

An Object-Oriented Approach for Designing
Administrative e-Forms and Transactional e-Services

Dimitris Gouscos1, Stathis Rouvas1, Costas Vassilakis1, Panagiotis Georgiadis1

1 e-Government Laboratory –Dept. of Informatics and Telecommunications
University of Athens, 15771, Ilissia, Athens, Greece

{d.gouscos,rouvas,costas,p.georgiadis}@e-gov.gr
http://www.e-gov.gr/uoalab

Abstract. Although electronic transaction services are considered to be a
necessity for e-government, it has not been possible insofar to unleash their full
potential. E-forms are central to the development of e-government, being a
basic means for implementing the majority of the public services considered as
required for local and central public administration authorities. In this paper, we
present an object-oriented model for e-form-based administrative services,
which spans the e-service lifecycle, including development, deployment and use
by enterprises and citizens, data collection and communication with legacy
information systems. The proposed approach encompasses semantic, structural
and active aspects of e-forms, providing thus an inclusive framework for
modelling electronic services.

1 Introduction

Administrative services being the most visible and contradictory aspect of
Government for the majority of citizens and businesses, it certainly comes as no
surprise that e-Government action plans on the national as well as EU level ([9], [3])
recognize the importance of bringing administrative services on-line as a cornerstone
of e-Government projects. Administrative forms, on the other hand, are an
indispensable part of public administrative services, since delivery of a public
administrative service entails, at some point, an application or declaration form that
has to be filled, submitted and processed. This situation is well acknowledged by the
fact that eEurope benchmarking indicators, as well as the eEurope 4-stage framework
for monitoring maturity of on-line public services, both make explicit reference to
levels of on-line availability and submission of forms as e-Government indicators
([6], [4], [5]).

Therefore, an important part of public administrative services and information are
delivered and represented, respectively, through forms, which means that an approach
to better design administrative forms and exploit their informational content can
provide substantial benefits. An essential part of designing an administrative form has
to do with (i) its structure, i.e. which its component, sections and fields are and how
they are nested, and (ii) its semantics, i.e. the intended meaning of each individual
field. Field semantics, in particular, determine (a) how input data should be validated

when the form is filled and submitted and (b) how input data can be processed and
related in back-office operations.

Controlling the structure of an administrative form allows to have new forms
resembling existing ones as appropriate. In this way forms can have a standardised
appearance, which lowers design costs and allows to capitalize on a sharp learning
curve due to user familiarization. Most importantly, however, controlling the structure
of a form facilitates the effort to keep the semantics of all forms consistent.

Having consistent semantics for corresponding fields in different forms provides
two very important capabilities:
1. Common fields of different forms can be identified and eliminated, so that many

forms can be re-engineered into a single one; this may the case of an individual
public agency reducing its different forms or of different public agencies trying to
establish a single shared form in the context of one-stop e-Government G2C or
G2B services.

2. Fields of different forms can be related; this may be the case of seeking a common
field to be used as correlation key, or of trying to make two fields comparable for
cross-checking or statistical processing purposes. Both of these functions may be
needed either in a back-office setting within a single public agency or in the
context of G2G information flows between different agencies.
An important note to make here is that the last point about consistent semantics

essentially treats administrative forms as generic information sources (for instance,
databases); indeed, the terms could well be exchanged with the rest of the point still
holding true. This is due to the fact that, on a conceptual level, an administrative form
is nothing more than the schema of an information collection. Therefore, the same
issues about semantics consistency arise in both cases. Exploring the implications of
this analogy, identification and elimination of common fields during the merging of
administrative forms corresponds to schema integration of two information
collections; relating fields of different forms for correlation or comparability
corresponds to the same operations on, e.g., database tables; validation rules for the
data input in administrative forms correspond to constraints and triggers in databases;
administrative forms themselves correspond to data entry screens for DB applications.

Therefore, the above discussion about administrative form semantics holds for the
semantics of arbitrary information sources as well. Still, our approach is focused on
administrative forms because of the additional issues that are raised in this area.
Controlling the structure of an administrative form is equally important as controlling
its semantics, since it allows to re-use components and standardize on user navigation
and user support issues.

2 Basic Terms

In this section we present the basic concepts of the electronic service model, regarding
the desired functionality, as well as the processes and items involved in the lifecycle
of electronic services.

2.1 E-Forms

We are concerned with the problem of applying some methodology for designing
administrative forms in a systematic way, that allows to control (a) the structure, (b)
the appearance and (c) the semantics of a form. In all these aspects, it should be
possible to re-use previous designs for standardisation and productivity reasons. What
is more, we are concerned with electronically represented administrative forms (e-
forms), i.e. with forms implemented as web pages in the context of e-Government
service offerings.

E-forms are developed and placed on the web site by the service provider. To this
end, some experts on the service provider side are assumed who are able to create new
e-forms and publish them on the web. In creating a new form, an expert should be
able to re-use components of existing forms, whether these have to do with the form's
structure, appearance, semantics, user assistance information, validation logic or
process logic. What is more, since the creation of e-forms is assumed to be an
iterative and collaborative process, there is a need to treat e-forms as artefacts which
also have some "life-cycle" information: version, history, author, approver, etc.

Database

E-forms
database

Develop-
maintain

Test

Approve

Deploy

Service
access
point

External information
systems

Service
users

Fig. 1. E-Form Lifecycle

The basic user interaction scenario that we assume is that some administrative e-
forms are available on the web; an end-user chooses the form of interest, navigates
around its structure (sections, sub-sections etc), enters data as appropriate and submits
it; a submitted form is processed by the service provider (the corresponding public
agency) and some results are returned to the end-user. Input data validation occurs in
two phases: some validation checks are applied on individual fields upon data entry
whereas some others are performed after submission, since they apply to
combinations of fields or may cross-check values with content from other sources
(e.g. an administrative registry). It should be noted here that, in order to support these
tasks, an e-form must accommodate, apart from its structure, appearance and
semantics, also (d) user assistance information as well as (e) the appropriate

validation logic. Apart from that, the form should indicate (f) the associated process
logic, i.e. it should determine (most possibly by pointing to it) the procedure with
which the form should be processed after it is submitted and validated. Finally,
processing of submitted forms may produce results or errors, which should be
communicated to the users that filled the forms. The overall scenario for the e-form
lifecycle is illustrated in Fig. 1.

2.2 Transaction Service Elements

A completed e-form, together with its structure, appearance, semantics, user
assistance information, validation logic and process logic may be handled as a single
entity that can be stored and re-used for generating new e-forms; and of course, this e-
form can be published on the web as part of an e-Government service offering for
transactional e-services.

As already mentioned, an e-form has some structure, i.e. it consists of sections,
subsections, and individual fields just like paper-based administrative forms. Since
most of the features of the e-form (appearance, semantics, user assistance info,
validation logic) are best defined at the level of the e-form's components, these
components (sections, fields) of an e-form are themselves considered as design
artefacts which are autonomously created, stored and re-used; this policy evidently
increases re-usability potential. Therefore, the term Transaction Service Element
(TSE) refers to individual e-form sections and fields, while e-forms are referred to as
Transaction Services.

2.3 Semantics

Semantic information as referred to above, has to do with the intended meaning of
some values that are expected in the fields of an e-form at data entry time. Only if
these semantics are correctly perceived and respected by end users, this a priori
intended meaning will also be the actual meaning of the data a posteriori, i.e. when
the e-form is inspected or processed after submission and validation. What is more,
only if such a condition is met for the corresponding data of all administrative forms
that are to be correlated, can such a correlation be successful. In order to facilitate the
correct perception by end users of the intended meaning of a data value, this intended
meaning can best be associated with the corresponding input field as a description;
this description may be complemented by additional aids to the users, including
online help references, examples etc. Therefore, field-level TSEs should be able to
accommodate such information and references. Additionally, intended meaning
descriptions can be optionally defined for section-level TSEs as well as for entire e-
forms. The user assistance information of a TSE at any level can also be employed to
clarify intended meaning semantics.

A different sort of semantics has to do with the nomenclature in which a value of a
given intended meaning is expressed. To consider two simple examples: the same
input fields called "your sex" may be (correctly) filled by the same person as "female"
on one form and "woman" on another; the same input fields called "salary" may be

(correctly again) filled by the same person as "340750" on the one form (expressed in
Greek drachmas) and "1000" in another (expressed in euro). Although intended
meanings are the same and have been perceived correctly in both cases, data values
differ. In order to avoid such situations, it is necessary to included intended
nomenclature semantics at field-level TSEs. Possible nomenclatures in which data
values are expressed include (a) closed sets of acceptable values, (b) statistical
classifications, (c) sets of values from third registries as well as (d) measurement
units. Drawing from statistics, it should be noted that the intended nomenclatures of
two fields whose values must be compared do not necessarily have to be identical; as
long as they are known and at least an one-way mapping exists between them, the
field values are comparable.

3 Modelling Transaction Service Elements: An Object-Oriented
Approach

According to the above analysis, TSEs at any level, i.e. form-, section- and field-level
TSEs must be stored in a way that they can be re-used for designing new e-forms. We
adopt an object-oriented approach towards modelling Transaction Service Elements
and their attributes. This approach allows, on the one hand, to exploit a significant
amount of inheritance and, on the other hand, it facilitates TSE re-use. The resulting
object-oriented model, called Transaction Service Object Model (TSOM) incorporates
all TSE attributes mentioned above, i.e. structure, appearance, semantics, user
assistance, validation logic, process logic as well as life-cycle attributes.

3.1 Modelling of Submitted Forms

Submitted forms, i.e. e-forms that have been filled-in with values by users and
submitted, are hosted in TSOM in a special class, which is a specialisation of the
respective e-forms class. The additional attributes of a submitted form include, of
course, its values, as well submission data and a post-submission trace which is
intended as an administrative log for post-submission validation and processing
operations (such a trace is necessary in order to produce, e.g., application status
reports in an e-Government service context). Providing a special subclass for
submitted forms permits for redefinition or cancellation of certain methods defined
for the generic class modelling forms. For example, the method catering for the form
presentation should now consider the data already typed in by the user; moreover,
while a submit method is required for e-forms, a submitted form should not have such
a method (since it is already submitted!). Through the inheritance mechanism, the
specialised class overrides the inherited method to produce an appropriate error.

3.2 Modelling of Agents

As has been discussed, e-forms and TSEs in general are designed by some domain
experts on the service provider side. Therefore, the life-cycle information of each TSE
also includes some pointers to authors of this TSE and other roles, such as
contributors and approvers. On the other hand, form instances are filled and submitted
by end-users. For reasons of completeness and uniformity, TSOM includes a sub-
hierarchy for modelling all of these roles (TSE authors, etc. as well as end users that
fill and submit forms) under the general category of Transaction Service Agents. It is
worth noting that this uniform modelling of both e-form authors and users connotes to
the possibility of providing, in a real-world setting, a uniform web-based environment
both for the authoring of e-forms by experts (possibly external to the public agency)
and for the filling and submission of stable and released e-forms by end users in the
context of operational e-Government services.

3.3 Modelling of Active Behaviour

Although e-forms may be considered as passive objects being filled-in and submitted
by users, they in fact encompass substantial active behaviour in all stages of their
usage:
1. When users select an e-form to fill in, the values of various fields may need to be

pre-computed before data entry is allowed; this may be the case, for instance,
where registry information about the end user is pre-loaded in certain fields of the
form.

2. Upon field value modification, certain validations may need to be performed, such
as type checks (e.g. only digits are entered in numeric fields), value range
assertion, etc. Additionally, some fields may be read-only (e.g. fields containing
registry data), and consequently appropriate behavioural rules should be defined to
prohibit the alteration of their pre-loaded values. Although such checks may be
performed when the form is submitted, they are usually performed upon field
modification so as to detect errors early and assist thus the user throughout the
procedure of form filling.

3. Field value modification may also trigger the updating of the value of other fields.
Inter-field dependencies may be necessitated for user convenience, e.g. within a
complex multi-page form with many sections that appear through navigation links,
it may be arranged that some values are automatically carried on between sections,
in order to be readily available for users to look up, without any need for
navigating between web pages. Moreover, some fields are automatically calculated
via formulas, such as table column sums, VAT amounts corresponding to sales or
purchases etc. In these cases, changing the value of any field appearing in the right
hand side of the formula should trigger the updating of the field appearing at the
left hand side of the formula.

4. Form submission initiates the execution of additional actions, such as field-value
correlations, cross-checking of user input with other submitted forms or registries,
or even repetition of checks conducted earlier at the organisation’s back end

environment, since in a web environment front-ends (browsers) are not considered
trustworthy and validation checks depending on them may be circumvented.

5. Each step within the processing cycle of a submitted form may trigger a number of
actions, such as appending entries to administrative logs for tracing purposes or
sending electronic notification to the submitter regarding possible errors.
From the above analysis regarding active features within e-forms, we may derive

the following requirements for the TSOM:
1. Since an active feature may involve a single field, a number of fields within the

section or the whole e-form, the TSOM should allow the definition of active
features in field-, section- and form-level TSEs.

2. TSOM should make provisions for specifying when each active feature should be
fired. This is a two-fold issue, including the event that triggers the active feature
(value change, form submission, back-end processing), and a condition which must
hold (field is not empty, back-end processing resulted to an error etc.)

3. The functions that must be performed whenever appropriate may range from
simple data type or value-range checks to much more complex validation checks
that involve multiple fields or even correlation to information from external
sources.
These requirements fit directly to the Event-Condition-Action (ECA) rules

paradigm, which is encompassed in the Transaction Service Object Model through a
dedicated class sub-hierarchy rooted at the Transaction Service Rules node. This
generic category is further specialised to validation, pre-computation, protection,
update and processing rules.

At the current state of work, a number of primitive expressions, functions and
constructs are available for coding conditions and actions; these primitive elements
may be combined using operators, to form arbitrarily complex constructs. In order to
keep the scheme manageable, the number of primitive elements is kept small,
sufficing however to model more than 90% of the checks usually encountered in
electronic forms. For cases where the supplied expressive power is insufficient, the
model supports the invocation of external methods, which may be coded in any
general-purpose language with unconstrained expressive power. ECA rule execution
clearly requires an appropriate engine; the choice of this engine depends on the
environment within which the ECA rules will be executed. If the environment is a
user’s web browser, the Javascript language is a suitable option. Within an
organisation’s back-end, workflow engines, database triggers or general-purpose
languages could be used. In all cases, the ECA rules should be mapped to the target
environment.

3.4 Modelling Information Repository Access

While a transaction service is operational, it needs to access information repositories
either to retrieve or to store and modify data. For instance, when a user selects to fill
in an income tax declaration form, registry data must be retrieved from an information
repository and filled in the corresponding form fields before the form is displayed.
Subsequently, when the user submits the form, data filled in the various fields should
be stored into an information repository, for future processing and/or reference. Data

access in the proposed environment is encapsulated in the Information Repository
object class, which supports methods for invoking predefined services. Each such
predefined service may accept input parameters and return, besides the execution
status, appropriate information. For example, a taxation repository may offer a
predefined service that accepts a citizen’s tax registration number as an input
parameter and returns a structure containing the citizen’s data contained in the
registry, or a failure indication. An environment offering transaction services may
involve multiple instances of Information Repository objects, one for each actual
information repository that needs to be accessed.

3.5 The Transaction Service Object Model

The class hierarchy of the Transaction Service Object Model is depicted in Fig. 2. The
property protocol of TSOM classes is listed in Appendix A.

Information Repository

Submitted Form

Form Section Field

Transaction Service
Template

Precomputation
Rule

Protection
Rule

Update
Rule

Validation
Rule

Processing rule

Transaction Service
Rule

Transaction Service
Element

Transaction Service
Agent

Transaction Service
Object

Fig. 2. Transaction Service Object Model class hierarchy

4 Sharing and Deployment of TSOM objects and Services

Form-level TSEs, together with their section- and field-level components, must be
publishable on the web as forms that can be filled and submitted. What is more, TSEs
at any level may need to be passed on to third parties that exploit a similar, but not
necessarily identical approach towards designing administrative e-forms or e-services
and could benefit from TSE understanding and re-use. Finally, e-forms may need to
be exchanged with third parties in order to investigate capabilities for correlation, and
submitted forms may also need to be exchanged in order to actually correlate field
values. In the two latter cases, TSEs need to be exchanged together with their
associated logic for validation and control, as well as their associated semantics for
intended meanings and nomenclatures.

Most importantly, however, the need to exchange e-forms and submitted forms
together with their associated logic and semantics calls for representing them by
means of a semantics-neutral, syntax-level formalism where TSE attributes can be
defined in a straightforward way. In this respect, XML is a natural fit, and has been
generally accepted for communication between agencies [10].

The mapping of TSOM instances into XML documents can be approached quite
simplistically. An instance o with values v1, v2 of an object class C with properties p1,
p2 can be mapped to some XML code like

<instance>
<of _class> C </of _class>
<id> o </id>
<p1> v1 </p1>
<p2> v2 </p2>

</instance>

Fig. 1. XML representation of an instance

While this code excerpt arranges for the transfer of the actual values,
communicating entities might also need to exchange schemas of the data transmitted.
To this end, XML schemas [13] or XML DTDs [11] may be employed, facilitating the
exchange of the data schema descriptions. XML schemas, in particular, may
incorporate within data type definitions value constraints that apply to instances.

<xs:group name=" TransactionServiceRule">
<xs:sequence>

<xs:group ref="TransactionServiceObject"/>
<xs:element name="trigger" type="Event">
<xs:element name="condition" type="Expression">
<xs:element name="procedure" type="ScriptAction">

</xs:sequence>
</xs:group>

Fig. 2. Exchanging data schemas through XML

One interesting parameter of TSOM object sharing is that in some cases, certain
aspects of the objects need not (or must not) be exchanged for the sake of simplicity,
security or information volume reduction purposes. For example, when a tax
declaration is forwarded for processing, the presentation details or active features
contained within the involved TSOM instances are irrelevant, and may therefore be
omitted, without any loss of functionality. Similarly, if the Ministry of Finance has
included in its TSEs validation tests to control tax evasion, disclosing of these checks
to cooperating taxation agencies (e.g. accountant offices) would void their efficiency.
Therefore, the framework should provide the mechanisms for controlling which
portions of the Transaction Service Object Model class hierarchy should be
exchanged. To this end, a content negotiation mechanism is provided, through which
the server (i.e. the offering machine) advertises the content that is available from it;
subsequently, the client requests this data, or a subset of it, possibly providing some
authentication credentials. Finally the server, after checking the presented credentials
and the access constraints, sends the data or returns an appropriate error either

forbidding access or instructing the client to modify its request and ask for a smaller
subset. The requesting client may optionally return a reply, either to simply indicate
transfer status (success/failure) or to provide any relevant information. Replies, if
provided, should be also coded in XML.

The content negotiation mechanism may additionally be used for avoiding to
exchange redundant TSOM objects. This applies, for instance, to the case where a
new e-form is sent which makes use of section- and field-level TSEs already
exchanged. More importantly, this applies to exchanging multiple submitted forms
without sending more than once the same e-form. Within the content negotiation
phase, the requesting party provides the server with an identification of the objects it
already has, so as to enable the server to limit its reply to the objects that will be
actually new for the client. In all cases, however, the main issue is to provide full
functionality, with optimisation issues being a highly desirable, but not absolutely
necessary feature.

The communication mechanism described above is generic enough to
accommodate all circumstances in which electronically submitted forms and/or their
data schema need to be exchanged with other information systems. These information
systems may be either external to the organisation deploying the electronic service
(e.g. governmental agencies, business partners etc.), or internal, such as batch jobs
that will process the data (e.g. tax computation procedures).

Service deployment, exploiting the Web as a primary channel, calls for mapping of
the object-oriented constructs (i.e. instances of the Transaction Service Object Model)
into some mark-up language that can be handled by browsers. The prime candidate
for such a mapping is currently HTML since XML and other XML-oriented
developments (such as X-Forms [12]) are not fully handled by the majority of
browsers. Mapping of TSE information to the appropriate HTML code can be quite
straightforward, by employing HTML forms and form elements to facilitate user
input, hyperlinks to support navigation between form parts and using visual elements,
such as format designators (, <i>, etc.) or layout specifiers (e.g. <table>) to
produce the effects designated by the related TSE attributes. A number of active
features may also be supported on browser level by means of the Javascript language,
which provides modelling constructs for (event, action) pairs. Additional active
features, such as validation checks or information repository accesses, can be
automatically generated for the organisation’s back-end, based on the information
contained in the TSEs. These features are actually realised through server-side
scripting techniques, such as PHP and JSP. These mappings, however, decompose a
semantically rich model (the object-oriented one) to low-level formatting and coding
constructs, which makes controlling harder and minimises the capabilities for reverse
engineering. It is expected that with the advent of the XML and X-Forms standards
and their incorporation into browsers, a more straightforward and “non-lossy”
mapping may be employed for deploying the electronic services through the Web.

5 Conclusions – Future Work

Work reported in this paper approaches the critical problem of automating the
creation, management and processing of electronic administrative forms, in a way that
supports the handling of rich form structures together with their associated front- and
back-end logic. Object-oriented modelling of e-forms and their active behaviour
allows for (a) semantic richness, (b) modelling extensibility, (c) high-level
encapsulation of e-forms' data, metadata and associated logic as well as (d) uniform
modelling of both submitted e-forms and e-form templates. Mapping of e-forms to
XML messages allows forwarding of submitted e-forms to remote sites for
processing, which means that front-end submission and back-end processing of an e-
form may well be distributed over the web. What is more, XML mapping of e-form
templates facilitates the exchange of e-form artefacts for collaborative e-forms design
as well as for re-usability purposes.

An important direction of work to carry on, is to elaborate the modelling of e-
forms' active behaviour by means of ECA rules and consider additional formalisms of
equivalent expressive power (e.g. Horn clauses [8]). Any such representation shall
have to be mapped to appropriate XML structures. This mapping may use techniques
from existing work (e.g. [1], [2], [7]).

Still another direction of research is that of studying the middleware mechanisms
necessary to accept or send e-forms, taking care of issues mentioned in this paper
such as management of process traces and content negotiation. The integration of
such middleware mechanisms with back-end processing infrastructures is also a
subject of investigation.

6 References

1. J. Bailey, A. Poulovassilis, P.T. Wood “An Event-Condition-Action Language for XML”, to
appear in Proc. WWW2002, technical report available at
http://www.dcs.bbk.ac.uk/~ap/pubs/wwwTechRep.ps

2. A. Bonifati, S. Ceri, S. Paraboschi, “Active rules for XML: a new paradigm for e-services”,
VLDB Journal 10(1), pp. 39-47, 2001

3. Commission of the European Communities, “eEurope Action Plan 2002: An Information
Society For All”, June 2000.

4. Commission of the European Communities, “eEurope 2002 Impacts and Priorities”, March
2001

5. European Commission, DG Information Society, “Web-Based Survey on Electronic Public
Services”, November 2001.

6. European Union Council, “List of eEurope Benchmarking Indicators”, November 2000
7. H. Ishikawa, M. Ohta, “An active Web-based Distributed Database System for e-

Commerce”, Proceedings of the Web Dynamics Workshop, London, 2001
8. J. W. Lloyd, “Foundations of Logic Programming”, Springer Series in Symbolic

Computation, Springer-Verlag, New York, 1984.
9. UK Cabinet Office, “E-Government: A Strategic Framework for Public Services in the

Information Age”, April 2000.
10. UK Cabinet Office, E-Government Interoperability Framework, September 2000.
11. W3 Consortium, “XML 1.0 (Second Edition)”, available at http://www.w3.org/TR/REC-xml

12. W3 Consortium, “XForms-The Next Generation of Web Forms”, available at
http://www.w3c.org/MarkUp/Forms

13. W3 Consortium, “XML Schema”, available at http://www.w3.org/XML/Schema

Appendix A – TSOM property protocol

object class TransactionServiceObject � Id

object class TransactionServiceElement � Name

� Description
� Version
� History
� Authors
� Contributors
� Approvers

object class TransactionServiceTemplate � AdminName

� AdminCode
� AdminDescription
� Instructions
� Examples
� FAQs
� ApplicableRegulations
� MoreInfoPointer
� VisualEffects
� TransactionServiceRules

object class Form � SectionSequence

� Language
� Provider
� RelatedForms
� AdminInfo
� ProcessingPointer

object class Section � SubsectionSequence

� FieldSequence

object class Field � Nomenclature

� DefaultValue
� FormatMask

object class SubmittedForm � Values

� SubmittedBy
� SubmissionTime
� PostSubmissionTrace

object class TransactionServiceRule � Trigger
� Condition
� Procedure

object class TransactionServiceAgent � Name

� ContactCoordinates
� Credentials
� Privileges

object class InformationRepository � Name

� Services
� ConnectionDetails

