
A Game-Engine Based Virtual Museum Authoring and
Presentation System

Victor Mateevitsi
University of Peloponnese

Terma Karaiskaki
22100 Tripoli, Greece

mvictoras@gmail.com

Michael Sfakianos
University of Peloponnese

Terma Karaiskaki
22100 Tripoli, Greece

msfakianos@gmail.co
m

George Lepouras
University of Peloponnese

Terma Karaiskaki
22100 Tripoli, Greece

+302710372201

gl@uop.gr

Costas Vassilakis
University of Peloponnese

Terma Karaiskaki
22100 Tripoli, Greece

+302710372203

costas@uop.gr

ABSTRACT
In this paper we present a system that facilitates virtual museum
development and usage. The system is based on a game engine,
ensuring thus minimal cost and good performance, and includes
provisions that enable museum curators design the virtual
museum without any specialized knowledge. Besides visual and
auditory information, museum curators may also provide
metadata which provide additional information to the visitor,
while they can be also exploited for searching for exhibits with
certain properties. A guide is also included in the museum, to
present additional information to the visitors and aid them
throughout their tour.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems] - Artificial,
augmented, and virtual realities; H.5.2 [User Interfaces] -
Graphical user interfaces (GUI), I.3.6 [Methodology and
Techniques] - Interaction techniques

General Terms
Design, Management, Human Factors.

Keywords
Virtual museum; game engines; authoring environment; museum
guide.

1. INTRODUCTION
The term VM – Virtual Museum – that was first used by
Tsichritzis and Gibbs [1], describes a museum designed in the
nominal world of a computer, giving the visitor the illusion of
being present in an actual museum. The benefits of a Virtual
Museum are numerous with the greatest being the ability to
experience a visit regardless the distance to the actual museum.
Therefore the development of this technology has met vast
evolution over the past years.

In the current paper the term is used to portray an
interactive system based on three dimensional graphics and
designed to accomplish the same objectives of a “real-world”
museum. The development of a virtual environment is a difficult
and time-consuming process, requiring highly skilled people of
diverse expertise. Usually this task is implemented in the Virtual
Reality Modeling Language (VRML), which is very hard to code

and deliver all the required functionality, or using specialized
environments (e.g. VirTools, Vizard), which are costly and
require high programming skills. In this paper we assert that
Game Engines can be used instead of VRML and dedicated
environments, thus providing the same results. The use of a
Game Engine makes the development easier and provides a
familiar Virtual Environment for users, which can run on simple
Personal Computers without exaggerated system requirements.
These advantages of game engines have been well-documented
in a number of publications in the last few years, reporting
experiences from development efforts regarding virtual reality
systems with different foci: [8] discusses a game-engine based
infrastructure for remote virtual exploration on PDAs; [9] reports
on using a game engine to implement an environment for
building musical compositions in a 3D environment in real time;
notably, [10] gives an overview of game engine features that
facilitate the development of first-person virtual environments
and surveys projects that have adopted game engines for
developing virtual environments. Moreover a Game Engine
provides an expandable environment and usually supports most
popular programming languages. The familiarity of users –
museum creators and visitors alike- with the game engine
environment is owing to the extended use of these engines in the
game area and can be considered as a valuable asset, since the
time to learn the operational environment is minimized and the
user’s skills and attention can be directed solely to the
achievement of the task and not to the environment
idiosyncrasies [7], [11].

Our goal is to create a game engine-based tool that will allow the
creation of virtual museums with limited programming and
designing skills; museum curators, who are mainly concerned
with the arrangement of exhibits, so as to more effectively
communicate the museum message to visitors, are a major target
group of the presented tool. In this context, the tool user must be
capable of defining the building that the exhibition will be
presented in and, thereafter, easily place and arrange exhibits.
The user should be also able to provide additional multimedia
information about each exhibit of the museum, making the
visiting experience more vivid and realistic. Finally, the tool
must allow its user to provide metadata (attributes) for the
exhibit, including short and extended descriptions,
classifications, keywords etc, which make the visit more
informative and facilitate the visitor in locating certain exhibits
or exhibits with specific properties. Since the metadata

mailto:mvictoras@gmail.com
mailto:msfakianos@gmail.co
mailto:gl@uop.gr
mailto:costas@uop.gr

applicable to different museums vary considerably (e.g. the
attributes applicable to a mineralogy museum exhibit are
radically different than those applicable to a painting museum
exhibit), the tool user should also able to define not only
metadata values for each exhibit, but the metadata schema as
well.

The remaining of this paper is structured as follows: related work
is surveyed in section 2; section 3 presents the tool design
principles and decisions, while section 4 discusses the system
architecture and provides details on the constituent modules.
Section 5 focuses on the user interface, and section 6 concludes
the paper and outlines future work.

2. RELATED WORK
There are numerous research activities and papers, focusing on
the design process of a VM. Most of the projects try to minimize
the gap between the experienced and inexperienced user, with
the creation of authoring tools – Graphic User Interfaces (GUI) –
that aim to ease and speed up the development of a VM.

Hendricks [2] proposes a system for specifying interactions in
Virtual Reality Environments. Traditionally, interactions are
specified by the programmer during the implementation phase.
Non-computer experts lack of the knowledge and ability to
specify and modify these interactions. Creating authoring tools
specific for a type of environment reduces significantly this
problem. The system consists of a GUI that helps a non-
experienced user to create the interactions needed. This system
however focuses only on interaction specification, while other
aspects of virtual museum development are not considered.

CiVedi – Customized Virtual Environment for Database
Interaction – [3] is a scalable system providing a flexible and
customizable virtual environment for displaying multimedia
content. The system supports the display of multimedia contents
through a flexible and customizable virtual environment. The
media objects are either stored into a database or dynamically
collected from online digital libraries. This proposal is mainly
targeted for generic multimedia content, and does not take into
account requirements specific to virtual museums, including
exhibit descriptions and classifications, and most importantly,
customization of the museum building and placement and
organization of exhibitions.

The ARCO project – Augmented Representation of Cultural
Objects – [4] aims at developing the whole chain of technologies
required to help museums create, manipulate, manage and
present digitized cultural objects in virtual exhibitions. Dynamic
content creation can be achieved, through predesigned
visualization templates, which allow designers to create virtual
exhibitions very efficiently. The ARCO project adopts X-VRML
as its base technology, allowing for content distribution through
the WWW, but at the same time imposing considerable
requirements on the client that will host the virtual exhibition.
Additionally, interaction in X-VRML is not always as easy to
specify and customize as in generic programming languages.

The Matthew – Museum-oriented Authoring Tool - THEsis Work
– system [5] is a visual authoring tool that helps inexperienced
users setting up an exhibition with user defined constrains.

Moreover, the system sketches a placement algorithm for the
exhibition objects of the museum. The Mathew system, however,
does not directly support the formulation of exhibition: the
curator can specify constraints on how objects should be grouped
and sorted, and the system then interprets these constraints and
creates the exhibition, catering for issues such as maximization
of area coverage. This procedure is counter-intuitive for museum
curators and the result may not be the desired one.

The SAGRES system [6] is an environment built on Web
technology that facilitates the presentation of information that
resides in a museum adapted to the individual characteristics of
each visitor. The added value of the system is a software agent, a
virtual guide, which assists visitors via the monitoring of their
actions. The agent uses a human-computer interaction paradigm,
improvising its actions while helping the visitor, presenting thus
a behavior similar to that of a real world human. The SAGRES
system however does not support an immersive or semi-
immersive museum visit; the software agent aims at supporting
the user in locating exhibits of interests, which are displayed as a
list and the user can then view details on each exhibit.

In [7] the authors present a case study based on an already
developed version of a virtual museum and a newly implemented
version that uses game technologies. The authors conclude that
the application of game technologies in the context of
edutainment is prominent, since these technologies deliver
adequate quality for the majority of the target audience of a
virtual museum, with the extra advantage of the reduced need for
development and system resources. In this work, however,
museum creators had to have programming knowledge to specify
interactions, while a number of activities had to be manually
performed on system configuration files, thus museum curators
could not directly use this system. The work reported in this
paper extends the work presented in [7] by providing a graphical
user interface through which museum curators may perform all
activities related to the construction of the virtual museum; it
also removes any need for interaction programming taking
advantage of the functionalities offered by the game engine.
Finally, this work introduces the virtual guide which assists the
user in his/her navigation within the museum.

3. TOOL DESIGN
The existing literature and an informal study of similar systems
helped in deriving the requirements and the corresponding set of
system specifications.
From the designer’s point of view it is of the essence to create a
system which allows a non-expert to easily develop a virtual
museum. To this end, introducing a new exhibit should be a
simple and easy to execute procedure. A step by step approach in
importing the 3D object along with corresponding documentation
was adopted, to make effortless for a novice user to input an
exhibit in the virtual museum. This includes placement of the
exhibit in the virtual space and arrangement of its presentation
properties, as well as producing all the functionalities required
by end-users.
These functionalities comprise the generation of documentation,
the guiding and the provision of support during the visit in the
virtual environment. Generation and presentation of
documentation can carried out automatically by the system. A

virtual guide in the form of an avatar can ‘read’ the exhibit
properties from a database and depending on the user’s profile
can present the corresponding information. The virtual guide can
also aid the users during their visit, by answering questions
regarding exhibits and offering directions in the virtual space.
For example, at any point of the visit the user can ask the guide
for the location of a specific exhibit or even for other exhibits
similar to the one she sees. The guide will respond with a list of
exhibits and the user can select from this list. The guide then can
either present a museum map or navigate to show the exhibit to
the user.

4. SYSTEM OVERVIEW
After surveying the characteristics, capabilities and restrictions
of 11 game engines, both commercial and open source, the
Torque Game Engine that was chosen for the development of the
project. Some of the advantages of the specific engine are its
extended documentation, its built-in world editor and the ability
to program in C++ when the engine’s scripting language does not
provide the required functionality or performance.

Three major phases can be identified in the life cycle of a virtual
museum built using the presented system: content production,
content management, and visualization.

Content production consists of the creation of (a) digital
representations of museum exhibits (b) the building that will
host the museum and (c) other digital content that will be used
for presentation and visualization purposes (background sounds,
narrations, functional items such as stands and display cases for
placing exhibits, decorative items etc). In order to create the 3D
models of the exhibits, several programs can be used, like
Milkshape 3D, with the sole requirement of saving to a format
compatible with the Torque Game Engine; as for the museum’s
building, a variety of programs can be used as well, while in the
development of the presented work the Quake Army Knife
(QuArK) was employed. The last is a level designer for first
person shooting games and it can export building models that are
supported by Torque Game Engine.
Content management consists of the population of the content
database with the digital exhibits and associated resources, and
the establishment of relationships between resources when
necessary. For instance, exhibits may be linked with the
showcases they should be displayed in, with keywords and
taxonomy branches and so forth. An XML storage schema was
chosen for this purpose, since it offers a number of advantages:
first, the files may be edited with a variety of tools ranging from
simple text editors for mini-editing to customized tools tailored
to the specific XML schema. Second, XML parsers and XML to
memory structure mapping toolkits are widely available and can
be employed for reading the data into the visualization engine.
Third, interoperability with databases and data exchange with
other museums is promoted.
Finally, visualization of the Virtual Museum is performed by the
Game Engine itself. Since the behavior of the Torque Game
engine is highly customizable, this ability has been exploited to
specify the way exhibits will appear on the user interface as well
as the interactions available to museum visitors for each exhibit.
This has been accomplished by creating script files, which are
hooked into the Game Engine.

4.1 Torque Game Engine Overview
The Torque Game Engine consists of different modules that
cooperate to provide a smooth experience to the user. The
modules communicate each other via an IMC (Inter-Module
Communication) module. The adoption of a modular architecture
promotes software testability and maintainability, since each
module can be tested and maintained separately from the others,
while it also allows for replacing a specific module
implementation with another if this is required (e.g. when
specialized functionality [e.g. driving a particular 3D display] or
higher performance is required); note that such replacements will
typically be performed as installations of commercial, off-the-
shelf (COTS) products and will not encumber the process of
developing or visiting the virtual museum.
The modules comprising the Torque Game Engine are briefly
presented in the following paragraphs:

4.1.1 Scripting Language Interpreter Module
System interaction with the “real world” (i.e. museum visitors) is
defined by the programmer through scripts written in
TorqueScript – an object-oriented language through which all
system aspects are efficiently accessible and customizable. Using
TorqueScript the programmer can define how the system will
respond to user input, “spontaneous” system actions (e.g.
proposing a specific exhibit for viewing), pre-configured
sequences (e.g. a proposed path in the museum) and so forth.

4.1.2 Graphics Module
The Graphics Module renders the Virtual World for presentation
to the user. It arranges for the creation of the visual image, taking
into account the capabilities of the output device (e.g. standard
2D monitor, stereoscopic features, hardware acceleration etc). An
important feature of the Torque Game Engine is the continuous
level of detail it provides for objects [12]. This feature enables
the use of very accurate artifact representations when the visitor
stands close to an exhibit, while smaller and more efficient
resolutions are used for distant objects and transitions between
the different resolutions are smooth.

4.1.3 Sounds Module
The Sounds Module is responsible for playing back the audible
content, such as background music, sound effects and synthesized
speech. It retrieves sound resources, performs all necessary
decoding and finally mixes the content for playback. Similarly to
the graphics module, it takes into account the capabilities of the
underlying hardware.

4.1.4 Physics Module
The Physics module is equipped with mathematical models and
functions that enable it to accurately reproduce the real-world
effect of physical laws on objects, including gravity, waves,
wind, external stimuli (e.g. forces, blasts) etc. The Torque game
engine employs sophisticated models, making the final user
experience highly realistic.

4.1.5 Core Module
The Core Module is the “supervisor” of the other modules. It
coordinates module execution and communication, and monitors
the execution flow of the virtual environment.

4.2 System Overview
The overall system architecture is illustrated in Figure 1, where
we can identify three main components, namely the authoring
tools, the database and the system logic. These components are
briefly presented in the following paragraphs.

4.2.1 Authoring tools
A set of GUI-based tools is available to help the museum
developer create the Virtual Museum easily and quickly. The
user can add, edit and delete exhibits from a Virtual Museum
through a graphical user interface. The interface allows also the
user to enter exhibit metadata (name, description, or other
attribute values), while exhibit placement in the museum
building is also performed visually by clicking and dragging
within the museum area. Digital content producers
(photographers, 3D modelers, sound composers etc) use the
authoring tools to create the necessary digital exhibit
representations and additional multimedia resources, and
museum curators are responsible for adding metadata and
organizing the collection presentation. Museum curators may
also define which interactions are available for each exhibit.
Figure 2 illustrates the phase of exhibit metadata editing.

Visualization -
User interaction

Museum
Visitor

XML
<exhibit> … </exhibit>
3D models, images
and sounds

DatabaseMuseum
curators

Digital
content

producers
Authoring tools Logic (Behavior & control scripts)

Developed
system

Figure 1. Overall system architecture

Figure 2. Adding information about an exhibit

4.2.2 System Logic
System logic defines the way that the system loads, executes and
interacts with the user. It has been defined through TorqueScript
files, and native code execution was used when the required
functionality (e.g. XML parsing) was not available in
TorqueScript. The first notable functionality implemented
through the TorqueScript files is the monitoring of user behavior
within the museum and the execution of relevant actions. In
particular, when the visitor approaches an exhibit, the exhibit
name and description appear for the visitor to read; moreover, an

icon becomes visible through which the visitor may access
additional information on the item (detailed descriptions,
information regarding the creators or any other metadata entered
by the museum curators).

The second notable functionality controlled through TorqueScript
logic is that of the museum guide, an agent visualized as an
avatar, which assists the visitor in locating exhibits, gathering
and displaying additional information, while it may also offer
guided tours. The museum guide is described in more detail in
section 5.

4.2.3 Database Module
The Database Module is responsible for the storage and retrieval
of multimedia resources and associated metadata for museum
exhibits and the presentation in general. An interface to the
database module has been built into the Torque game engine,
and it communicates with the other Torque engine modules
(submission of data retrieval requests and returning of results)
via the IMC. The actual storage schema for the managed data
(e.g. RDBMS, XML files, XML database or even plain text files)
has been kept internal to the database module; this allows for
using the most appropriate storage schema in a transparent
manner. Currently, metadata are represented as XML files, while
multimedia resources are stored as separate files, in the format
they will be finally used by the Torque Game engine; the latter
choice allows the rapid retrieval and direct usage without the
need of format conversions or transcoding. The XML files
describing the individual exhibits and museum objects contain
links to the associated multimedia resources in the form of path
names. Storage of multimedia resources as separate files finally
allows their in-place editing with the appropriate tools (e.g. 3D
modelers or sound editors), without the need for export and
import.

The same interface is employed by the authoring tools to store,
retrieve and update the database contents.
One of the major design decisions for our system was that it
should be able to accommodate the metadata needs of any
museum. Since these needs are quite diverse among museums
due to the different nature of their exhibits and/or differences in
the information that they decide to present to the visitors, it was
decided that each museum should be able to tailor the metadata
schema to its own, particular needs. The authoring tools
environment encompasses this functionality, by allowing the
museum curator to specify which attributes (metadata elements)
apply to the museum exhibits.
Figure 3 illustrates the metadata schema definition process.
Besides the user-defined metadata elements, the following three
attributes are compulsory for the metadata schema:

Figure 3. Specifying the metadata attributes for a museum

• id: the id of the exhibit that identifies it uniquely. It is system-
assigned and used internally by the system for maintaining
associations between museum areas, exhibits and available
interactions.

• name: a name for the given exhibit. It is displayed when the
visitor approaches an exhibit and in result lists when the user
poses queries to the system.

• description: A short description of the exhibit, displayed when
the visitor moves close to an exhibit.

Figure 4 depicts an excerpt from the XML file describing
exhibits in a paintings museum.
<?xml version="1.0" ?>
<objects>
 <object id="12">
 <name>Guernica</name>
 <description>Guernica is a painting by Pablo Picasso, ….</description>
 <author>Pablo Picasso</author>
 <century>20th</century>
 <style>Surrealistic</style>
 <idiom>War</idiom>
 </object>
…

Figure 4. XML description excerpt

5. USER INTERFACES
Our system provides two different types of user interfaces. The
first one is the creators’ interface and is used during the museum
development phase by digital content producers who populate
database with multimedia content and museum curators who
organize this content into exhibitions and provide the exhibit
metadata. The second one is the visitors’ interface, which is used
by visitors to navigate through the museum, visualize its content
and access the exhibit metadata. In the following paragraphs, the
main characteristics of these interfaces are discussed.

5.1 Creator Interface
Initially the creator begins with an empty world; at this stage, the
terrain of the world must be set up (see Figure 5), the territory
and scenery must be designed and the building in which the
virtual exhibits will be placed must be created. This task will be
undertaken by a digital content producer, although a
preconfigured world can be drawn from a library, skipping the

world setup step altogether. Following the formulation of the
world, or even in parallel to it, digital content producers can
populate the multimedia database with the digital representations
of the exhibits and other pertinent multimedia content.

Once the world has been completed and digital representations of
exhibits have become available, museum curators can begin
arranging the exhibits into exhibitions. In order to place an
exhibit within the museum area, the museum curator needs
simply to choose the relevant menu command and select the area
in which the exhibit will be displayed. The placement procedure
is performed visually, by clicking and dragging and scaling is
allowed to facilitate the maintenance of real-word size ratios.
Curators may place exhibits on walls, stands, showcases or even
on the room floor, opting for the arrangement that will better
serve visitors in (a) navigating to the exhibit [e.g. an ancient
earring exhibit may not even draw the visitor’s attention unless
placed in a show case] and (b) examining all interesting aspects
of the exhibit [e.g. placing a statue close to a wall clearly inhibits
the inspection of all its sides].
Museum curators also define the exhibit metadata (cf. Figure 2).
This can be performed either before or after the placement of an
exhibit in the virtual museum world. Defining metadata for
exhibits non-placed exhibits effectively contributes to the
creation of a library, from which exhibits can readily be drawn
and placed into a virtual museum.

Figure 5. A new empty world.

5.2 Visitor interface
The visitor interface is the interface presented to museum
visitors. One of the choices offered by the Torque game engine
regarding this interface was the choice of the perspective, which
may be either first person (the visitor “sees” through the eyes of
the avatar s/he controls) or a third person perspective (a camera
follows the user avatar and displays both the avatar and its
surroundings). We adopted the first person perspective as the
default in our museum, since it has been found to give visitors a
better sense of immersion and personal involvement. The visitor
is allowed to switch to the third person perspective, if s/he wants
to see a more generic view of the avatar surroundings.
Another feature of the Torque game engine that was maintained
(i.e. not restricted) in the visitor interface was the existence of a

second camera, which is allowed to move independently of the
user’s avatar. This camera can be used for two purposes: first, it
allows the visitor to move and examine the virtual museum
without loosing his/her current position, since the avatar stands
still while the second camera is moving. Second, since the user
avatar obeys the law of gravity, it always remains on the floor,
thus exhibits that are placed high in the museum building will
appear distorted due to the high angle at which they are viewed.
Note that placement of exhibits in high positions cannot always
be avoided, if the real-world ratios of objects need to be
maintained. For example, in a museum hosting a digital
representation of the Ishtar gate, under the first person
perspective the visitor would view the decorations at the top
under an angle of 80,7 degrees, when standing at a distance of
(the equivalent of) 2m from the exhibit, which will lead to a
highly slanted view. (The height of the Ishtar gate is 14m while
the avatar eyes are assumed to be at 1.70m.) Moving further from
the exhibit will reduce the angle, but will also reduce the level of
detail available to the visitor. By employing the second camera,
the visitor may close up to the target area and view it without any
slant or distortion.
When the visitor moves close to an exhibit, the exhibit’s
description is automatically displayed at the top of the screen
(see Figure 6). Another option available to the visitor at this
point (i.e. when close to an exhibit) is to find exhibits that are
related to the current exhibit, as such a relation is indicated
through metadata values (e.g. same creator, same name and so
forth). In order to perform this search, the user simply chooses
the attribute of interest (Figure 7), and the system responds with
a list of matching exhibits. A “General search” is also available,
where the user types in the value that the selected attribute must
match.

Figure 6. Zooming into an exhibit

Figure 7. Searching for related exhibits

Once the visitor has chosen an exhibit from the result list, the
museum guide undertakes the task of assisting the visitor to
navigate to the chosen exhibit. The museum guide is an avatar
that in these cases firstly approaches the visitor and then starts
moving towards the location of the selected item; the visitor must
simply follow the guide in order to reach the selected exhibit.
This approach was preferred against teleporting the visitor to the
selected exhibit, since it resembles more closely the real-world
method and gives visitors a better sense of involvement. Figure 8
depicts a screenshot where the guide has leaded the visitor to the
selected exhibit.

Figure 8. The guide has leaded the visitor to the selected

exhibit

6. CONCLUSIONS
In this paper we have presented the design rationale, the overall
architecture and detailed components and interface descriptions
of an integrated environment for authoring and navigating into
virtual museums. The presented environment is based on a game
engine, which guarantees a small cost and good performance,
while the interfaces have been appropriately customized to

facilitate the tasks of both authors and visitors. Compared to
previous approaches that have implemented virtual museums
using game engines (in particular with [7] for which more details
are available), the proposed environment has a number of
important advantages, including (a) removing any need for
programming (b) all virtual museum creation functionality is
available through user-friendly GUIs that can be directly used by
museum curators (c) a virtual guide has been added to assist the
user in navigating within the exhibition (d) better accuracy for
displayed artifacts, through exploiting the advanced capabilities
of the game engine graphics subsystem.
Future work will focus on enhancing the intelligence of the
museum guide, enabling it to deduce the preferences and likings
of the visitor and suggest further exhibits for viewing. Dynamic
formulation of exhibition areas based on user queries as well as
pre-configured tours will be also investigated.

7. REFERENCES
[1] Tsichritzis D, Gibbs S. 1991 Virtual museums and virtual

realities. In: Proceedings of the International Conference on
Hypermedia and Interactivity in Museums, Pittsburgh, PA..

[2] Hendricks, Z., Marsden, G., and Blake, E. 2003. A meta-
authoring tool for specifying interactions in virtual reality
environments. In Proceedings of the 2nd international
Conference on Computer Graphics, Virtual Reality,
Visualisation and interaction in Africa (Cape Town, South
Africa, February 03 - 05, 2003). AFRIGRAPH '03. ACM,
New York, NY, 171-180. DOI=
http://doi.acm.org/10.1145/602330.602362

[3] Mazzoleni, P., Bertino, E., Ferrari, E., and Valtolina, S.
2004. CiVeDi: a customized virtual environment for
database interaction. SIGMOD Rec. 33, 3 (Sep. 2004), 15-
20. DOI= http://doi.acm.org/10.1145/1031570.1031574

[4] Wojciechowski, R., Walczak, K., White, M., and Cellary,
W. 2004. Building Virtual and Augmented Reality museum
exhibitions. In Proceedings of the Ninth international
Conference on 3D Web Technology (Monterey, California,

April 05 - 08, 2004). Web3D '04. ACM, New York, NY,
135-144. DOI= http://doi.acm.org/10.1145/985040.985060

[5] Grimaldi, A. Catarci, T. 1999. The Matthew system for
creating virtual museums. In IEEE International Conference
on Multimedia Computing and Systems (Florence, Italy,
June 06 – 11, 1999), ISBN: 0-7695-0253-9

[6] Moraes, M. C., Bertoletti, A. C., da Rocha Costa, A.C.
1999. Virtual Guides to Assist Visitors in the SAGRES
Virtual Museum. 19th International Conference of the
Chilean Computer Science Society, p. 35-42.

[7] Lepouras, G., Vassilakis, C. 2005. Virtual Museums for All:
Employing Game Technology for Edutainment, Virtual
Reality Journal, Vol. 8, 2005, pp. 96-106.

[8] Chiara, R. D., Erra, U., Petta, A. Scarano, V., Serra L.
2007. An infrastructure for remote virtual exploration on
PDAs. 11th International Conference Information
Visualization (IV'07)

[9] Bertacchini, F., Bilotta, E., Gabriele, L., Mazzeo, V.,
Pantano, P., Rizzuti, C., Vena, S. 2007.
ImaginationTOOLSTM: Made to Play Music. K.-c. Hui et al.
(Eds.): Edutainment 2007, LNCS 4469, pp. 369–380.

[10] Trenholme, D., Smith, S. 2008. Computer game engines for
developing first-person virtual environments. Virtual
Reality

[11] Robillard G, Bouchard S, Fournier T, Renaud P. 2003.
Anxiety and presence using VR immersion: a comparative
study of the reactions of phobic and non-phobic participants
in therapeutic virtual environments derived from computer
games. CyberPsychol Behav 6(5):467–475

[12] Garage Games, 2008. Torque Game Engine Advanced:
Comparison.
http://www.garagegames.com/products/torque/tgea/featureco
mp

http://doi.acm.org/10.1145/602330.602362
http://doi.acm.org/10.1145/1031570.1031574
http://doi.acm.org/10.1145/985040.985060
http://www.garagegames.com/products/torque/tgea/featureco

