
International Journal of Semantic Computing 
© World Scientific Publishing Company 

1 

SPREADING ACTIVATION OVER ONTOLOGY-BASED RESOURCES 
FROM PERSONAL CONTEXT TO WEB SCALE REASONING 

ALAN DIX 

Computing Department, InfoLab21 Lancaster University, 
Lancaster, LA1 4WA, UK 

alan@hcibook.com  
http://www.hcibook.com/alan/ 

AKRIVI KATIFORI 

Department of Informatics & Telecommunications, University of Athens, 
Athens, Hellas (Greece) 

vivi@di.uoa.gr 

GIORGOS LEPOURAS  

Dept. of Computer Science and Technology, University of Peloponnese,  
Tripolis, Hellas (Greece) 

gl@uop.gr 

COSTAS VASSILAKIS  

Dept. of Computer Science and Technology, University of Peloponnese,  
Tripolis, Hellas (Greece) 

costas@uop.gr 

NADEEM SHABIR  

Talis, Birmingham, UK,  
nadeem.shabir@talis.com 

Received (Day Month Year) 
Revised (Day Month Year) 

Accepted (Day Month Year) 

This paper describes methods to allow spreading activation to be used on web-scale information 
resources.  Existing work has shown that spreading activation can be used to model context over 
small personal ontologies, which can be used to assist in various user activities, for example, in auto-
completing web forms.  This previous work is extended and methods are developed by which large 
external repositories, including corporate information and the web, can be linked to the user’s 
personal ontology and thus allow automated assistance that is able to draw on the entire web of data.  
The basic idea is augment the personal ontology with cached data from external repositories, where 
the choice of what data to fetch or discard is related to the level of activation of entities already in 
the personal ontology or cached data.  This relies on the assumption that the working set of highly 
active entities is relatively small; empirical results are presented, which suggest these assumptions 
are likely to hold.  Implications of the techniques are discussed for user interaction and for the social 
web.  In addition, warm world reasoning is proposed, applying rule-based reasoning over activate 
entities, potentially merging symbolic and sub-symbolic reasoning over web-scale knowledge bases.  
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1.   Introduction 

A typical computer user may have hundreds of address book contacts, many thousands of 
files, and probably tens of thousands of emails.  However, having this wealth of data 
stored does not help users in performing their tasks with the computer unless it is 
available when needed.  Often this involves navigating one’s way round a file system, or 
searching email folders for an elusive address or telephone number, or simply retyping 
information that you know is there somewhere.  

The aim of the research that gave rise to this paper is to support users so that they 
have the right information available at the right time.  Ideally the computer should be able 
to perform like an efficient personal assistant combining computer-like power and 
memory with the human-like understanding of the individual and the context.  For 
example, if a user is filling out a web form, then an ‘address’ field would by default pre-
fill to their own address, but if they have just had an email from a friend, then we might 
expect the friend’s address to be suggested alongside or ahead of the user’s own address. 

One of the techniques we have been using to tackle this is spreading activation over 
personal ontologies [1]. In short, this involves taking a populated ontology of the user’s 
personal information including personal profile, relationships to colleagues, projects, etc., 
and then applying a spreading activation algorithm over the nodes.  In the above example, 
the email from the friend would initially excite the node in the personal ontology 
representing the friend; this would then spread some activation to neighboring nodes so 
that the friend’s address would also become ‘hot’.  Later when the user comes to the web 
form the ‘hottest’ address in the populated ontology would be presented first as an option 
for the ‘address’ field, which would be the friend’s address as required. 

Our initial work in this area has proved promising and is reported elsewhere [1], but 
has been restricted to information held within the user’s personal ontology.  However, not 
all of the relevant information will be stored locally. 

 Imagine if the data in the personal ontology simply contained ‘Person(“Akrivi”) 
lives_in City(“Athens”)’.  This would be fine if the web form asked for a city, but if the 
required field was ‘country’, it would have no contextual suggestions and would simply 
have to default to the user’s own country.  A human assistant at this point would simply 
use their general knowledge and suggest “Greece”, or, if the town or city was less 
familiar maybe Google it. 

An automated system in principle may have the entire web available and in particular 
the web of ‘linked data’ [2,3] (interlinked computer-readable information based on 
semantic-web technology), so may be able to make use of ‘general knowledge’ and 
eternal data in the same way a human might.  This raises the question as to whether the 
kinds of reasoning we have applied to personal ontologies can be extended to the entire 
web without needing to suck the whole of the web into a single machine. 
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This paper presents methods to scale spreading activation to allow web-based 
reasoning, based on dynamically identifying a relatively small, but appropriate, ‘working 
set’ of entities and relations.  We have not as yet integrated these algorithms into our 
inference system, but instead present data from our own system and the literature to 
validate the assumptions on which our scaling algorithms are based.  

While other proposals for web-scale reasoning are focused on symbolic reasoning 
(e.g. [4,5,6]), we are adopting neural-inspired sub-symbolic processing, in the sense that 
in the presented algorithm ontology concepts and relationships between concepts can be 
considered analogous to neurons and synapses, respectively.  Given the success of 
Google page rank, there is prima facie case for the efficacy of these kinds of algorithms.  
However, with web-scale reasoning, many of the distinctions between symbolic and sub-
symbolic reasoning begin to break down; once we hit web scale even symbolic reasoning 
may have to become approximate and defeasible [4].  We propose ways in which our use 
of spreading activation can be combined with more symbolic reasoning.  By only 
performing the symbolic reasoning over sufficiently ‘activated’ information, we allow 
bounded reasoning within unbounded data, in a manner similar to human reasoning.  We 
call this the warm world assumption. 

The next section reviews a number of key concepts with relevant literature: personal 
ontologies, task-based interaction, spreading activation, sources of web data and web-
scale reasoning.  Section 3 describes the current implementation of spreading activation 
over a personal ontology. Section 4 introduces methods to extend spreading activation to 
the web and the following section presents empirical data supporting the key 
assumptions.  Finally, Section 6 discusses a number of issues raised and in particular the 
means by which web-scale spreading activation can be combined with symbolic rules to 
give warm-world assumption reasoning. 

2.   Background and Concepts 

In this section we review relevant concepts from the literature. We begin with personal 
ontologies, which are state-of-the-art tool for modelling and reasoning over personal 
context. Then we briefly discuss task-based interaction, which is a very active research 
topic exploiting personal context and has been used as a proof-of-concept application for 
our work, and spreading activation, which has provided the inspiration for the main 
algorithm presented in the paper. Finally, we overview the sources of web data, which 
can be used to enrich personal ontologies, promoting the latter from local-scale to web-
scale. We conclude this section with an overview of other web-scale reasoning 
approaches. 

2.1.   Personal Ontologies 

According to [7], an ontology is an explicit specification of a conceptualization. The term 
“conceptualization” is defined as an abstract, simplified view of the world that needs to 
be represented for some purpose. It contains the concepts (classes) and their instantiations 
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(instances) that are presumed to exist in some area of interest and their properties and 
relations that link them (slots).  

Using an ontology to model semantics related to the user personal domain has already 
been proposed for various applications like web search ([8,9]). Most of these approaches 
use ontologies only as concept hierarchies, like hierarchies of user interests, without 
particular semantic complexity, as opposed to our approach which incorporates the full 
range of ontology characteristics.  

The value of ontologies for personal information management has also been 
recognized and there is on-going research on incorporating them in PIM (Personal 
Information Management) systems like OntoPIM [10], GNOWSIS [11] and the semantic 
desktop search environment proposed in [12]. However there are very few detailed works 
available on the exact personal ontology to be used for such an application. 

The Personal Ontology used in our work constitutes an extended and enriched version 
of a user profile maintained by most applications as it attempts to group under one 
structure the user personal information, contacts, interests, important events, etc.  

More details on the creation of the personal ontology may be found in [13] and [14]. 
The ontology, along with example instances may be found in [15].  

The personal ontology attempts to encompass a wide range of user characteristics, 
including personal information as well as relations to other people, preferences and 
interests. To be as complete as possible the ontology has drawn on existing de facto 
standards such as FOAF and vCard as well as proprietary profiles such as Facebook. 
However, we do not expect this to be final or complete, so we foresee evolution of the 
base ontology, but more important the ontology may be extended through inheritance and 
the addition of more classes, as well as class instantiation according to the needs of both 
user stereotypes or individuals. 

The addition of weights on classes, instances and relations has been the final step to 
make the personal ontology ready for use and testing within our spreading activation 
framework. 

2.2.   Task-based Interaction 

While personal ontologies can help users organize and manage their information, in 
everyday interaction a user is not directly concerned with the information management 
but rather she is interested in performing tasks. To this end, user interaction support 
should be structured around the tasks a user executes. As illustrated in [16], in order to 
perform a task a user carries out certain action(s) using data related to the task’s context; 
in this work, context is about “What to Do and What to Do It to”, including thus the task 
that the user is involved in (e.g. reading a mail, filling in a web form) and the data 
involved in the task (e.g. the e-mail sender, entities referenced in the mail message body 
or fields and field values in the web form). Although most actions are performed on the 
user’s own PC (albeit some being functions offered by locally installed application and 
some from web-based applications), data can come from a variety of sources, including 
user-owned devices such as PC, PDA and mobile phone or web-stored information. 
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Currently, to achieve their goals users resort to searching for, retrieving, copying and 
pasting the necessary information between applications and locations. In web-based 
applications, browsers can perform a level of automatic form filling using a combination 
of URLs and named fields. Research systems, including that of the Simplicity project 
[17] and W3C draft “Client Side Automated Form Entry” [18], have extended this to 
include mappings between specific form’s field names and user profile data.  

Our own work has gone beyond automatically filling-in fields by name or basic types; 
in related work with colleagues, we have shown how rich ontological type tags such as 
“name_of Friend” can be automatically inferred over an unconstrained personal ontology 
and furthermore how they can be linked across a single form, or multiple forms in 
subsequent interactions. For example, if a form contains both name and city, then after a 
single example this may be automatically tagged as “name_of Person p” “location_of 
Institution employing Person p”, connecting the two fields, so that when the name is 
filled the location can be auto-completed [16,19].  This is useful when there is a 
functional relationship between fields (e.g. address of a person already entered), but does 
not help with a first empty form (whose name?) or where there are alternatives (home 
address or work address). 

To offer the appropriate data during the user’s interaction, the system has both to 
identify user actions as they carry out their tasks and to understand the context of the 
actions. The "what to do" part of the context, the fact that you are in the middle, say of 
booking a hotel room, is tackled by sequence/task inference techniques described 
elsewhere [16].  In this paper, we are interested in the "What to do it to" part, the initial 
name field or the choice between alternatives.  For this we employ spreading activation 
(as described in section 3) as a means to predict context of actions and present via a drill-
down technique the relevant data and possible actions that can be performed upon the 
data.  

2.3.   Spreading Activation 

Spreading activation was first proposed as a model of cognition [20], but is not a new 
concept in semantic networks related computational research, where there are a number 
of proposed applications of spreading activation, especially in the area of information 
retrieval [21].  

Crestani [22] proposes the use of spreading activation on automatically constructed 
hypertext networks in order to support browsing within these networks; in this case, 
constrained spreading activation is used in order to avoid spreading through the whole 
network. The work in [22] presupposes that semantics and weights have been assigned to 
the links within the hypertext network, possibly in an automatic/semi-automatic fashion, 
this however is infeasible at web scale. Liu et al [23] use spreading activation on a 
semantic network of automatically extracted concepts in order to identify suitable 
candidates for expanding a specific domain ontology. Xue et al [24] propose a mining 
algorithm to improve web search performance by utilizing user click-through data. 
Weighted relations between user queries and selected web pages are created and 
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spreading activation is performed on the resulting network in order to re-rank the search 
results of a specific query, allowing also faster incorporation of newly generated pages 
into search results by building similarity sets. While this approach may improve the 
efficiency of searches, it offers only results at document granularity, whereas in a number 
of applications, including task-based interaction, entity-level granularity is far more 
useful. Besides, only terms appearing in user queries are considered, which do not 
necessarily cover the full breadth of ontological resources, especially when the scope of 
the application is a single user’s interaction. 

Hasan [25] proposes an indexing structure and navigational interface which integrates 
an ontology-driven knowledge-base with statistically derived indexing parameters, and 
the experts' feedback into a single spreading activation framework to harness knowledge 
from heterogeneous knowledge assets. While the authors mention the existence of a local 
learning rule which modifies the weight on links directly or indirectly involved in a query 
process, no further details are provided for this; moreover, in [25] expert need to provide 
direct feedback for adapting the network weights, and no method for linking to external 
(web) sources is provided. Finally, the discussion on scalability is limited to how new 
documents can be incorporated to the system, implying that all information can be hosted 
in a single computer. 

It is also worth noting that although the works [22], [24] and [25] consider spreading 
activation, they do not deal with the different timescales of memory. [22] refers to “some 
form of activation decay” that may be included in the (optional) preadjustment or 
postadjustment phases; [24] includes a decay factor; and [25] includes an activation 
retention threshold for the same purposes. However, these provisions only model how 
importance of items is lost, and do not capture the notion of the “current task”. 

Neural networks and in particular Hopfield Networks [26] attempt to approach and 
simulate the associative memory again by using weighted nodes but at a different level. 
In this case, the individual network nodes are not separate concepts by themselves, but 
rather, in their whole, are used to represent memory states. This approach corresponds to 
the neuron functions of the human brain and mainly focuses on the storage of memories, 
whereas ours attempts to simulate the human memory conceptual network functions and 
focuses on the representation of activation of individual concepts. 

Recently, spreading activation theory has been recognized as a candidate approach for 
supporting personal interaction with the system, in the newly emerging areas of personal 
information management (PIM) and Task Information Management (TIM). This work 
has been published in [27] and [1] and is summarized in section 3. 

2.4.   Sources of Web Data: Linked Data and the Semantic Web 

In the scenario in Section 1, the human assistant would either just ‘know’ that Athens is 
in Greece, or, if not, Google “Athens” to find out.  Of course while the web is full of 
human-readable information, much of this is unavailable for automated reasoning.  The 
goal of the Semantic Web is to change this [28] and make a ‘web of data’. 
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While some use of semantic web technology is effectively still in vendor specific 
‘silos’ either private or using bespoke ontologies, there is a growing body of ‘Linked 
Data’ [2,3], that is web services that use semantic web technology (RDF, SPARQL, 
usually REST-ful), but also use interlinked ontologies so that entities in one can be linked 
to those in another.  Figure 1 shows some of these sources, for example DBpedia, which 
extracts the data in Wikipedia ‘info boxes’ and turns it into RDF data, and Geonames, 
which does the same for geographic information from a number of sources. 

 
Figure 1.  Linked data on the web (from [2]) 

In practice, this interlinking is not quite as easy as the figure suggests as some data is 
partial (e.g. in the DBpedia data for ‘Athens’ the word ‘Greece’ is mentioned, but is not 
linked to a semantic ‘Country’ entity), and while classes and relations are common 
through shared ontologies, the same entity (e.g. the City ‘Athens’), is typically 
represented by different URIs in different data sources, so some resolution and mapping 
is needed. 

As well as these core Linked Data sources there is an even greater volume of data 
with public APIs, including data storage sites such as Freebase [29] and Google 
spreadsheets [30].  In some cases (e.g. Freebase) these have representations that either 
use ontologies, or have similar form, but do not use standard ontologies and thus are, in 
principle, harder to interlink with other data sources.  It is likely that many of these will 
adopt Linked Data philosophy over time or that wrappers will be constructed by third 
parties, so that these offer a larger potential source of data. 

Finally, while much of the web is designed to be human readable, this does not mean 
it cannot be accessed automatically.  It is estimated that the vast majority of web-
accessible information is ‘hidden’ in backend databases, but only available through 
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bespoke web forms.  This is variously called the invisible web, the hidden web, or the 
deep web [31,32].  Hopefully over time more of this will also become available either 
through the owners adding RDF interfaces, or through third party wrappers, or through 
automatic means [33,34].  Even for ‘ordinary web pages, it is suggested that around half 
the material is within some form of template [35] and text-mining techniques can enable 
semantic information to be extracted even from plain text [36].  Even where analysis of 
single pages is ambiguous or unclear analysis of large numbers of documents may yield 
more reliable information, as with Google Sets [37]. 

It is not yet clear whether the future of the web will be a pure semantic web approach 
of URI-linked data or one of more diverse data sources linked through wrappers and 
mappings.  However, either way, for the purposes of this paper, we will assume that the 
data available acts like pure linked data.  It may be that some of the entity linkages are 
inferred through mappings and rules, but if so we assume that this has happened prior to 
loading into a local graph.  

2.5.   Web-Scale Reasoning 

There are a number of proposals for large-scale web reasoning including work emerging 
from the EU Large Knowledge Collider project (LarKC) [38].  Fensel, van Harmelen and 
the LarKC team propose a sampling based approach [3,39], which like our own work 
leads to defeasible reasoning using partial information.  As in our approach they assume 
that bounded rationality [40] is essential when reasoning over very large knowledge 
bases.  

do 
 draw a sample,  

 do the reasoning on the sample;  
 if you have more time,  
  and/or if you don’t  
  trust the result,  
 then draw a bigger sample,  
repeat 
Figure 2.  Sampling-based reasoning (from [3]) 

The concept of bounded rationality was originally introduced by Simon to describe the 
way we as humans think about the world [40], neither waiting until we have all the 
relevant information not even fully deducing all the logical consequences of our 
knowledge, but instead acting on partial information and partial reasoning.  The 
explanation for this is not laziness or ‘poor’ reasoning, but necessity and efficiency: 
gathering information and thinking about it are both expensive, taking time and effort, 
and are typically not worth the additional gains.  Elements of bonded rationality are 
found in many algorithmic approaches developed since the 1970s including simulated 
annealing, neural networks and genetic algorithms, which all aim to produce ‘good 
enough’ results for reasonable costs.  In contrast to these nature-inspired algorithms, 
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LarKC effectively mixes traditional deterministic reasoning with statistical methods.  
This kind of analysis has proved successful in various fields including primality testing in 
cryptography [41] and model counting [42]. 

Anadiotis et al. [5] look at a peer-to-peer architecture proposing that queries are 
broken into portions and distributed to the servers maintaining the relevant data based on 
the ontologies used in data at the servers.  Proposals for semantic web pipes [43] and 
stream reasoning [44] similarly envisage being distributed across servers.  The augment 
API in Talis’ semantic web application platform [45] operates in a similar fashion 
allowing queries generated in one triple store to be augmented with knowledge from 
another.  These approaches have some similarity to Google MapReduce [46], which has 
successfully applied functional programming techniques to very large-scale data 
processing. MapReduce assumes homogeneous and replicated information; however 
other forms of web-scale reasoning including stream and pipe approaches assume 
heterogeneous stores where the problem is knowing which stores have the required 
information and potentially localising computation to the relevant stores. The issues of 
ontology authoritativeness and reasoning scalability are discussed in [47], where a rule-
based forward-chaining reasoning scheme is adopted. 

While many of the systems and proposals for web scale reasoning are focused on 
distributing the reasoning or computation, some, including our own approach, assume a 
single reasoning engine drawing in information as required. The OBII semantic web 
query answering system works in this manner [6,48]; it has a repository of meta 
information about data sources and ontology maps to deal with disparate ontologies, then 
draws in information from different sources as required for the query being processed. 

Arguably the most successful form of web-scale reasoning is Google page rank [49], 
which is effectively using a form of sub-symbolic reasoning.  In fact, the simple page 
rank algorithm operates in a very similar way.  Page rank uses linear spreading of 'rank' 
between web pages leading to a single stable global pattern of rank.  In contrast, 
spreading activation is attempting to create a pattern of activation dependent on the initial 
activation, and so uses non-linear functions to prevent 'capture' by the eigenvectors of the 
linear approach.  However, despite these differences, the success of Google page rank 
certainly suggests that other forms of sub-symbolic reasoning have potential. 

3.   Spreading Activation over Personal Ontologies 

Having at hand a personal ontology that captures the entities of interest to the particular 
user and the relationships among them, we can simulate the spreading activation 
procedure to identify the entities that can be of interest to the user in a particular context. 
The basic idea is as follows: when the user performs an activity, some entities in the 
personal ontology may be referenced in the context of this activity – e.g. when the user 
reads an e-mail, the sender, other recipients of the same e-mail, or a project whose name 
is cited in the e-mail body are such candidate entities. These entities are said to receive 
immediate activation; afterwards, through the relationships established in the ontology, 
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part of this activation can be spread to other connected entities within the ontology. When 
the algorithm completes, entities that have received a sufficiently high activation (above a 
certain threshold or the top-k ones) can be considered as the most prominent candidates 
for the user to perform subsequent activities on (e.g. reply to the e-mail; open the 
correspondence file with another recipient; or go to the project’s document repository). In 
this respect, spreading activation can be employed in the context of Task Information 
Management (TIM) to provide context inference to tools that support TIM. In the 
following paragraphs we will briefly discuss how spreading activation can be applied on 
personal ontologies. 

3.1.   Timescales in Human Memory and User Interaction 

Although the mechanisms of human memory have not been fully decoded yet, a number 
of relevant theories have emerged that explain different aspects of its structure and 
operation. A prominent model has been proposed by According and Shiffrin [50], 
according to which there are two distinct memory stores: short-term memory (known also 
as working memory), and long-term memory. Short-term memory corresponds to the 
things we are currently thinking about, and expires after a brief time period (10-30 secs), 
while its capacity is also limited (5-9 chunks) [51]. Long-term memory, on the other 
hand, corresponds to things we have learnt and remain for an indefinite amount of time 
(possibly for ever). Its capacity appears to be almost limitless, and items in it are 
organized mainly in terms of semantics, accommodating however procedural knowledge 
and images. Recent studies have proposed an additional intermediate memory store, 
termed long-term working memory [52] or mezzanine memory [1,53], storing information 
regarding the current situation. 

Similarly to these three levels of memory, we may identify three timescales regarding 
the user interaction with a system: first, we can consider the full set of items that are of 
interest to the user, and have been modelled in the user’s personal ontology; these items 
roughly correspond to the human long-term memory. Second, we can consider the items 
involved in the current activity of the user (e.g. items in the e-mail currently being read), 
which roughly correspond to the working memory. And, finally, we can consider items 
involved in recent history of the user’s activities, which roughly correspond to the long-
term working memory; these may provide a broader context of the user’s activities, e.g. if 
a user reads an e-mail regarding an upcoming project meeting in London and then visits 
an airline reservation site to book a flight to London, then both activities can be 
contextualized as part of a more generic activity related to the project (participating in a 
project meeting). 

One additional thing that must be taken into account is that not all items are equally 
important to the user: for instance, when considering long-term memory, one’s own 
address is more important than the address of the plumber; analogous differences in 
entity importance can be also observed for short-term and medium-term memory. 
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3.2.   Accommodating Spreading Activation Information in a Personal Ontology 

In order to reflect which entities are currently active in a certain memory/interaction level 
of the user and the perceived importance of each such entity, we should extend the 
personal ontology model to include this information. To this end, each entity within the 
personal ontology includes the following additional properties: 

• STA (Short-Term Activation), indicating that an entity is currently active 
• MTA (Medium-Term Activation), indicating that an entity has been recently 

active (and could also still be) 
• LTA (Long-Term Activation) to things that are important to the user in the long 

term. 
All the properties above acquire numeric values to indicate how important the 

particular entity is deemed in the respective memory/interaction level of the user, while 
the value of zero for a specific property indicates that the item is not present within the 
particular memory/interaction level. We will also use an additional “trigger activation” 
property, IA (Immediate Activation), corresponding to the things that are in some way 
important directly due to the current task/interaction; for example, the ontology entities 
(classes and instances) that are recognized in the currently viewed e-mail or web page. 
This property will facilitate the operation of the spreading activation algorithm, described 
in the next sub-section. In order to accommodate these properties (STA, MTA, LTA and 
IA – as well properties IN and MAXLTA which will be discussed later) in all ontology 
instances, we have extended the definition of the template class (STANDARD-CLASS 
Protégé [54]) to include these properties, and from there these properties are inherited to 
all ontology instances. All additional properties are of type float. 

In order to simplify the presentation of the spreading activation algorithm, we will 
consider that the inverse of each relation is explicitly recorded in the ontology schema 
e.g. if the ontology includes entities “John” and “Mary” and these are connected with the 
(directed) relationship father(“John”, “Mary”), then the ontology also includes the 
directed relationship daughter(“Mary”, “John”).  In the implementation of the 
algorithms, activation is spread in both directions through a relationship even when there 
is no defined inverse, but for the sake of exposition, we assume that both are there. 

We will also consider that relationships bear a weight (or strength) LTW, which is 
directional, allowing different weights depending on which direction the relation is 
traversed. LTW is again accommodated in all relationships within the ontology, by 
extending the respective template class in Protégé, namely STANDARD-SLOT. 

The newly introduced properties listed above (STA, MTA, LTA, IA, IN, MAXLTA 
and LTW) describe the spreading activation-related aspects of the ontology elements, 
constituting effectively meta-information for these elements. 

3.3.   Spreading activation algorithm 

The spreading activation algorithm operates on the personal ontology, as enhanced with 
the properties STA, MTA, LTA, IA and LTW listed in sub-section 3.2, and includes rules 
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for updating the activation levels of the entities within the ontology. Updating includes 
passing activation between shorter-term and longer-term memories and modelling decay 
of memories, in the absence of triggering activations. In the algorithm description and 
discussion presented below, we will use the following notations: 

• IA(e), STA(e), MTA(e), LTA(e) are the instant, short-term, medium-term and long-
term activation levels of a particular entity e. 

• For a particular relationship r, we will denote as LTW(r) the weight of the 
relationship (i.e. its perceived importance). We will also denote as LTW’(r) the 
value of LTW(r) divided by the number of entities to which r points to (the fan-
out factor of r). For example, if r is the relationship “member state” between the 
entity “European Union” and the entities corresponding to countries, LTW’(r) = 
LTW(R)/27, since the relationship connects entity EU to 27 other entities. 

The basic steps of the spreading activation algorithm (summarized in Figure 3) are as 
follows: 

First weights are computed for relationships determined largely by fan-in/fan-out and 
also those entities with initial activation (IA(e) > 0) are added to an 'Active Set'.  

Then a number of iterations are performed calculating the short term activation of 
each entity (STA(e)) based on spreading from the 'Active Set'.  The precise formulae 
used for this are described in section 3.3.1 

At each iteration, any entities with sufficiently high activation are added to the 
'Active Set'. 

The termination condition for this process is discussed in section 3.3.2. 
Finally, if the activation of any entities is sufficiently high the long-term and 

medium-term activation (MTA and LTA) are updated. 
 
1. Initialize appropriate weights and activations 
2. Create a set with the currently active entities (entities 

e with IA(e)> 0), Active Set 
3. Repeat 

 Compute STA(e) for the entities in the Active Set as 
well as their related ones 

 For the related entities whose STA exceeds a threshold, 
add them to the Active Set 

   Until <condition> 
4. Update MTA and LTA activation weights if appropriate 

Figure 3.  Basic Outline of the Spreading Activation Algorithm (from [1]) 

3.3.1.   Updating short-term activation 

The short-term activation for a specific entity stems mainly from the following two 
factors: the first is the direct appearance of the entity in the current task/interaction (e.g. 
its presence in the e-mail just read), corresponding to IA(e). The second factor is the 
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entity’s relationship to other entities that are currently in the short-term memory, e.g. 
when a scientist considers a paper he has authored (and thus the entity corresponding to 
the paper has a high STA), the entities corresponding to the paper co-authors or the forum 
the paper has been published in become active. The second factor will be termed 
incoming activation and will be denoted as IN(e); we compute it through the formula 

IN(e) = ∑ [LTWʼ(r) × STA(eʼ)], 
     where the sum is over every entity eʼ connected to e via a relation r in the ontology 

This effectively states that the incoming activation for an entity e is derived from the 
entities e’ that are related to it, and are currently in the short-term memory. Each such 
entity e’ contributes to IN(e) proportionally to the strength of the relationship between e 
and e’. 

Besides IA(e) and IN(e), the computation of STA(e) should take into account the 
importance of e in the current task context [corresponding to MTA(e)] and the overall 
importance of e [i.e. LTA(e)]. Combining all the above, 

STA(e) = S(f (IA(e), IN(e), MTA(e), LTA(e))) 

Function f must count IA(e) strongly, since entities directly referenced in the current 
task are the most active ones in short-term memory. Moreover, MTA(e) and LTA(e) 
should be taken into account only if either IA(e) or IN(e) is non-zero. This last 
requirement is to ensure that the eventual activation is determined by the initial 
activation. If MTA and LTA were too strong they could swamp the effects of the initial 
activation leading to a stable, but undifferentiating activation. 

Thus, one of the simplest plausible choices for f would be: 

f(ia, in, mta, lta) = (A × ia + B × in) * (1 + ( C × mta + D × lta)) 

The result of function f is passed through a sigmoid function [55]: 

  

The sigmoid serves to emphasises the difference between large and small activations and 
caps the largest. The equation for STA is recursive and is applied on the set of activated 
entities of each step. 

3.3.2.   Terminating spreading of activation 

Since spreading activation is by nature recursive, a termination condition must be 
established to break the recursive step. The two most prominent options are: 

(a) to apply the recursive step until the ontology reaches a stable state. Note that 
since the ontology contains loops (recall that for any relation its inverse also 
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exists, forming thus a loop of length two; additional loops will also exist in the 
ontology), we cannot expect that at some step all activation transfers will be 
zero. Thus, we consider a state as stable when all activation transfers in some 
step of the recursion fall below a certain threshold thstable, which can be defined 
either as an absolute value (e.g. δ(STA(e))< 10-4, where δ(STA(e)) denotes the 
increment of STA(e) in a particular step of the recursion) or as a ratio of the 
computed increment divided by the current value of the receiving entity’s STA 
(e.g. (δ(STA(e))/STA(e)) < 10-3). 

(b) to apply the recursive step for a specific number of iterations (e.g. 20). 

In [1], constrained spreading activation (option b) has been followed, as also 
suggested in [56]. In section 5 we will discuss reasons to suggest that the ontology graph 
is a 'small world'.  That is the distance between any two entities is likely to be small, 
where 'distance' as measured by the number of relationships traversed to get between 
them. If this is the case, then only a relatively small number of iterations are needed to 
ensure that activation could spread right across the graph. In experiments reported in 
section 5 on large ontologies (millions of triples), we observed informally that there was 
little change in activation levels after 10-20 iterations. 

While the termination condition is about how long to continue with the spreading 
activation, later in this paper (section 4), we will discuss how thresholds can be used to 
limit how far the activation spreads through an ontology. 

3.3.3.   Updating MTA and LTA 

In the algorithm presented in section 3.3, after the loop that computes and updates STA, 
MTA and LTA are updated. MTA is incremented if STA exceeds a certain threshold: 

if (STA(e) > thresholdSTA) MTA'(e) = MTA(e) + δMTA 

and similarly for LTA: 

if (MTA(e) > thresholdMTA) LTA'(e) = LTA(e) + δLTA 

For a complete discussion on the how the thresholds of STA and MTA are set, as well as 
how the values of δMTA and δLTA are derived, the interested reader is referred to [1]. 
While the provisions above cater for incrementing the values of MTA and LTA, we must 
also include provisions for their decay, i.e. their value should be decremented when the 
entities are not active for a period of time. The mechanisms for their decay are considered 
differently, due to the different nature of medium-term and long-term memory (the 
human capacity for dealing with different subjects in a period of time is limited, as 
opposed to the almost unlimited capacity of long-term memory).  

To model the limited capacity of medium-term memory, we define a constant 
MaxMTATotal to represent the maximum value for the sum of all MTA weights in the 
ontology, and the following process is performed every T steps: 
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1. The total amount of MTA increase over the T steps, sMTA, 

is recorded 
2. We set λMTA = sMTA / MaxMTATotal as the decay factor 
3. For every entity e, the new MTA is computed: 

MTA’(e) = (1 – λMTA) * MTA(e) 
Figure 4.  Process to decay MTA, performed every T steps 

The number of steps T after which the decay process should be performed, as well as 
the value of MaxMTATotal should be set after taking into account the needs of the 
application at hand. 

Regarding the decay of LTA, we should consider that LTA reflects the long-term 
importance of entities, it should be ascertained that the decay does not result in important 
things having their LTA value gradually returning to zero. This can be achieved by 
introducing a rule that the LTA of an entity never decays to less than a percentage (n%) 
of its maximum value. Thus, we denote as maxLTA(e) the maximum LTA value an 
entity e has ever received. Additionally, we introduce two constants, λLTA as the decay 
constant that depends on the time interval between each decay and minPerc as the 
minimum percentage of the entity maxLTA value that the LTA of an entity may reach 
when decayed. The LTA decay is computed using the following process: 
 

At the designated time points, for every entity e: 
 if (LTA(e) > maxLTA(e)) {maxLTA(e) = LTA(e)} 
 minLTA_e = minPerc * maxLTA(e); 

 deltaLTA_e = λLTA * (LTA(e) - minLTA_e) 
 newLTA_e = LTA(e) - deltaLTA_e 
 if (newLTA_e >= minLTA_e) LTA(e) = newLTA_e 
 else LTA(e) = minLTA_e 

Figure 5.  Process to decay LTA 

Note that the amount that LTA is decremented by (deltaLTA_e) is proportional to the 
difference between the current value of LTA(e) and the minimum allowed value for 
LTA(e), thus LTA dropping rate is smaller when the current value approaches the 
minimum value and higher when the value of LTA has been significantly incremented in 
the recent past (and has not been refreshed). 

3.3.4.   Dealing with Relation Weights 

Relation weights are a very important issue in the spreading activation framework, since 
they play a dominant role in computing the entities’ incoming activation IN(e). We can 
consider three levels of relation weights, which play a part in regulating the spreading of 
activation between entities: 
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1. The relation as a whole, which is expressed by the relation’s Long-Term Weight – 
LTW (e.g. the “friend” relation will have a higher LTW than the “acquaintance” 
relation). 

2. Weights on a particular instance of a relation, that is for a specific e1, e2 with a 
relation r between them, we could assign a weight dependent on: 

• An a-priori choice of the user – e.g. if there is a “friend” relationship, the 
user could assign higher weights to “better” friends. 

• Whether the relation was important in spreading activation 
• Whether both e1 and e2 have received high activation during some period.  

3. Weights on the relation for an individual entity. We can quantify this through 
LTW’(r), defined in section 3.3, which arranges for “splitting” the spreading of 
the activation through a particular relation to all entities it connects. This is a more 
coarse-grain option for computing the weight of particular relation instances, as 
opposed to option (2) which considers individual instances separately. 

Similarly to activation levels, relation weights can also be adjusted; these adjustments 
will reflect the observations on how often entities connected through the relationship 
become active together. An approach for updating LTW of relations is presented in [1]. 

3.3.5.   Effectiveness of Spreading Activation 

A preliminary evaluation has been conducted on the spreading activation algorithm as 
described above, to verify its effectiveness. The preliminary evaluation included 37 tasks, 
and within each task specific entities were stimulated through immediate activation. 
Then, users were asked to classify the entities proposed (i.e. received an STA value of 20 
or greater) by the spreading activation algorithm into one of the following categories (a) 
relevant and useful, (b) relevant but not useful and (c) irrelevant. Users were also asked 
to designate whether some ontology entities were important in the context of the current 
task and were not proposed by the spreading activation algorithm. The results of this 
preliminary evaluation are as follows, while for more details on the experiment, the 
interested reader is referred to [1] and [57]: 

• 59% of the proposed entities were characterized as relevant and useful. 
• 33.3% of the proposed entities were characterized as relevant but not useful. 
• 6.1% of the proposed entities were characterized irrelevant. 
• In 14 of the sub-tasks, 1 entity identified by the user as important was not 

proposed, whereas in 4 sub-tasks 2 important entities were not proposed. In the 
remaining 19 sub-tasks all important entities were proposed.  

Measuring the effectiveness in terms of the standard information retrieval metrics, 
namely precision and recall [58], recall ranges from 78% (two sub-tasks) to 100% (19 
subtasks) with an average of 94%. The minimum precision value encountered was 68% 
(one subtask), while in two other tasks the obtained value was 78%; in other subtasks 
precision values ranged from 82% (two subtasks) to 100% (19 subtasks), with an overall 
average of 92%. Finally, the f-measure (a combined metric involving both precision and 
recall) ranged from 75% (one subtask) to 100% (11 subtasks), with an average of 93%. 
Since, however, the proposed approach was evaluated in this experiment not as a generic 
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information retrieval support infrastructure but rather as an underpinning for assisting 
user tasks, we should probably calculate the precision and recall metrics by considering 
as “relevant documents” the results that are both relevant and useful, since these are the 
ones that are bound to assist the user task at hand. Under this approach, precision ranges 
from 40% to 78% with an average of 59%, while recall ranges from 67% to 100%, with 
an average of 91%. Finally, the f-value has a minimum of 53% and a maximum of 88%, 
with a mean value equal to 71%. 

Results are thus promising, however a more thorough evaluation and an elaborate 
parameter tuning are underway. Performance-wise, the STA computation step as well as 
the MTA and LTA update steps were performed in less than 3msec on an ontology 
containing 75 classes and 214 instances; therefore -at this ontology size– it is feasible to 
perform the STA computation and MTA and LTA update steps almost after every user 
activity and propose to the user prominent entities and/or activities. 

4.   Web-Scale Spreading Activation 

Spreading activation can, in principle, involve work over the entire ontology, and 
certainly any part of it.  For small ontologies this is not a problem but for larger 
ontologies the cost is, in worst case, proportional to NxDxR where N is the number of 
entities in the ontology, D is the average degree of connectivity for an entity (number of 
relation instances involving the entity) and R is the number of spreading activation 
iterations. 

For the personal ontologies we have been considering so far, this is not a problem as 
all the information has been explicitly entered by the owner of the ontology and is thus 
relatively small.  Indeed optimizations have not proved necessary, as simple sequential 
passes have been fast enough. The hand-crafted part of the ontology will grow over time, 
but probably slowly enough that it can always be dealt with in-memory and with 
relatively straightforward algorithms.  However, this hand-crafted part of the personal 
ontology is just the core linking to further personal resources on the user’s desktop (files, 
emails) and in the user’s web-based services (Flickr, del.icio.us), and in addition to 
external resources for workgroup or corporate information, and ultimately to the whole 
web. 

For the former, personal sources of information, it is reasonable to assume that a 
complete meta-information may be gathered into some repository on the user’s own 
machine, as is done in various semantic desktop projects [10,11,59].  However, even then 
it is likely that the size of the ontology will be greater than can fit in main memory.  More 
critically, as we consider shared information both corporate and full web, we have to 
assume that the majority of the information is not only external to the user’s personal 
machine, but is so large that it could never be.  N is effectively unbounded. 

We will look first at the simpler case when the ontology is large and in-memory and 
then use this to consider the more complex case where we wish to use spreading 
activation for ontologies, such as the web, where the complete ontology is too large  
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4.1.   Limiting spread in large memory-resident ontologies 

If N is very large and the ontology is cliquey then the costs of spreading activation may 
not be as large as NxDxR and instead be NrxDxR, where Nr is the number of entities 
reachable in r steps from the original activated entities.  Note, at each step Nr is the 
maximum number of entities that can have non-zero activation as the rest will not have 
been ‘touched’ yet by the spreading.  However, most ontologies will be ‘small worlds’ 
and so Nr will be close to N for relatively small r.  So, we need to artificially introduce 
limits. 

Threshold-based limit – A threshold can be imposed on spreading steps; that is only 
spread outward if the activation at an entity exceeds a certain threshold t.  This will have 
a significant effect as the time becomes bounded by Nr(t)xDxR where Nr(t) is the number 
of entities with activation exceeding threshold t after r iterations.  With a small, but non-
zero threshold it is likely that Nr(t) is significantly smaller than N and, in particular, will 
only scale slowly as the ontology gets larger (we will examine this assumption further in 
section 5.) Note that this requires keeping track of all activated entities if we are to avoid 
linear searches of all entities.  However, the linear scan may turn out to be faster until N 
is very large.  (The linear scan would be O(N) whereas some form of activated nodes list 
would be O(Nr), but the time per iteration for the latter would involve something like 
creating a linked list, whereas the former would be simply scanning for entities with high 
activation.) 

Cap-based limit – A variant on this would be to choose a fixed n and only spread 
from the n most activated nodes.  This has the advantage of establishing a cap on time per 
iteration, but does mean keeping a list of entities part-sorted by activation, that is, at 
worst, an extra O(n x D + n x log(n x D))  cost per step.  If n < Nr / log Nr this will still be 
cheaper, but anyway the sorting does not have to be perfect, so actual cost is likely to be 
smaller. 

Note that adding a threshold or cap changes the semantics of spreading, the results 
will be similar but not identical to spreading without a threshold.  We will return to this 
issue empirically in section 5.  However, it is worth noting that many neural models 
include some form of threshold for signal propagation. We have not needed to do this in 
our spreading activation as the sigmoid function basically ‘squashes’ low activation and 
makes some effectively zero. However, if anything, a threshold is more similar to the 
way our own brains work.   

The choice between threshold or cap is likely to be pragmatic.  Certainly during our 
own experiments (described in section 5), we found that outputs were very stable for 
different threshold levels, and thus suggest that cap-based limits (effectively a variable 
threshold) are thus unlikely to behave differently.   
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4.2.   Non-memory resident ontologies 

As noted, even information extracted from personal resources such as email archives may 
become too large to fit within main memory and clearly the web is too large!  So we have 
to consider strategies for dealing with much larger ontologies. 

Measurements of the web [60] suggest that about 75% of pages are connected (linked 
to or from) a single strongly completely connected component (the SCC) comprising 
about ¼ of the web.  For pages in or connected to this SCC, the average distance in terms 
of undirected links between pages is 7 links.  While the web of data is not sufficiently 
developed to be able to predict the equivalent figure for it, it is reasonable to assume that 
it too will comprise a relatively small world. It may contain some disconnected 
components, but, if the linked data vision becomes reality, the majority of entities will be 
linked to the whole.  We can therefore assume that WNr, the number of entities in the 
web of data at distance r or less from an initial activation entities, is likely to be very 
large if not comprising the majority of the web. 

For generic global calculations such as Google PageRank for web pages, it is 
acceptable to effectively reason over the whole web, but for more bespoke queries, and 
especially our own application area where we want fast per-user-interaction update of 
context, we need to be reasoning over just the relevant web. 

By its nature spreading activation tends to have a non-local effect, which is likely to 
interact poorly with non-local access, at worst touching every entity and triple in the 
ontology.  Some means are therefore required to limit the impact and spread of activation 
in order to avoid this large scale flooding of the ontology. 

Happily, the number of high activation entities is substantially smaller than the total 
ontology and so limiting the number of activated entities, whether using threshold or cap, 
has the potential to help significantly as only the activated entities need to be brought into 
main memory. 

For context inference this is particularly appropriate as the active entities are also be 
expected to change only slowly over time.  Furthermore, if we are using STA/MTA/LTA 
scheme, then it is likely that MTA as well as STA can be maintained entirely within main 
memory, with only LTA recorded on disk.  However, LTA can be stored on local disk, 
even if the entities it refers to are distant (see also section 4.5 for loading rules for LTA). 

In fact things are slightly more complicated as we can only know the activation of an 
entity if it is in memory to participate in memory resident spreading activation.  That is 
the choice of whether to bring in a new entity can only be made based on the entities and 
relations already in main memory.  We therefore need some form of fetch rules to 
determine what to bring into memory and also discard rules to decide what and when to 
purge data to make room for new. 
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Figure 6.  Proposed architecture 

Figure 6 shows the main components needed for this.  This shows the personal 
ontology and also various remote resources.  In many ways the personal ontology and 
remote resources can be treated uniformly, but there are some differences as discussed in 
section 4.8.  A disk cache is also shown for remote resources, but as this is a standard 
feature we do not consider it further.  There is also a local persistent store for LTA.  Note 
that this may include LTA for entities in remote stores as well as those in the personal 
ontology. In this figure and the rest of this section, relation instances are considered to be 
expressed as triples <e, r, e’>, denoting that entity e is connected to entity e’ via a 
relation r, in keeping with semantic web usage. 

We have not included a symbolic reasoning engine explicitly in Figure 6, as our focus 
is on the contextual reasoning of the spreading activation.  However, in section 6.1 and 
6.2 we discuss how symbolic reasoning might be integrated into this picture.  Of course 
the remote resources may themselves have some level of reasoning support; in this case 
we effectively treat primary and inferred data uniformly.  If the remote reasoning itself 
involves some level of fuzziness or uncertainty and this is passed on as provenance, this 
could be used to modify weights within the spreading activation, but we will not consider 
this in detail here. 

4.3.   Entities ‘in memory’ 

Actually the idea of whether an entity is ‘in memory’ is itself slightly problematic, while 
it is the entities that are activated in the spreading activation, in a pure ontology-based 
system an entity is no more than its identity and the triples/relation-instances involving 
the entity.  Strictly the question is what triples are in memory, what entities are 
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mentioned in some triple in memory, and what proportion of the triples mentioning an 
entity are in memory 

If we let To be the set of all triples in the ontology (both the personal ontology and 
non-local resources including the whole web) and Tm are the triples currently in memory, 
we have: 

 Tm  ⊆  To  ⊆  E x R x E  

Where E is the set of all entity labels and R the set of all relations. We can then 
define: 

 Eo  = entities ( To )  –  the entities present in the full ontology  
 Em  = entities ( Tm )  –  the entities mentioned in the triples in memory  

where: 

 subjects(T) =  { e | ∃ <e,r,eʼ> ∈ T }  
 objects(T) =  { e | ∃ <eʼ,r,e> ∈ T }  
 entities(T) = subjects(T)  ∪  objects (T) 

For an entity e mentioned in main memory, the triples in Tm referencing e may be a 
more or less complete subset of the triples in To referencing e.  At one extreme Tm may 
contain only one of these triples from To, while at the other it may contain all the triples 
from To that include the entity.  If the latter is true we can say the entity e is complete in 
the ontology: 

complete(e)  = ∀ <e1,r,e2> ∈ To   :  e1=e ∨ e2=e   ⇒  <e1,r,e2> ∈ Tm 

More generally we might be interested in a particular subset of entities E’ and relations 
R’ and whether a particular entity e that is mentioned has all triples relating it to entitles 
in E’ through relations in R’ 

complete_wrt(Eʼ,Rʼ)(e)  =  
 ∀ <e1,r,e2> ∈ To   :   
  r∈ Rʼ ∧  ( (e1=e ∧ e2∈ Eʼ) ∨ (e1 ∈ Eʼ ∧ e2=e) )  ⇒  <e1,r,e2> ∈ Tm 

As shorthand we shall use complete_wrt(Eʼ) to mean complete_wrt(Eʼ,R) where R is the 
set if all possible relations. 

One kind of ‘being in memory’ for an entity is to ask that it is complete in the sense 
above of having every related triple.  This is equivalent to performing an RDF 
DESCRIBE Query from the disk triple store [61].  Alternatively we may simply include 
all the links between it and things in memory (that is complete_wrt(Em)).   
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4.4.   Fetch rules: choosing which triples to load into memory 

We can follow the general principle of bringing in data related to highly activated 
entities, but there are a number of variations, several or all of which can be applied. 

Filling-in rule – If an entity’s activation exceeds a critical threshold tfill, we retrieve 
all triples linking that entity to others in main memory - this is we make the entity 
complete_wrt(Em). 

Ripple-out rule – If an entity’s activation exceeds a threshold tripple, we retrieve all 
triples that include it. 

If we apply both of these fetch rules then we need tripple > tfill. 
These rules are both focused on adding information about the entity under scrutiny.  

The ripple-out rule is potentially problematic if the entity is highly connected; for 
example, if it were a country, say ‘Greece’ then we would end up drawing in every 
person whose country of birth is Greece, as well as the city Athens as the capital of 
Greece, Greek as its language, etc. 

A more conservative rule than ripple out would be to preferentially include triples 
with smaller fan-out (capital, language rather than ‘place of birth of’).  This is similar to 
what we do for spreading activation itself, and so we can think of rules that are a form of 
‘look ahead; retrieving triples that would get a certain level of activation ‘if they were 
there’.   

Look-ahead rule – For any entity e, take all relations r that may have e as subject or 
object (based on typing), but for which we do not yet have all instances in main memory.  
Assume we know the fan-out fr;e for relation r from entity e (either use average for the 
relation, or more specific count if it is known).  Use fr;e and the current activation of e to 
calculate what activation a would be spread to entities connected via relation r if they 
were present in memory.  If a exceeds some threshold tlook, we retrieve all triples <e,r,?> 
or <?,r,e> (depending on whether e is subject or object of relation).  Note for relations 
such as ‘child-of’ that operate between entities of the same type, we must apply this rule 
differently depending on the direction as the fan-out is different. 

In section 5 we will see that adding the look-ahead rule to the ripple-out rule can 
significantly reduce the number of nodes fetched from remote resources whilst making 
little discernable difference to the results. 

In all cases we may bring in additional triples if, for example, they reside on the same 
disk block as the target triples and then decide which to keep using for this decision a 
lower threshold than when deciding what to bring in.  This is unlikely to apply if we are 
operating through a high-level interface to remote storage (e.g. SPARQL), but may be a 
potential optimisation if we have lower-level access to a local ontology store. 

4.5.   Choosing when to load LTA into memory 

In order to perform spreading activation we need to have LTA and MTA for a node and 
also to store STA.  So, at some point, we need to create some form of record for the entity 
that includes retrieving its LTA from disk. 
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The filling-in rule doesn’t add new entities, so that is not an issue, but both the ripple-
out and look-ahead rule have the potential to mention fresh entities that we were 
previously not mentioned by triples in main memory.  For these new entities we need to 
decide whether to in addition retrieve relevant meta-information (in particular LTA) from 
disk. 

When we have applied the look-ahead rule, we are expecting that any new entities 
mentioned in the retrieved triples may have sufficient activation to immediately be part of 
the SA, so it is reasonable to retrieve their LTA at the same time.  

In the case of ripple-out we may be retrieving many entities that potentially may 
never have high activation.  In such cases it may be worth creating a stub internal record 
for the entity to record STA, but then only if STA exceeds some threshold tmeta should we 
bother to retrieve the full meta-information (e.g. LTA, cached fan-in/fan-out counts)  

4.6.   Discard rules: deciding what to purge from main memory 

We can apply a similar rule to decide what to remove from main memory.  If the 
activation of an entity e (STA and maybe also MTA) is below some threshold(s), then we 
purge e.  By purge this means removing triples that include e, except those that would be 
immediately be brought back in by one of the fetch rules above.  As we remove the entity 
and triples, we need to make sure that any LTA information is preserved (and MTA if we 
have removed based on STA activation only).  

PseudoCode 
 foreach entity e such that STA(e) < tpurge and MTA(e) < tMTApurge 
  if LTA(e) has changed update LTA(e) on disk 
  if MTA is persistent and MTA(e) has changed update MTA(e) on disk 
  foreach triple t where e is subject or object of t 
   if filling-in or ripple-out or look-ahead rule applies to triple t 
    leave t in main memory 
   else 
    delete t from main memory 
  if no triples remain mentioning e 
   remove meta-information record for e from main memory 
  otherwise 
   leave meta-information (maybe as stub) 

In principle we would need some form of discard rule for the records of LTA of remote 
entities in persistent storage, however, the size of this may be small enough for it this 
never to be necessary.  If the LTA is subject to periodic decay, then this will require a 
serial pass over the LTA store and so, if required, this would be an obvious time to purge 
LTA records for remote entities if the LTA dropped below some threshold. 
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4.7.   Optimising fetch and discard rules 

Longstanding Operating Systems memory management techniques can be applied either 
directly or in modified form to increase the efficiency of the fetch/discard techniques 
[62]. 

(1) When we need to replace an entity residing in the memory with another AND the 
“victim” entity has been changed (here principally the LTA of an entity), its disk 
image should be updated. However, this takes additional time and speeds down 
the process. To avoid having to write entities to the disk at the instant we need the 
memory space, a separate thread can arrange so that disk images of changed 
entities are updated, thus entities can be victimized without any delay at that point. 
This also improves system stability in cases of software/hardware crashes (updates 
are not lost), 

(2) Operating systems use “high/low watermarks” for the rates of page faults: if we 
are getting too many page faults that we have not allocated enough pages to some 
particular process, while if we are having too few, then we have over-allocated 
pages. The analogy here is with “entity misses” i.e. attempts to process entities 
that are not in memory. If we are getting too many of those we could try to 
increase memory allocated to the spreading activation activity AND/OR we could 
set more strict thresholds to have less entities activated. The latter possibly leads 
to sub-optimal results, but this approach may be preferable to having optimal 
results computed in excessive time, especially when these results should be 
presented in the user interface. 

4.8.   Special issues for the whole web 

While we have treated all sources equally in most of the above discussion, there are some 
differences between resources for which there is a level of relatively local control (both 
personal ontology and corporate data) and the web, which is unregulated and 
decentralised.   

The basic concepts are the same.  If George gets a mail from Vivi and the entity 
Person(‘Vivi’) is sufficiently activated, then this might trigger the fetching of the triple 
lives_in(Person(‘Vivi’),City(’Athens’)) from the personal ontology and subsequent 
activation of City(‘Athens’).  Similarly, if ‘Athens’ is sufficiently active we might draw 
in additional information about Athens from Geo-names or DBpedia. 

There are also differences.  Web data is spread over multiple sources and we cannot 
simply send queries to all such sources “do you know about entity e”.  However, if we 
have meta-information about the data sources (in particular about the classes of entities 
and relations that they describe) then we can send directed queries to a small number of 
relevant sources.  An assumption of some form of meta-information is common to most 
proposals for web-based reasoning, this may be hand crafted [5,48] or obtained as the 
result of some form of web crawl [63]. 
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Given accessing remote resources is more expensive than local resources the 
thresholds for fetching data should be higher (maybe related also to the source if some 
are slower or more expensive than others).  Similarly the threshold for purging cached 
remote entities (from secondary memory) should be quite low, to avoid re-fetching 
remote data and certainly linked to the LTA so that entities with high LTA are more 
readily available.  Note too that the presence of a cache means that remote access may 
include ‘fetch if cached’ as the threshold for obtaining locally cached copies can be lower 
than that to obtain truly remote data. 

5.   Testing Assumptions 

Our methods for scaling spreading activation to the web rely on the following 
assumptions: 

 
 (i) the total ‘working set’ of entities and triples needed during SA is relatively small; 
 (ii) the number of external sources that need to be accessed is also relatively small; 
 (iii) restricting the SA by thresholding and other techniques described in section 4 does 

not significantly change the semantics. 
 
To some extent similar assumptions to (i) and (ii) underlie most approaches to web-

based reasoning with the exception of global algorithms used in search engines.  For 
example, in Anadiotis et al. architecture for peer-to-peer reasoning over the semantic web 
[4], it is important that request are not sent to too many peers; similarly in OBII [48], 
which has a centralised approach drawing in information as needed, it is important that 
not too many sources are consulted.  In section 5.1 we will look at some of the evidence 
from external sources for assumptions (i) and (ii). 

In sections 5.2 and 5.3 we will consider evidence based on our own experiments for 
(i) and (iii), looking first at the behaviour of a small personal ontology in Protégé and 
then of a large linked-data RDF store. 

5.1.   Evidence from external sources 

As justification for their approach, Anadiotis et al. [4] argue that there is a significant 
degree of locality in semantic web.  They use data from Swoogle [64], the semantic web 
search engine, that suggests that most namespaces are only used in a very small number 
of documents (see figure 7), implying that most inference will likewise be limited. 
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Figure 7.  Cumulative Term/Namespace Usages Distribution (from [64]) 

However, there are a small number of namespaces with very wide usage.  Some of these 
are obvious meta-description namespaces such as RDF, RSS and MVCB (MetaVocab 
vocabulary).  However, others, in particular FOAF and other namespaces referring to 
personal details, tend to be used widely both in blogging web sites and also individual 
web pages: Again using Swoogle, Ding et al. [65] quote figures of over a million 
documents using FOAF in 2004. For these few but highly used namespaces it is likely 
that semantic search/aggregation servers such as Swoogle would be used rather than 
accessing the original data sources. 

Further strengthening assumption (ii), Hogan et al. [47] suggest using only sources 
that are pre-designated as authoritative are taken into account to perform web-scale 
reasoning. “Topic distillation” [66] is a more flexible means for achieving the same goal; 
according to this approach we may query the web for all ontologies that can offer 
information on the topics of interest, but then process only results coming from the most 
“authoritative” sources; the metric of authoritativeness in this case is the number of 
“incoming links” to the ontology (effectively the number of ontologies that include this 
ontology to extend its terms or perform reasoning on it). 

Several approaches attempt to take large ontologies and extract smaller modules form 
them. Cuenca Grau et al. [42] propose definitions of an ontology module based on 
concepts of conservative extension used in earlier formal literature. As well as being well 
founded formally, they show that their approach can lead to smaller modules compared to 
alternative techniques.  Other techniques are based more on measures of sub-graph 
connectivity and so may be closer to the locality properties of SA, but they too report 
strong locality [67]. 
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These general locality arguments underlying web-based reasoning also support the 
belief that as spreading activation attempts to draw in relevant entities, it will only need 
to hit a small number of servers. 

However, spreading activation has particular properties that are different from query 
answering, in particular as it spreads potentially across any relation, there are no natural 
limits set by the schema of the initial activation.  There are some similarities in symbolic 
approaches, for example, if a query includes higher order elements or if it refers to a class 
with many subclasses.  However, it could be that symbolic queries are ‘better behaved’ in 
terms of locality than sub-symbolic approaches. 

In some ways the opposite is true, thresholds can be adjusted dynamically to throttle 
excessive querying of remote sources, or cost-based approaches can be used to choose the 
best sources to include at any point.  So in terms of practice, we can effectively enforce a 
level of locality.  This is very similar to the sampling approach of LarKC [38], where 
they can choose a sample size and effectively limit the resources to those available. 

However, while this means that computation cannot run wild, we are then left with 
the question as to whether this compromises the effectiveness of the spreading activation 
– does it give the right answer? 

5.2.   Locality properties on a personal ontology 

In previous work [1], as described in section 3.5, we have assessed the accuracy of our 
spreading activation algorithm in terms of precision and recall, by comparing it with 
human selections of relevant entities.  That is, we have some confidence that spreading 
activation works appropriately for ontologies without any external resource limits.  We 
are therefore left with an issue of robustness: will the results of spreading activation 
change significantly when we introduce threshold-limiting spreading as described in 
section 4. 

To answer this we have performed a number of experiments over the populated 
personal ontology using the algorithm described in section 3. For the purposes of these 
experiments LTA and MTA are set to zero as these will tend to stabilise STA activations 
and so zero values are the harshest test.  Figure 8 shows the activation profile where a 
single entity has been given an initial activation.  The graph shows the entities ordered by 
decreasing activation.  The maximum activation level is 100 due to the non-linear 
sigmoid function used to limit high activations to 0-100 range.  Examining the graph, 
there is a rapid drop off in activation, only a small number have activation more than 10 
and the majority of entities have activation less than 1.  Figure 9 shows a similar graph 
with two initially activated entities. Approximately twice as many entities are highly 
activated as for a single initial node as one would expect, but again there is a rapid fall-
off in activation after a few most highly activated entities.  
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Figure 8.  Activation profile – single activated node 

 
Figure 9.  Activation profile – two activated node 

Of course the exact activation profile will depend on the structure of an individual’s 
personal ontology, the entities given initial activation and any medium or long-term 
activation.  However, the graphs are typical over the test ontology and we have seen 
similar results on preliminary studies using larger simulated ontologies.  While not 
conclusive without larger-scale studies, these results do suggest, that, as expected, the 
spreading activation does have a relatively small working set of highly activated entities 
(assumption (i)). 

Even if the working set is small, it may be that the pattern of activation in the 
working set depends critically on large numbers of entities with small activation.  The 
spreading activation algorithm has been tuned (using fan-out weighting and non-linear 
sigmoid) to prevent strong feedback effects.  The reason for this is to prevent ‘greedy 
entities’ that are always activated independent of the initial activation; that is in order to 
ensure correct behaviour.  However, as a side effect, this is also expected to reduce the 
sensitivity of the activation pattern to large numbers of low activation entities; that is to 
help ensure robust behaviour. 



 Spreading Activation Over Ontologies: From Personal Context To Web Scale Reasoning     29 
 

In order to verify this, a simple threshold was introduced into the algorithm.  If an 
entity has activation below this threshold it does not spread any activation to related 
entities; these correspond roughly to entities that might never have been ‘brought into 
memory’.  Otherwise, exactly the same activation combination function 'f' and sigmoid 
function 'S' are used as in section 3.  Figures 10 and 11 show the impact of this on the 
levels of activation with different threshold levels and different numbers of initially 
activated entities.  Given the 0-100 range and the patterns of activation evident in Figures 
8 and 9, values for a threshold of around 1% would appear reasonable.  However, to test 
the robustness of the algorithm we also tested higher thresholds up to 25% although we 
would not expect to apply thresholds of this level in real use. 

Each plot in Figures 10 and 11 is a log-log plot where each point represents one or 
more entities (there is heavy over-plotting as many entities have similar activation).  The 
horizontal x-axis is the log of the activation with no threshold and the vertical y-axis is 
the activation when the threshold is applied (strictly log(activation+1), to allow for zero 
activation).  The latter will never be greater than the activation with no threshold, so the 
line points will always lie on or below the 45 degree diagonal (the line y=x).   

If there were no impact of the threshold at all this would be a perfect diagonal line, 
but we would expect that as the threshold is introduced some entities would drop in their 
level of activation.  We are particularly interested in the entities with higher activation, if 
any of these dropped to become low or so that the overall order of activation changed, 
this would be a potential source of inaccuracy. 

 

   
 (i) threshold = 1  (ii) threshold = 5 
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 (iii) threshold = 10  (iv) threshold = 25 

Figure 10.  Log-log plots, single activated node, thresholds at 1, 5, 10, 25 

 

   
 (i) threshold = 1  (ii) threshold = 5 

   
 (iii) threshold = 10  (iv) threshold = 25 

Figure 11.  Log-log plots, two activated nodes, thresholds at 1, 5, 10, 25 

The results with both one and two initially activated nodes are similar.  In both cases 
the smaller thresholds of 1 and 5 show that those nodes near or below the threshold have 
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their activation cut to zero, whereas those above the threshold are hardly affected.  The 
exact value of thresholds will be a trade-off between obtaining a sufficiently rich context 
and efficiency; but these seem fairly typical of the values one might choose. 

In addition higher values of 10 and 25 have also been plotted (Figure 10 and 11 (iii) 
and (iv)).  The latter is far larger than one would use as it is well above the ‘knee’ in the 
typical activation patterns in Figures 8 and 9 and is towards the centre of the output range 
of the sigmoid (0-100).  However, the picture presented by these graphs is still 
remarkable stable at a threshold of 10 with relatively little impact on the more highly 
activated entities.  It is only at the extreme 25 threshold that we start to see major effects 
with several of the highly activated entities ‘crashing’ down to near zero activation 
(Figure 11.iv).  On closer examination it turns out that the affected entities are actually 
those representing classes (Place, Country, Person).  In our implementation of spreading 
activation, ‘instance_of’ relations are treated uniformly with other relations.  This is 
largely to allow and email that mentions a class term such as ‘cat’ to have an impact, so 
that ‘Tom’ elsewhere in the email may be more likely to be interpreted as the cartoon 
animal than the name of a friend.  Almost as an accident these classes then tend to get 
activated due to multiple instances being activated and are more sensitive to the threshold 
than ‘normal’ entities.. 

5.3.   Scaling up to a large-scale data set 

In order to validate the SA algorithm on larger data sets we used the programmes and 
music data made available by the BBC as part of its Backstage initiative [68].  In 
particular we used the SPARQL endpoint, which contains approximately 20 million 
triples [69] organized according to the BBC's programmes and music ontologies [70,71]  
and is hosted on a Talis platform store [72].  These triples refer to both external resources 
and also approximately 435,500 internally minted URI entities (372,000 related to 
programmes, including episodes, series and brands; and 63.500 entities related to music, 
including solo artists, groups, albums and reviews). 

The ontologies used in the Backstage RDF attempt to follow best practice in linked 
data, for example, adopting standard ontologies such as FOAF and Dublin Core where 
possible and including 'owl:sameAs' links to dbpedia.  It is thus both large enough to act 
as a realistic test case (orders of magnitude larger than can be used in memory or even 
traversed in stages) and also is a paradigm of the expected form of future web data. 

Although our aim is to integrate the personal ontology with web resources, for the 
purposes of these scaling experiments we created a dedicated test engine in PHP using 
the Moriaty library [73] to access the Tails store and parts of the ARC2 library [74] for 
in-memory graphs.  Otherwise the algorithms from section 3 were duplicated as closely 
as possible, with the exception of the new features needed for dealing with remote cached 
data. 

With the personal ontology we could run algorithms with no thresholds to create a 
base case, effectively spreading over the entire ontology.  For the BBC data set, just like 
the whole web, we cannot traverse the entire data set.  Instead we used very low 
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thresholds (0.01%) as a baseline and then a semi-logarithmic range of thresholds above 
(0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5).  We applied both plain thresholding and also threshold 
with lookahead as described in section 4.4.  We also used a variety of spreading factors, 
used as the value for parameters A and B from section 3.3.1 and relation weights 
inversely proportional to fan-out. 

Figures 12, 13 and 14 all show log-log plots similar to those produced for the 
personal ontology data. All of them compare a threshold of 1.0 used as a typical value 
that might be used in practice with the baseline threshold of 0.01.  (Note that like the 
personal ontology data the log was offset to deal with zero activation, in this case 
log10(x+0.001).) 

Starting with Figure 12, this shows two spread factors, one more aggressive (0.3) and 
the other a little less so (0.2).  The impact of the spread factor is non-linear hence this is 
quite a large difference. In both cases it is evident that the higher activation entities (those 
with activation higher than log10(1)=0) are not affected by the application of the 
threshold.  The data here was seeded from a television episode. 

 

   

 (i) spread factor 0.2 (ii) spread factor 0.3 

Figure 12.  Using plain threshold BBC programme data 

Figure 13 shows the same seed and scale factors, but where the use of lookahead has 
also been enabled.  The lookahead threshold was set at 20% of the entity loading 
threshold, effectively meaning that triples where the predicate's fan-out was greater than 
5 were not included.   Like the results for plain thresholding, there is no appreciable 
alteration in activation levels for those above the threshold. 

     

(i) spread factor 0.2                                            (ii) spread factor 0.3 
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Figure 13.  Using threshold plus lookahead BBC programme data 

Table 1 compares the numbers of triples loaded by plain thresholding and the use 
with lookahead.  As is evident the effect is dramatic reducing the numbers of triples 
loaded by a factor of around 30:1 for a typical threshold value of 1.0.  Although we did 
not try to optimize the algorithm, the actual spreading activation is fast even for large 
cached graphs, and the speed are dominated by remote access times.  Controlling the 
number of triples loaded is essential to making this a practical approach.  In fact, at the 
threshold of 1.0, the algorithm including download times was of the order of a second 
including logging outputs, so fast enough for embedding as context inference for 
interactive systems. 
 

  threshold value 
lkhd sf 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 
no 0.2 1873 1869 1869 1869 1655 1127 1127 1127 11 
yes 0.2 503 93 44 39 39 36 34 11 11 
no 0.3 7653 2936 1873 1869 1869 1853 1349 1127 1127 
yes 0.3 654 548 310 151 60 46 42 39 11 

Table 1.  Number of triples loaded with and without lookahead 
  Key: lkhd=uses lookahead, sf=scale factor 

At an implementation level, we had to simulate the lookahead partially, because 
SPARQL does not provide a 'COUNT' function like SQL.   The code effectively loaded 
the full data for target entities and then discarded triples with predicates with high fan-out 
before applying the spreading activation.  Even this made a substantial difference in 
performance as the discarded triples did not contribute to further entity activation, but 
was still downloading many unnecessary triples.  However, SPARQL 2.0 is planned to 
have counts so it will be possible in future to garner sufficient meta-information to 
prevent these unnecessary downloads. 

Finally Figure 14 shows similar results to those in Figure 13, that is with thresholds 
and lookahead, but this time applied to seeds connected with music (in fact band 
members of 'Queen').  The music parts of the BBC Backstage data are more richly 
interconnected than the programmes data, so this gave us a test of the stability of the 
algorithm on data with different topological characteristics (even if they are in the same 
larger data set). 

Again the accuracy is good with little change in the high-activation entities.  
However, do note that we have chosen different spread factors.  This is because the more 
aggressive spread factors (0.4 and 0.3) were fetching very large numbers of triples with 
the low base line threshold (over 25000 entities were being loaded at threshold of 0.001).  
While the numbers were manageable at typical thresholds, this does suggest that some 
form of cap-based self-adjusting thresholds may be appropriate to allow the algorithm to 
self adjust to different kinds of data. 
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(i) spread factor 0.1                                            (ii) spread factor 0.2 

Figure 14.  Using threshold plus lookahead BBC music data 

5.4.   Summary 

In summary, we have seen that the web of data has substantial locality and our reliance 
on this is a common assumption with other forms of web-scale reasoning.  Looking 
specifically at spreading activation, test data from a populated personal ontology suggests 
that the working set of highly activated entities is quite small and furthermore that by 
introducing thresholds at reasonable values, we do not substantively affect the activation 
profile behaviour of this working set.  This has been borne out in larger experiments on a 
substantial data set representative of best practice in linked data.  

6.   Discussion 

6.1.   Symbolic reasoning over the web – the warm world assumption 

When performing (principally symbolic) reasoning over knowledge bases there is a 
traditional distinction between the closed world assumption (CWA) that acts as if the 
knowledge available is complete and open world assumption (OWA) that assumes the 
knowledge is partial.  For CWA we can assume that if a fact is not in the knowledge base 
it is not true, whereas for OWA we simply assume it is unknown unless there is an 
explicit negative fact.  Because of this CWA can typically include negation (in the sense 
of ‘not found’) in reasoning steps, but OWA cannot and universal quantification or 
instance enumeration is meaningless for OWA. 

In the Semantic Web / RDF world, it is typically explicitly stated that the knowledge 
base is assumed to be partial – that is OWA is assumed to hold, although Kalfoglou et al. 
[75] suggest that earlier AI planner techniques [76] can be used to establish a local world 
assumption (also known as local closed world or LCW), where subsets of the data are 
known to be complete. 

If we have used spreading activation (or indeed any algorithm that brings in data from 
external sources), then we can perform CWA over the resultant cached ontology as if it 
were the complete model of the world.  This is reasoning over the currently relevant or 
salient knowledge.  We call this the warm world assumption, WWA. 
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Warm world reasoning is defeasible as new knowledge may later be brought in that 
changes previous inferences.  However, this is similar to human reasoning about the 
world, which is based on what we know at any moment in time. 

In some ways WWA is similar to the LarKC sampling approach shown in Figure 2 
[3,39].  In both cases reasoning is applied to a sample of the full data.  However, whilst 
LarKC assumes a random sample, we are effectively having something closer to a 
snowball sample.  The random sample makes it easier to derive probabilistic or 
asymptotic properties of the reasoning, but WWA is more likely to be operating on 
relevant or popular parts of the overall data, and also to have interesting inter-entity 
relations. 

The quality of reasoning from WWA or any sample-based technique, will depend on 
the kinds of reasoning rules.  We do not have sufficient experience to give strong advice 
on this, but there are some obvious cases where we expect particularly good or poor.  

Some rules have good locality, for example: 

Person(X): lives_in(X,P1) AND part_of(P1,P2) => lives_in(X,P2) 

Here, if a person "Alan" is in the working set for WWA and is sufficiently active, then 
connected entities such as the place Alan lives ("Tiree") and places it is within 
("Scotland"), will also be in the working set.  So, the above rule is likely to work if any of 
the entities involved are highly active. 

On the other had, where there is a quantifier existential with a single or small number 
of satisfying instances, deductions regarding these are unlikely to be successful. For 
example, 

EXISTS( Person(X), Country(C), is_king_of(X,C) AND number_of_wives(X,"6") ) 

Here, we would not expect to find "Henry VIII" when the activation is related to a 
semantic web paper.  However, if the activated topic is related to monarchs of England, 
then the inference is likely to be successful.  So with WWA, quite reasonably, we expect 
poor performance for rules that are not connected with the topic under scrutiny. 

In between the two are cases where the inference would establish links between the 
entities in the working set and some other island of data; for example, links based on 
shared property values: 

Student(X),Citizen(Y): email_of(X,E) AND email_of(Y,E) => same_as(X,Y) 

These are important as they are clearly relevant if we have either a student or citizen 
entity, but if the students and citizens sit in otherwise isolated data islands, we risk 
missing the linkage.  In this cases it would be good for the symbolic reasoning to 
influence the sub-symbolic processing. 
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6.2.   Using reasoning to influence caching and/or activation 

This reasoning process could be carried out independent of the activation process that 
brings in data, but could also influence the process of choosing what to fetch. 

First, we may directly fetch data that is sufficiently instantiated.  For example, 
suppose we have a reasoning rule: 

IF < City c, capital_of, Country X > AND X,population >1 million THEN … 

If we apply this to a known city ‘Athens’, but do not have the fact 
<‘Athens’, capital_of, ‘Greece’> in our local ontology, then by pure CWA this would 
evaluate to false.  However, the condition triple is partially instantiated 
<‘Athens’, capital_of, Country X>, so we could access a relevant source (e.g. Geo-
names) at this point in the reasoning.  However, we would not do so if we only had one 
element of the triple instantiated, or of the fan-out of the relation was very large. This 
kind of expansion of the reasoning to include external knowledge sources is similar to 
those proposed for pure symbolic web-scale reasoning approaches such as [48].  
However, based on the warm world assumption, we could also accept queries such as: 

EXISTS( Person(X), lives_in(X,”Tiree") AND works_with(X,”Costas”) ) 

Answering such a query would not involve finding all Person entities on the web 
(perhaps possible using a semantic web search engine such as Swoogle, but too large to 
download).  Instead it is taken to mean “all entities of type Person who are known about 
in the personal ontology or have sufficiently high activation to be cached locally”. 

Alternatively, or in addition, if the process of following symbolic reasoning 
repeatedly encounters certain entities, then this could add activation to those entities.  
This would mean that if an entity is critical in multiple parts of reasoning, it may be 
fetched due to one of the activation-based fetch rules. 

Of course, when new entities and triples are fetched, this may affect previous 
inferences.  We may then want to use forward incremental reasoning to modify past 
inferences based on the new data using mechanisms similar to those proposed for Active 
Triple Spaces [77]. 

6.3.   Provenance and the user 

When entities and relations are fetched from external sources or inferred based on 
reasoning rules, some form of provenance needs to be maintained.  This is important 
algorithmically in order to periodically refresh dynamic data, but also so that we can 
effectively present the ontology to the user.  If the user is browsing their ontology there is 
a danger that their carefully entered data will get swamped in imported data.  No matter 
how relevant this will be at best disorienting and at worst frustrating, users need a 
deterministic ground [78], parts of the interface they can trust not to change even though 
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other parts adapt. This doesn’t mean automatically fetched data or even inferred data 
cannot be presented to the user, but it needs care. 

For form-fill suggestions such as city names, this is less of a problem as the set of 
candidates is likely to be small, although even there we may wish to present personal 
ontology items differently, maybe a different font style.  However, in PIM system we 
may wish the user to be able interact with their personal ontology; for example this is 
done in our own ontology Profiler [13] and the Gnowsis ThingEditor [79] (see Figure 
15).  In these we do not want the user suddenly exposed to vast numbers of classes and 
instances that have been brought in from the web.  Indeed, in long-term studies of 
Gnowsis, users seemed to prefer well-trodden paths through their personal ontology, not 
searches or alternatives found by the system [79].  However, whilst we do not want 
automatically inferred or fetched data to take over the user interface, the user might 
reasonably expect to be able to browse such data, especially if it is deemed especially 
relevant due to high activation and becoming part of interaction.  Moreover the users may 
want to ‘claim’ such data as their own, still externally sourced, but very much part of 
their personal information. 

We will not attempt to solve these user presentation and interaction issues here, but 
note that core to being able to present data appropriately is that provenance be recorded. 

 

     
 (i) Ontology Profiler [13] (ii) Gnowsis Thing Editor [79] 

Figure 15.  User interfaces for browsing person ontologies 

6.4.   Collaboration and sharing 

Our main focus in this paper has been personal ontologies and a single user’s 
interactions.  However, one of the great success of the web over recent years has been the 
social web: explicit social networking in sites such as Facebook; implicit recommender 
systems [80] such as used by Amazon; and folksonomies based on explicit individual 
tagging, but leading to emergent shared vocabularies, which O’Reilly identified as one of 
the key features of Web2.0 [81]. 
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Spreading activation is effectively about allowing an automated assistant to share 
some level of context with the user.  Some years ago, before the advent of Web2.0, one 
of the authors wrote about the idea of the ‘web sharer’ [82], a vision of the Internet as 
place of sharing not just publishing, which has now become reality.  In comparing the 
Internet to the physical world it said, “Physical human interaction is about sharing words 
and things within a shared context.”  The ‘shared context’ here referred to shared human–
human context, creating places for sharing, as found in sites such as Facebook.  However, 
having an automatically captured context raises the question as to whether this can be 
used to enable some form of emergent, shared computational context (see figure 16). 

If context inference were restricted to personal ontologies, then the scope for this is 
limited as many of the entities will only be of interest to individuals.  However, once we 
include shared resources such as corporate or workgroup data stores, or the web itself, 
then patterns of activation can be used as indications of emerging interests across groups 
of friends, work colleagues or entire communities. 

At a simple level it would be possible to use the average LTA of a work group such 
as a project team, to feed into an individual’s spreading activation alongside their own 
LTA and MTA.  This would mean, for example, that a new employee would find 
resources relevant to their organization more highly weighted than less relevant ones.  
Similarly when receiving an email, it would be possible to capture some of the sender’s 
MTA as this relates to the recent activity of the sender when writing the email; this would 
mean that shared entities (e.g. films or music) that were active for the sender would be 
more likely to be suggested to the recipient when acting in response to the email. 

There are potential implications for privacy and security; even if this is only applied 
to shared entities, then the activations created may still carry unexpected information.  
For example, a group of bikers might notice that “Bridget Jones” was highly activated 
alongside “Harley Davidson” ... eliciting a search for the closet ‘chic flick’ addict. 

 

 
Figure 16.  Sharing activation to give shared context 
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7.   Conclusions and Further Work 

In this paper we have described how our existing use of spreading activation to model 
context in personal ontologies can be extended to allow the inclusion of larger remote 
information repositories, including the entire web of data.  The basic approach is to draw 
in information from remote sources based on the activation of entities already held in 
memory.  The mechanisms depend on the assumption that the working set of highly 
activated entities will be small and that excluding entities with sufficiently low activation 
does not adversely affect the effectiveness of the resulting pattern of activation.  Data 
drawn from published sources and our own experiments on a populated personal 
ontology are encouraging and suggest that these assumptions are likely to be valid.  
Furthermore tests of the algorithms on a single large linked-data dataset give good 
evidence of web-size scaling as the BBC Backstage dataset is effectively unbounded 
compared to the in-memory cache. 

The nascent state of existing linked data sets means we cannot fully predict the 
properties of the long-term web of data from those currently available.  However, we do 
wish to link to this existing linked data both to validate our approach further and also to 
begin to make practical use of this additional data during user interaction. 

We have discussed several potential issues arising from this work and also directions 
in which it can be developed, both in terms of its impact on users and its internal 
algorithms.  In particular, we have outlined the warm world assumption: treating 
activated entities as the universe during reasoning. 

Various authors including ourselves have proposed that the human brain may be used 
as a metaphor or an inspiration for developments on the web [1,53,83,84,85].  While our 
work has very practical roots, we do look repeatedly at features of human intelligence to 
suggest appropriate automated methods.  Even the proposals for warm world reasoning 
are similar to the way humans blend associative and deductive reasoning.  Our own 
emphasis is on assisting humans in day-to-day activities; both in this and in other 
application domains, the deliberately human-like traits of our approach offer the prospect 
of truly web scale reasoning. 
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