
An Optimisation Scheme for Coalesce/Valid Time Selection Operator
Sequences

Costas Vassilakis
University of Athens, Department of Informatics

Panepistimiopolis, TYPA Buildings
Athens, 15771, Greece
C.Vassilakis@di.uoa.gr

Abstract: Queries in temporal databases often employ
the coalesce operator, either to coalesce results of
projections, or data which are not coalesced upon
storage. Therefore, the performance and the optimisation
schemes utilised for this operator is of major importance
for the performance of temporal DBMSs. Insofar,
performance studies for various algorithms that
implement this operator have been conducted, however,
the joint optimisation of the coalesce operator with other
algebraic operators that appear in the query execution
plan has only received minimal attention. In this paper,
we propose a scheme for combining the coalesce
operator with selection operators which are applied to
the valid time of the tuples produced from a coalescing
operation. The proposed scheme aims at reducing the
number of tuples that a coalescing operator must
process, while at the same time allows the optimiser to
exploit temporal indices on the valid time of the data.
Keywords: Temporal databases, Coalescing, Valid time

selection, Optimisation, Query Processing

1 Introduction
Queries in temporal databases [24] frequently require the
usage of the coalesce operator [13] in order to guarantee
that resulting information is represented using a minimal
number of value-equivalent [13] tuples that have
maximal timestamps. As pointed out in [4], uncoalesced
relations may arise in many ways, most commonly by
applying a non-coalesce preserving operator, such as the
project or union operator, or by not enforcing coalescing
upon insertion and update (although most temporal data
models, such as [2], [7], [10], [23] enforce such
coalescing). Thus, it is crucial for a temporal DBMS to
employ efficient algorithms for the implementation of
the coalesce operator and apply effective optimisation
schemes, so as to increase the DBMS throughput and
reduce the query response time.
Insofar, the semantics of the coalesce operator (called
fold in [16] and compress in [19]) have been studied
([25], [17]) and various algorithms for its
implementation have been proposed and assessed ([16],
[19], [4], [5]). In particular [4] and [5] identify 17
algorithms for the implementation of the coalesce
operator and evaluate the performance of 10 of them
with respect to various parameters that may affect the
execution time, such as the reduction factor, the explicit
attribute skew and the timestamp skew. The results of
these studies may be exploited by the optimiser of a

temporal DBMS, in the process of choosing the most
appropriate algorithm for each case. Furthermore, [4]
and [5] identify query tree reorganisation rules that the
optimiser may use to “push” selection predicates below
coalescing operators, so as to reduce the number of
tuples that the coalescing operators must process. These
rules may only be applied in cases that the selection
predicate does not reference the tuple valid time
timestamp, since the tuple valid time timestamp is not
actually known until the coalescing operation is
performed. For example, in the evaluation of the TSQL2
query
select *
from Employee(name, salary)(period) as e
where e.name = 'John'

against the table
Name Salary Rank Valid Time
John 20000 Clerk [1/86-12/87]
John 20000 Manager [1/88-12/90]
Mary 21000 Manager [1/87-12/89]

it is possible to apply the restriction where e.name =
'John' before the coalesce operator, whereas in the query
select *
from Employee(name, salary)(period) as e
where valid(e) contains period '[1/1987–1/1989]'

such a rearrangement is not possible, because the first
two tuples that do not qualify with respect to the
selection predicate will be merged by the coalesce
operator into a single tuple that does qualify. Hence, if
the query designates restrictions only on the valid time
resulting from the coalesce operator, the whole bulk of
the input relation data must be processed by the coalesce
operator.
In this paper we present a scheme for optimising the
execution of coalesce/valid time selection operator
sequences, where the valid time selection operator
references the timestamp resulting from the coalesce
operator. The goal of this optimisation scheme is to
reduce the number of tuples that must be actually
processed by the coalesce operator by pre-filtering
tuples that cannot contribute to the final outcome of the
coalesce/valid time selection operator sequence. The
proposed approach may be combined with any algorithm
for the implementation of the coalesce operator and
allows the exploitation of index structures (i.e. queries
retrieving tuples having valid times included in a given
range–amongst others [1], [3], [8], [12], [15], [18], [20],
[21], [22]).
The remainder of this paper is organised as follows: in
section 2 the optimisation scheme is described in detail
and it is proved that the optimised execution scheme
yields the same result with the coalesce/valid time
selection operator sequence. In section 3 the

performance of the optimisation scheme is assessed and
compared to the execution time of the non-optimised
operator sequence. Experimental results are also
presented so as to substantiate the benefits resulting from
the proposed approach. Finally, section 4 concludes and
outlines future work.

2 Optimisation Scheme
Consider the valid table depicted in figure 1, which
stores the rank and salary evolution of university staff,
and the query “find the names of employees whose
salaries changed after the 31st of December 1997”. This
query may be expressed in TSQL2 [25] as follows:
select distinct F.Name
from Faculty(Name, Salary)(PERIOD) as F
where TIMESTAMP '31 DECEMBER 1997' PRECEDES VALID(F)

(a timestamp precedes a period if all the time points in
the period occur after the timestamp on the time axis.) In
the instance of table Faculty illustrated in figure 1, we
can intuitively identify three categories of tuples with
respect to the select query:

Name Rank Salary Valid Time
John Lecturer 50000 [01/1997, 08/1997] (1)
John Lecturer 60000 [09/1997, 03/1998] (2)
John Associate 60000 [04/1998, Now] (3)
Jenny Lecturer 65000 [06/1997, 12/1997] (4)
Jenny Associate 65000 [01/1998, Now] (5)
Jack Associate 75000 [08/1997, 11/1997] (6)
Jack Professor 80000 [03/1998, Now] (7)

Figure 1 – The valid time table Faculty

1. tuples whose timestamp satisfies the given predicate
and thus will appear in the final result, unless they are
coalesced with some other tuple not satisfying the
predicate (tuples 3, 5 and 7).

2. tuples ti whose timestamp does not satisfy the given
predicate, but may be coalesced with a tuple t from
category (1) (tuples 2 and 4). If such a coalescing
actually occurs, tuple t will not appear in the final
result, because it will have been replaced by a value-
equivalent tuple whose valid time timestamp does not
satisfy the selection predicate.

3. tuples that neither satisfy the selection predicate nor
are bound to be coalesced with any tuple from
category (1), because their valid time timestamp is
neither overlapping nor adjacent with the time
window in which all timestamps of tuples in category
(1) fall (tuples 1 and 6).

Generally, a fourth tuple category may be identified,
which includes tuples that do not satisfy the selection
predicate alone, but may do so after being coalesced with
other tuples, resulting in predicate satisfaction. This may
occur, for example, when using the predicate contains.
The optimisation scheme proposed in this paper consists
of filtering out the tuples in category (3) before the
coalesce operator is evaluated. The coalesce operator
will process the remaining tuples and, finally, post-

filtering will be applied on the result of the coalesce
operator to eliminate tuples from category (2) and tuples
from category (1) that do not satisfy the selection
predicate after coalescing. The predicate used for post-
filtering is identical to the original selection predicate.
More formally, the proposed optimisation scheme
transforms each

s cond(vt)(coalesce(R))
operation sequence, where cond(vt) is a condition
involving only the tuple valid time and constants to an
operation sequence

s cond(vt)(coalesce(s pre-cond(vt)(R)))
where pre-cond(vt) is again a simple condition involving
only the tuple valid time and constants. The reason for
introducing the extra selection operator is twofold:
1. the number of tuples that must be processed by the

coalesce operator is reduced. The reduction factor is
determined by the selectivity factor of the pre-
filtering predicate pre-cond(vt). However, since the
complexity of the selection operator is (sub)linear,
while the complexity of the coalesce operator is
super-linear [4], even low reduction factors result in
considerable performance gains. It is also possible
to build compound execution algorithms which
implement together the pre-filtering and the
coalesce operators (or even both filtering operators
and the coalesce operator) as suggested in [9],
eliminating any I/O overheads that may be induced
from the introduction of an additional operator.

2. the pre-filtering condition pre-cond(vt) may be used
to retrieve only the relevant tuples through a
temporal index, in the case that such a structure has
been defined on the base relation. This will
contribute in reducing the overall cost even more,
since the non-relevant portions of the base relation
will not be accessed.

Selection predicate
(cond(vt))

Pre-filtering predicate (pre-cond(vt))

instant precedes vt instant <= end(vt)
instant overlaps vt true
vt precedes instant begin(vt) <= instant
period precedes vt end(period) <= end(vt)
period = vt
vt = period

end(vt) >= begin(period) – 1 granule and
begin(vt) <= end(period) + 1 granule

period meets vt end(vt) >= end(period) - 1 granule
period overlaps vt
vt overlaps period

true

period contains vt end(vt) >= begin(period) – 1 granule and
begin(vt) <= end(period) + 1 granule

vt precedes period begin(vt) <= begin(period)
vt contains period true
begin(vt) < instant true
begin(vt) = instant end(vt) >= instant – 1 granule
begin(vt) > instant end(vt) >= instant
end(vt) < instant begin(vt) <= instant
end(vt) = instant begin(vt) <= instant + 1 granule
end(vt) > instant true

Figure 2 – Mapping the selection predicates to pre-
filtering predicates

Figure 2 illustrates the mapping between the condition of
the selection operator cond(vt) and the repsective pre-
filtering condition. The operators defined by TSQL2 [25]
for comparisons of periods (valid time timestamps) with
instants and periods (condition constants) are considered
here, and the application of the functions begin and end
[25] to the tuples’ valid time is also taken into account.
Note that for five conditions this optimisation scheme is
not applicable; this is due to the fact that no tuples can be
classified in category (3) described above, i.e. in the
category of tuples that neither satisfy the selection
predicate nor are bound to be coalesced with any tuple
which will potentially appear in the final result. In these
cases, the pre-filtering predicate is set to true.
Throughout figure 2, the tuple valid time timestamp is
designated as vt.
We will now prove that the proposed transformation, i.e.
the introduction of the pre-filtering predicate, preserves
the result equivalence. For brevity reasons we will
contain ourselves to proving the equivalence only for the
first predicate mapping (instant precedes vt); the result
equivalence for the remaining predicate mappings may
be proved similarly. Throughout the proof we will use
the following notations:
• t.expl will denote the explicit attributes of tuple t.
• t.vt will denote the valid time of tuple t.
• I(p) will denote the set of instants included in period

p. This set may not be finite if a continuous model
of time is employed.

Theorem: For any valid time relation R and a given
instant inst, it holds that

s inst precedes vt(coalesce(R)) = s inst precedes vt(coalesce(s inst <= end(vt)(R)))
Proof: Let R1 and R2 be the results of the operations
s inst precedes vt(coalesce(R)) and
s inst precedes vt(coalesce(s inst <= end(vt)(R))). We will prove that
some tuple t ∈ R1 if and only if t ∈ R2. We will prove
first that if a tuple t appears in R1 then the same tuple t
appears in R2.
Let C = {t1, t2, ..., tn} be the set of tuples of R that are
coalesced to produce tuple t. By virtue of the definition
of the coalesce operator we have that
1. ∀i ∈ {1, 2, …, n} t.expl = ti.expl

2. I(t.vt) = .vt)tI(i
1

U
n

i=

Furthermore, since t appears in R1,
inst precedes t.vt ⇒ inst < begin(t.vt) (due to the
definition of the precedes predicate [25]). Additionally,

∀i ∈ {1, 2, …, n} begin(t.vt) = min(I(t.vt)) ≤ end(ti)
thus the pre-filtering predicate is satisfied for every ti.
Consequently, all members of the tuple set C will
participate in the coalesce operation of the transformed
operation sequence; additionally, s inst <= end(vt)(R) ⊆ R,
thus s inst <= end(vt)(R) may not contain any other tuple that
may be coalesced with any ti, hence t ∈

coalesce(s inst <= end(vt)(R)). Finally, tuple t satisfies the
post-filtering predicate (since the post-filtering predicate
is identical to the original selection predicate and t is
known to satisfy the latter), thus t will appear in R2.
Now we will prove that if a tuple t appears in R2 then the
same tuple appears in R1. Let t be a tuple appearing in
R2. We define the sets C and Crejected as follows:

C = {ti ∈ R: t.expl = ti.expl ∧ inst <= end(ti.vt)}
Crejected = {ti ∈ R: t.expl = ti.expl ∧ inst > end(ti.vt)}

i.e. C is the set of tuples in R that are value-equivalent to
t and satisfy the pre-filtering predicate, whereas Crejected
is the set of tuples in R that are value-equivalent to t but
do not satisfy the pre-filtering predicate. Since t ∈ R2,
t ∈ coalesce(C) (C contains precisely the tuples in
s inst <= end(vt)(R) that may produce t via coalescing), and
additionally satisfies the post-filtering predicate
inst precedes t.vt ⇒ inst < begin(t.vt) (due to the
definition of the precedes predicate). Now let tx b e a
tuple in Crejected. By virtue of the definition of Crejected ,
inst > end(tx.vt), or, equivalently, end(tx.vt) < inst. Since

∀i ∈ {1, 2, …, n} end(tx.vt) < inst < begin(t.vt) ≤
begin(ti.vt)

tuple tx cannot be coalesced with any ti; given that this is
true for any tx ∈ Crejected, t ∈ coalesce(C ∪ Crejected). We
can easily conclude that t ∈ coalesce(R) , since
R - {C ∪ Crejected} does not contain any tuple that is
value-equivalent to t. Finally, given that t satisfies the
post-filtering predicate inst precedes vt (because it
appears in R2), t ∈ s inst precedes vt(coalesce(R)) , which is R1.
We have proved that a tuple t belongs to R1 if and only if
tuple t belongs to R2. Thus, the introduction of the pre-
filtering operator does not alter the result of the
operation sequence s inst precedes vt(coalesce(R)) . Similar
proofs may be given for the remaining cases illustrated
in figure 2.

3 Performance Analysis
The optimisation scheme described in the previous
section introduces an extra node in the query execution
plan, i.e., the selection operator implementing
pre-filtering, aiming at decreasing the number of tuples
that need to be processed by the coalesce operator. The
benefits resulting from this optimisation scheme depend
on how the optimisation scheme is implemented and the
selectivity factor of the pre-filtering predicate as follows:
1. An extra cost of N * ts_comp is always incurred,

which corresponds to the cost of determining whether
each tuple satisfies the pre-filtering predicate (N is the
number of tuples in the relation, whereas ts_comp is
the cost of timestamp comparison). In two cases, this
cost may increase to 2 * N * ts_comp , since the
pre-filtering predicate is a conjunction of timestamp
comparisons. A portion of this cost may be
compensated for, since pre-filtering may result to the
production of fewer output tuples by the coalescing

operator, thus post-filtering will be applied to fewer
tuples.

2. If pre-filtering selection and coalescing are not
merged into a single execution node and the execution
policy writes the result of each operation to a
temporary relation on the disk where it is accessed by
the next operator, an extra cost of

PageIOCostSFN

tupleSize
PageSize

***2

is added, accounting for the cost of writing the output
of the pre-filtering selection to the disk and reading it
again, in order to be processed by the coalesce
operator. (0 ≤ SF ≤ 1 is the selectivity factor of the
pre-filtering predicate, PageSize is the size of a disk
page, tupleSize is the number of bytes within a
relation tuple and PageIOcost is the cost of reading or
writing a disk page). However, if pre-filtering is
integrated with the coalescing operation into a single
execution node or the pre-filtering operator forwards
its results to the coalescing operator on a page-by-
page (or tuple-by-tuple) basis, this cost will not be
incurred.

3. Since, as identified in [4] and [5], the coalescing
algorithms are essentially variations of the sort-merge
and partitioning algorithms used for duplicate
elimination, the complexity of these algorithms in the
general case will be O(N * log(N)), [11]. Pre-filtering
will reduce the amount of tuples processed by the
coalescing operator to N * SF, thus the asymptotic
complexity of the operator will not be affected;
however the overall operation cost will be decreased
by a factor which is greater than (1/SF) . The
experimental results that follow show that this
performance gain is considerable, even for selectivity
factors that are close to 0.95.

4. Identifying coalesce/valid time selection operator
sequences in the query execution plan is an extra task
for the optimiser, thus an optimisation cost should
also be accounted for. However, this is expected to be
very small, since the optimiser will generally try to
“push” selection predicates as low as possible within
the execution plan, thus the target temporal selection
predicates will always be adjacent to the respective
coalescing operators. Hence, a simple traversal of the
query execution plan tree will suffice to identify and
transform the target operator sequences; moreover, the
identification of these sequences may be integrated
into the selection “push” procedure.

The optimisation scheme described in the previous
section has been evaluated using the Time-It testbed
[14]. The diagrams that follow illustrate the
measurements obtained from comparing the algorithms
including pre-filtering to the algorithms not including it.
Out of the 10 algorithms included in the performance

study of [4] and [5] we present results for only four; the
results obtained for the remaining six are similar. The
diagrams illustrate the results for the following
algorithms:
• partitioning on explicit attributes with hybrid buffer

allocation strategy (EP-H).
• sorting on explicit attributes with grace buffer

allocation strategy (ES).
• partitioning on the timestamp with grace buffer

allocation strategy (TP).
• sorting on the timestamp with hybrid buffer

allocation strategy (TS-H).
This subset was chosen so as to include various
combinations of basic methods (sorting, partitioning),
primary comparison targets (explicit attributes,
timestamp) and buffer allocation strategies (grace,
hybrid).
Each diagram presents the speedup percentage obtained
from building pre-filtering into a specific coalescing
algorithm, under various amounts of available main
memory and pre-filtering predicate selectivity factors. If
A is an algorithm for coalescing, Apre-filter is the same
algorithm A extended to include pre-filtering, and T(X)
is the time needed to execute algorithm X, the speedup
percentage of algorithm Apre-filter against algorithm A is

defined as
)(

)()(

AT

ATAT filterpre−−
. In all cases, a 16MB

relation of 16-byte tuples was used; the tuple’s lifespan
was set to 10 chronons, while 1000 distinct values were
used for the explicit attributes producing approximately
1000 value-equivalent tuples within the relation. We
chose a small tuple lifespan so as to use a common test
case for all algorithms, since the algorithms based on
timestamp sorting do not perform well on long
timestamps. However, the algorithms including the
pre-filtering operation have been applied to various
combinations of value-equivalent tuple percentages and
tuple lifespan distributions, producing similar results.
For the remaining system characteristics and cost
metrics, we used the same values used in [4] and [5], and
set the hash computation cost to 4µsec. System
characteristics and cost metrics are summarised in
figures 3 and 4.

Parameter Value
Relation size 16MB
Tuple size 16 bytes
Tuples per relation 1M
Timestamp size 8 bytes
Explicit attribute size 8 bytes
Relation lifespan 100000 chronons
Page size 1 K
Cluster size 32 K

Figure 3 – System characteristics

The pre-filtering predicate selectivity factors appearing
in diagrams are 1 (all tuples qualify), 0.95, 0.85 and

0.75. We chose relatively high selectivity factors, since
for small selectivity factors the performance advantage
of the pre-filtering technique is obvious.

Parameter Value
Sequential I/O cost 5 msec
Random I/O cost 25 msec
Explicit attribute compare 2 µsec
Timestamp compare 4 µsec
Pointer compare 1 µsec
Pointer swap 3 µsec
Tuple move 4 µsec
Hash computation 4 µsec

Figure 4 – Cost metrics

-5%

5%

15%

25%

35%

45%

55%

1 2 4 6 8 10 12 14 16

Available memory

S
pe

ed
up

SF=1.0 SF=0.95 SF=0.85 SF=0.75

Figure 5 – Speedup for the EP-H algorithm

-5%

15%

35%

55%

75%

95%

1 2 4 6 8 10 12 14 16
Available memory

S
pe

ed
up

SF=1.0 SF=0.95 SF=0.85 SF=0.75

Figure 6 – Speedup for the ES algorithm

-5%

10%

25%

40%

55%

70%

1 2 4 6 8 10 12 14 16

Available memory

S
pe

ed
up

SF=1.0 SF=0.95 SF=0.85 SF=0.75

Figure 7 – Speedup for the TP algorithm

-5%

10%

25%

40%

55%

70%

85%

1 2 4 6 8 10 12 14 16

Available memory

S
pe

ed
up

SF=1.0 SF=0.95 SF=0.85 SF=0.75

Figure 8 – Speedup for the TS-H algorithm

From the diagrams presented in figures 5-8 we can
derive the following:
1. Even when the selectivity factor of the pre-filtering

predicate is 1 and thus all tuples qualify, the
performance penalty paid (due to the extra
timestamp comparisons) is very small (an average of
0.7% with a worst case of 3.9%). Hence, an
optimiser may employ pre-filtering “blindly”, i.e.
without knowledge about the selectivity factor of the
predicate. Such knowledge would be useful,
however, for buffer allocation decisions and,
together with coalescing factor estimates, for
accurate estimations of the size of the resulting
relations.

2. In all diagrams we notice that the speedup obtained
because of the introduction of pre-filtering increases
considerably at some point of the x-axis, while it
drops at a later point. These two points mark an area
within which pre-filtering makes the difference
between in-memory coalescing and coalescing that
requires intermediate disk runs (or disk buckets).
The location of the area starting point on the x-axis
depends on the selectivity factor of the pre-filtering
predicate.

3. For the remaining cases, i.e., when the pre-filtering
predicate selectivity factor is less than 1 and both
the optimised and non-optimised algorithms follow
the same pattern of work (i.e., either they both
operate completely in memory or they both write
intermediate results on the disk), the average cost
reduction obtained is higher than the percentage of
rejected tuples. This is expected, since the
asymptotic complexity of the coalescing operator is
O(N * log(N)) (by analogy to sorting and
partitioning operators), thus decreasing N by a factor
r should lead to a reduction in the overall cost that is
higher than r. Moreover, for a given selectivity
factor the speedup obtained is higher for small
(available memory / relation size) ratios and
decreases when more memory is made available
(and thus in-memory operations become the
dominant factor of the overall cost).

4 Conclusions
In this paper, we have presented an optimisation scheme
which may be used to reduce the overall execution of
time of coalesce/valid time selection operation
sequences. This scheme consists of applying a
pre-filtering predicate to the relation before coalescing,
so as to eliminate tuples that may not contribute to the
final result. The benefits resulting from employing this
scheme have been verified via experiments using the
Time-It testbed and illustrated diagrammatically.
Implementing the proposed optimisation scheme has
proved quite easy, by simply rejecting tuples not
satisfying the pre-filtering predicate as soon as the

corresponding page is read into memory. Future work
will focus on identifying optimisable query execution
plan patterns involving the coalesce operator and
investigating cases that tailored coalescing algorithms
may be employed.

Acknowledgements: We would like to thank Dr. M.
Soo for making the latest versions of the Time-It testbed
available, and Prof. Y. Ioannidis for his valuable
comments.

5 References
[1] C. Ang and K. Tan, “The interval B-tree”,

Information Processing Letters, (52)2, pp.85-89,
1995.

[2] G. Ariav, “A Temporally Oriented Data Model”,
ACM Transactions on Database Systems 11(4), pp.
499-527, December 1986.

[3] N. Beckmann, et al., “The R*–tree: An Efficient and
Robust Access Method for Points and Rectangles”,
Proceedings of the 1990 ACM SIGMOD
International Conference on Data Management, pp.
322-331, Atlantic City, N.J., June 1990.

[4] M. Böhlen, R. Snodgrass and M. Soo, “Coalescing
in Temporal Databases”, Proceedings of the 22nd

VLDB Conference, Bombay, India, 1996.
[5] M. Böhlen, R. Snodgrass and M. Soo, “Coalescing

in Temporal Databases”, TimeCenter Technical
Report TR-9, April 1997.

[7] J. Clifford and A. Croker, “The Historical Relational
Data Model (HDRM) Revisited” in “Temporal
Databases: Theory, Design and Implementation”,
edited by A. Tansel et al., Benjamin/Cummings
Publishing Co., 1993.

[8] R. Elmasri, G. Wuu and V. Kouramajian, “The
Time Index and the Monotonic B+–tree”, in
“Temporal Databases: Theory, Design and
Implementation”, edited by A. Tansel et al.,
Benjamin/Cummings Publishing Co., 1993.

[9] R. Elmasri and S. Navathe, “Fundamentals of
Database Systems”, Addison-Wesley Publishing
Company, 1994.

[10] Shashi Gadia, “Ben-Zvi’s Pioneering Work in
Relational Temporal Databases”, in “Temporal
Databases: Theory, Design and Implementation”,
edited by A. Tansel et al., Benjamin/Cummings
Publishing Co., 1993.

[11] G. Graefe, “Query Evaluation Techniques for Large
Databases”, ACM Computing Surveys 25(2), pp.
73-170, June 1993.

[12] A. Guttmann, “R–trees: A Dynamic Index Structure
for Spatial Searching”, Proceedings of the 1984
ACM SIGMOD International Conference on
Management of Data, pp. 47-57, June 1984.

[13] C. Jensen et al., “A Consensus Glossary of
Temporal Database Concepts”, available through

http://www.cs.auc.dk/~csj/Glossary/. An older
version was published in the ACM SIGMOD
Record, 23(1), pp.52-64.

[14] N. Kline and M. Soo, “Time-It: The Time Integrated
Testbed” Pre-Beta version 0.1, available via
anonymous ftp through
ftp://ftp.cs.arizona.edu/timecenter/time-it-0.1.tar.gz

[15] V. Kouramajian et al. “The Time Index+: An
Incremental Access Structure for Temporal
Databases”, Proceedings of the Third International
Conference on Information and Knowledge
Management (CIKM ’94), pp. 296-303,
Gaithersburg, Maryland, 1994.

[16] N. Lorentzos, “The Interval-extended Relational
Model and Its Application to Valid Time
Databases”, in “Temporal Databases: Theory,
Design and Implementation”, edited by A. Tansel et
al., Benjamin/Cummings Publishing Co., 1993.

[17] N. Lorentzos and Y. Mitsopoulos, “SQL Extension
for Interval Data”, IEEE TKDE, 9(3), pp. 480-499,
1997.

[18] M. Nascimento and M. Dunham, “Indexing Valid
Time Databases via B+-trees–The MAP21
Approach”, TimeCenter Technical Report TR-26,
March 1998.

[19] S. Navathe and R. Ahmed, “Temporal Extensions to
the Relational Model and SQL”, in “Temporal
Databases: Theory, Design and Implementation”,
edited by A. Tansel et al., Benjamin/Cummings
Publishing Co., 1993.

[20] B. Salzberg and V. Tsotras, “A Comparison of
Access Methods for Temporal Data”, TimeCenter
Technical Report TR-18, June 1997.

[21] T. Sellis, N. Roussopoulos and C. Faloutsos, “The
R+–tree: A Dynamic Index for Multidimensional
Objects”, Proceedings of the Conference on Very
Large Databases, pp. 507-518, Brighton, England,
September 1987.

[22] H. Shen, B. Ooi and H. Lu, “The TP–Index: A
Dynamic and Efficient Indexing Mechanism for
Temporal Databases”, Proceedings of the 10th IEEE
International Conference on Data Engineering, pp.
274-281, Houston, Texas, February 1994.

[23] R. Snodgrass, “The Temporal Query Language
TQuel”, ACM Transactions on Database Systems,
12(2), pp. 247-298, June 1987.

[24] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev
and R. Snodgrass, “Temporal Databases: Theory,
Design and Implementation”, Benjamin/Cummings
Publishing Company, 1993.

[25] The TSQL2 Language Design Committee, “The
TSQL2 Temporal Query Language”, edited by R.
Snodgrass, Kluwer Academic Publishers, 1995.

