.
The first row is fetched and marked as working tuple, and the algorithm proceeds as follows:
1. The next tuple is fetched through the cursor. If data have been exhausted, working tuple is inserted

into R through the user session and the algorithm continues with step (5), otherwise the fetched tuple
is marked as current tuple, and the algorithm continues with step (2).

2. If either the value of any of the columns in T1key is different in working tuple and current tuple or the
values for T1vt in the two tuples are neither overlapping nor adjacent, then working tuple is inserted
into R through the user session, current tuple replaces working tuple and step (1) is performed again.

3. If the values of T1vt in working tuple and current tuple are overlapping, then the operation produces
duplicate keys; the database is rolled back to the savepoint through the user session introduced at the
beginning of the algorithm and further processing is aborted. Table T1 is dropped and the system
session commits.

4. If the value of any of the columns in T1¬key is different in working tuple and current tuple, then
working tuple is inserted into R through the user session and current tuple replaces working tuple.
Otherwise, T1vt in working tuple is replaced by the union of its former value and the value of T1vt in
the current tuple, current tuple is discarded, and control passes to step (1).

5. T1 is dropped through the system session and the system session commits.

Analogously to Case (ii), shared locks may be unnecessarily placed on some tuples of table R (up to
two tuples may be locked for each tuple in table T1), but these extra locks do not reduce data availability
or operation concurrency for the reasons already stated in Case (ii)).

One point that has to be taken into account for Case (ii) of Subsection 4.2.1 and Cases (iii) and (iv)
of Subsection 4.2.2 is that some DBMSs (e.g. INGRES) allow the usage of locking control statements,
such as SET LOCKMODE, only when they appear at the beginning of multi-statement transactions. If
the Temporal Engine operates on top of such a DBMS, then the default read locking mode of the user
session should be set to ‘no locking’, when the session is created. Also, the user should use the SET
LOCKMODE command, to specify the tables to which read access should result in locking. Note that no
locking capabilities are lost because of this modification; only the default locking scheme of the DBMS
is altered.

4.2.3. Performance Evaluation

The performance of the insertion algorithm presented above is evaluated in Figures 4 and 5 for
insertions into a table SALARY(Name, Amount, Period). Each diagram depicts the execution time
overhead, introduced by the dual session algorithm, as a percentage of the overall execution time. As
can be seen in the diagrams, measurements were obtained for different numbers of affected tuples and
various database sizes. The specifications of the tuples in table SALARY are as follows: Groups of 10-
50 tuples share the same name. For each name, the salary values are distributed uniformly. The
bounding dates for period are drawn from the domain [1980-01-01, 2029-01-01). For each name, the
start of the period and the duration of a period are distributed uniformly. The storage structure of
SALARY is heap (i.e. unstructured and unkeyed), and an index has been defined on all the table
columns. All the measurements were obtained on a Sun SPARC ELC workstation with 24 Mbytes of
memory and 1 GByte disks, running SunOS 4.1.3, and INGRES 6.4, where the implementation took
place.

0,30%

0,40%

0,50%

0,60%

0,70%

0,80%

0,90%

1,00%

80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0

20
48

0

40
96

0

81
92

0

16
38

40

Number of tuples in table

1 tuple
10 tuples
20 tuples
40 tuples
80 tuples

Inserted tuples

Fig. 4. Insertion into a table with no primary key.

0,30%

0,40%

0,50%

0,60%

0,70%

0,80%

0,90%

1,00%

80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0

20
48

0

40
96

0

81
92

0

16
38

40

Number of tuples in table

1 tuple
10 tuples
20 tuples
40 tuples
80 tuples

Inserted tuples

Fig. 5. Insertion into a table with a primary key.

As can clearly be seen by the diagrams, the overhead introduced by the use of the dual session
technique is negligible. Our measurements showed that in all the cases that follow, this overhead was
less than 1%. This has been achieved because the dual-session algorithms do not introduce any
extraneous I/O, compared to the single-session algorithms and, at the same time, they take advantage of
the transaction and concurrency control algorithms of the underlying DBMS. The only overheads
introduced by the dual-session algorithms are:
1. The administrative overhead of maintaining two sessions and switching between them.
2. The overhead for managing the savepoints; this should be minimal, since savepoints are typically

implemented by writing a record into the transaction’s log.
3. The overhead due to the retrieval of data via some session and its storing from within another

session (e.g. the first step in Case (ii) of Subsection 4.2.1 and Cases (iii) and (iv) of Subsection
4.2.2). One example is when a temporary table is filled in with data from user tables in which case
data are moved from the DBMS’s address space to the Temporal Engine’s address space. As
opposed to this, in the single-session algorithms the temporary table is filled in using a bulk
insertion statement (INSERT INTO T1 SELECT ...); this statement fills in the temporary table
without any intervention of the Temporal Engine. It should be noted however that even when the
number of these tuples is high, this overhead is low, since it accounts only for interprocess
communication and process switching costs, i.e. operations that are cheap compared with I/O.

4.3. Statement Delete

If the PORTION clause is not specified in the DELETE statement (which is always the case for non-
normalised tables, as the usage of this clause is restricted to normalised tables), the request is directly
forwarded to the underlying DBMS for execution through the user session.

If the PORTION clause is present, the Temporal Engine opens, through the user session, a cursor on
the target table R, selecting the rows which satisfy the WHERE clause and have valid times overlapping
with the valid time (denoted as period, hereinafter) specified in the PORTION clause. For each qualifying
tuple, the values of all fields along with the value of period are fetched into main memory and one of the
following actions is taken:
1. If the value of period is a superinterval of the value of Rvt, then the tuple is deleted from R through

the user session.
2. If the difference Rvt - period yields exactly one interval (i.e. the time points included in Rvt but not in

period are consecutive and, consequently, can be represented by a single DATEINTERVAL value)
then the value of Rvt of the current tuple is updated to Rvt - period, through the user session. This is
achieved by the use of the WHERE CURRENT OF form of the embedded SQL UPDATE statement.

3. If the difference Rvt - period yields two intervals, diff1 and diff2, the value of Rvt of the current tuple
is updated to diff1. Also, a new tuple is appended to R whose values for Rc1, ..., RcN are equal to the

values of the corresponding columns in the current tuple, whereas the value of column Rvt is set
equal to diff2. Both the update and the tuple insertion are performed through the user session.
Following the algorithm presented above, the user session will acquire exclusive locks on the

inserted, deleted and updated tuples; these tuples will be inaccessible to other sessions, while the current
transactions of the user session is active. If the DELETE statement contains a WHERE clause which
includes subqueries referencing other tables, the user session will also obtain shared locks on the data
used to evaluate the WHERE clause, as well.

4.3.1. Performance Evaluation

The performance of the deletion algorithm presented above is evaluated in Figure 6. Each diagram
depicts the execution time overhead, introduced by the dual session algorithm, as a percentage of the
overall execution time. Again, measurements were obtained for different numbers of affected tuples and
various database sizes. Only the case of deletion using the PORTION clause was considered, since
deletion without using the PORTION clause is handled by the DBMS. The details about the data in the
base table, the storage structure, and the implementation platform are those described in Subsection
4.2.3. Since the deletion algorithm does not use the second session, no differences in performance are
actually observed.

0,003%
0,004%
0,005%
0,006%
0,007%
0,008%
0,009%
0,010%
0,011%
0,012%
0,013%

80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0

20
48

0

40
96

0

81
92

0

16
38

40

Number of tuples in table

1 tuple
10 tuples
20 tuples
40 tuples
80 tuples

Deleted tuples

Fig. 6. Deletion, using the PORTION clause.

4.4. Statement Update

If the UPDATE statement is applied to a non-normalised table, it is directly forwarded to the
underlying DBMS for execution. If, however, the target table R is normalised, then the following cases
are considered:
Case (i): The table has no primary key, and the PORTION clause is not specified.

The Temporal Engine retrieves through the user session all the tuples which satisfy the WHERE
clause. For each selected tuple, the updated values of the fields changed by the SET clause are fetched
rather than the original values. The selected tuple is deleted from the table through the user session and
a tuple containing the updated values is stored through the system session in a temporary table,
update_temp. (This table is created through the system session). When all qualifying tuples have been
fetched, the system session commits, and the algorithm described for Case (iii) of Subsection 4.2.2 is
employed to insert the tuples stored in update_temp into R. (The step involving the execution of the
extended-select is not performed. Table T1 mentioned in Subsection 4.2.2 is actually the update_temp
table, produced in the previous step).

In the procedure presented above, the user session will acquire the necessary exclusive locks on the
affected tuples, making them unavailable to other sessions, while the current transaction of the user
session is active. If the UPDATE statement contains a WHERE clause which includes subqueries

referencing other tables, the user session will also obtain shared locks on the data used to evaluate the
WHERE clause.
Case (ii): The table has no primary key and the PORTION clause is specified.

The Temporal Engine opens a cursor on R through the user session, selecting the tuples which (i)
satisfy the WHERE clause and (ii) their value for Rvt overlaps with the value of the period specified in the
PORTION clause. For each qualifying tuple, all the original values of the columns, the new values for the
columns to be updated, and the value of the period in the PORTION clause (denoted as period,
hereinafter) are fetched into main memory. Depending on the values of Rvt and period, one of the
actions (1)-(3) described in Subsection 4.3 is performed, in order to delete from R the portion of the
tuple which is to be updated. After the designated data have been removed, a tuple is inserted through
the system session into a temporary table update_temp. (This table is created through the system
session.) The values of the columns of these tuples are determined using the following algorithm:
1. If the column appears on the left hand side of an assignment in the SET clause, then the value of the

corresponding right hand side expression is used.
2. If the column is not updated, then its original value is used, except for column Rvt, for which the

value of the expression appearing in the PORTION clause is used.
When all qualifying rows have been processed the system session commits, and the rows in

update_temp are inserted into R using the algorithm described in Subsection 4.2.2 for Case (iii). (The
step of evaluating the extended-select is skipped and update_temp replaces T1).

Following the above algorithm, the user session will obtain exclusive locks on the affected rows. If
the UPDATE statement contains a WHERE clause, which includes subqueries referencing other tables,
the user session will also obtain shared locks on the data used to evaluate the WHERE clause.
Case (iii): The table has a primary key and the PORTION clause is not specified.

The algorithm employed for Case (i) above can be used here, modified as follows: (i) A savepoint is
introduced for the user session at the beginning of the operation. (ii) The resulting tuples are inserted
into R using the algorithm for inserting data into a table for which a key has been defined (Case (iv) of
Subsection 4.2.2, with the necessary amendments: The step of evaluating the extended-select is skipped.
Table update_temp replaces T1. The savepoint introduced at the start of the operation is used in the case
that the database should be rolled back due to the violation of the uniqueness of the primary key). The
remarks on lock placement for Case (i) above, also hold for this case, but the remarks made for Case (iv)
of Subsection 4.2.2 have to be considered as well.
Case (iv): The table has a primary key and the PORTION clause is specified.

The algorithm described for Case (ii) above can be used for this case, modified as follows: (i) A
savepoint is introduced for the user session at the beginning of the operation. (ii) The resulting tuples
are inserted into R using the algorithm for inserting data into a table for which a key has been defined
(Case (iv) of Subsection 4.2.2, with the necessary amendments). The remarks on lock placement for
Case (ii) hold for this case too, but the remarks made for Case (iv) of Subsection 4.2.2 have to be
considered as well.

4.4.1. Performance Evaluation

The performance of the update algorithm presented above is evaluated in Figures 7 and 8.
Specifically, out of the four distinguished cases for the update of normalised tables, diagrams are
presented only for two of them, for brevity reasons. The diagrams for the remaining two cases are
similar. Each of the presented diagrams depicts the execution time overhead introduced by the dual
session algorithm, as a percentage of the overall execution time. Measurements were obtained for
different numbers of affected tuples and various database sizes. The details about the data in the base
table, the storage structure, and the implementation platform are those described in Subsection 4.2.3.

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

0,80%

80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0

20
48

0

40
96

0

81
92

0

16
38

40

Number of tuples in table

1 tuple
10 tuples
20 tuples
40 tuples
80 tuples

Updated tuples

Fig. 7. Updating a table with no key, using the PORTION clause.

The diagrams show that the introduced overhead is extremely low. Our measurements showed that it
was less than 0.75% in all cases. This is due to the fact that the only overheads introduced account for
the cost of managing the savepoints and the cost of maintaining and switching between two sessions.
Contrary to the case of the insertion algorithms (Section 4.2), no extraneous interprocess
communication or process switching costs are involved.

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

0,80%

80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0

20
48

0

40
96

0

81
92

0

16
38

40

Number of tuples in table

1 tuple
10 tuples
20 tuples
40 tuples
80 tuples

Updated tuples

Fig. 8. Updating a table with a key, using the PORTION clause.

5. CONCLUSIONS

We presented techniques to support transactions and concurrency control in a layered temporal
DBMS. These techniques exploit the transaction support and locking features of the underlying DBMS
by the use of a second connection to it, which enables to perform operations on temporary tables. The
algorithm design guarantees that no deadlock problems are introduced, due to the fact that locking is
done at session level. The overhead introduced by the incorporated techniques is negligible. In
particular, our measurements showed that in all cases the increase in execution time was less than 1%.
Future work includes support for multiple interval granularities, transaction time and porting of the
Temporal Engine on top of object-oriented DBMSs.

Acknowledgement – The authors of the paper would like to thank the reviewers for their constructive comments and Ms. Anya
Sotiropoulou for her precious assistance.

REFERENCES

[1] H. F. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill Book Company (1986).

[2] C. J. Date. An Introduction to Database Systems, vol. II. Addison-Wesley Publishing Company (1988).

[3] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall Inc. (1992).

[4] ORACLE Corporation. SQL Language Reference Manual (for version 6.0). Oracle Corporation (1990).

[5] Sybase Inc. Transact SQL User’s Guide (for release 4.2). Sybase Inc. (1990).

[6] A. U. Tansel, J. Clifford, S. K. Gadia, S. Jajodia and R.T. Snodgrass (Eds). Temporal Databases: Theory, Design and
Implementation. Benjamin Cummings (1993).

[7] G. Ariav. A temporally oriented data model. ACM Trans. on Database Systems, 11(4):499-527 (1986).

[8] J. Clifford and A. Croker. The historical relational data model (HRDM) revisited. In A. Tansel, J. Clifford, S. K. Gadia, A. Segev,
R. Snodgrass, editors, Temporal Databases: Theory, Design and Implementation, 6-27, Benjamin Cummings (1993).

[9] K. Gadia. An homogeneous relational model and query languages for temporal databases. ACM Transactions on Database
Systems, 13(4):418-448 (1988).

[10] McKenzie and R. Snodgrass. Supporting valid time: an historical algebra. Technical Report TR87-008. Computer Science Dept.,
Univ. of North Carolina, Chapel Hill (1987).

[11] B. Navathe and R. Ahmed. Temporal extensions to the relational model and SQL. In A. Tansel, J. Clifford, S. K. Gadia, A.
Segev, R. Snodgrass, editors, Temporal Databases: Theory, Design and Implementation, 92-109, Benjamin Cummings (1993).

[12] R. Snodgrass. The temporal query language TQUEL. ACM Trans. on Database Systems, 12(2):247-298 (1987).

[13] U. Tansel. An historical query language. Information Sciences, 53:101-133 (1991).

[14] M. H. Böhlen. Temporal database system implementations. SIGMOD Record, 24(4):53-60 (1995).

[15] ESPRIT III Project 7224 (ORES). Deliverable D2: specification of valid time SQL. April 1993. Available via ftp from the
Department of Informatics, University of Athens (ftp://ftp.di.uoa.gr/pub/ores/reports/d2.ps.gz).

[16] N. A. Lorentzos. The interval extended relational model and its application to valid time databases. In A. Tansel, J. Clifford, S. K.
Gadia, A. Segev, R. Snodgrass, editors, Temporal Databases: Theory, Design and Implementation , 67-91, Benjamin
Cummings (1993).

[17] N. A. Lorentzos and Y. G. Mitsopoulos. SQL extension for interval data. IEEE Transactions on Knowledge and Data
Engineering 9(3):480-499 (1997).

[18] ESPRIT III Project 7224 (ORES). Deliverable D4.1: implementation of valid time SQL. April 1993. Available via ftp from the
Department of Informatics, University of Athens (ftp://ftp.di.uoa.gr/pub/ores/reports/d4_1.ps.gz).

[19] ESPRIT III Project 7224 (ORES). Deliverable C3: specification of valid time formalism. April 1993. Available via ftp from the
Department of Informatics, University of Athens (ftp://ftp.di.uoa.gr/pub/ores/reports/c3.ps.gz).

[20] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):377-387, (1970).

[21] C. Vassilakis, P. Georgiadis and N. Lorentzos. Transaction support in a temporal DBMS. In Recent Advances in Temporal
Databases, 255-271 Zurich (1995).

[22] INGRES Corporation. INGRES SQL and ESQL Reference Manual (for release 6.4). INGRES Corporation (1991).

ftp://ftp.di.uoa.gr/pub/ores/reports/d2.ps.gz
ftp://ftp.di.uoa.gr/pub/ores/reports/d4_1.ps.gz
ftp://ftp.di.uoa.gr/pub/ores/reports/c3.ps.gz

