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Abstract— Contemporary networks accommodate handling of 
multiple priorities, aiming to provide suitable QoS levels to 
different traffic classes. In the presence of multiple priorities, a 
scheduling algorithm is employed to select each time the next 
packet to transmit over the data link. Class-based Weighted 
Fair Queuing (CBWFQ) scheduling and its variations, is 
widely used as a scheduling technique, since it is easy to 
implement and prevents the low-priority queues from being 
completely neglected during periods of high-priority traffic. By 
using this scheduling, low-priority queues have the opportunity 
to transmit packets even though the high-priority queues are 
not empty. In this paper, the modeling, analysis and 
performance evaluation of a single-buffered, dual priority 
multistage interconnection network (MIN) operating under the 
CBWFQ scheduling policy is presented. Performance 
evaluation is conducted through simulation, and the 
performance measures obtained can be valuable assets for 
MIN designers, in order to minimize the overall deployment 
costs and delivering efficient systems. 

Keywords-Multistage Interconnection Networks; Delta 
Netwoks; Performance Evaluation 

I. INTRODUCTION 

During the last decade, we have witnessed a dramatic 
increase in both network speeds and the amount of network 
traffic. In order to provide high quality-of-service (QoS) in 
today's high-speed networks, different priorities are assigned 
to packets entering the networks, and packet scheduling 
algorithms are employed to select each time the next packet 
to transmit over the data link. To this end, a number of 
packet scheduling algorithms have been proposed, with the 
most prominent ones including strict priority queuing [27], 
round-robin [44] and its variations (e.g. weighted round-
robin [10] [19], deficit round-robin [28], smoothed round-
robin [14]), generalized processor sharing (GPS) [11], 
weighted fair queuing (P-GPS) [9], class-based weighted 
fair queuing [46], virtual clock [45] and self-clocked fair 
queuing [13]. In a number of works (e.g. [50], [51], [52]) 
packets enter the MIN without a priority (as opposed to the 
previous approaches where the where priorities are assigned 
to packets before they enter the MIN), and the MIN 

internally prioritizes packets aiming either to offload the 
most heavily loaded queues and reduce blockings [50] or 
avoid crosstalk in optical MINs ([51], [52]); in essence, 
however, only the priority source changes (internal vs. 
externally defined), while for selecting the most prominent 
packet for forwarding, one of the previously listed 
algorithms is applied. 

The selection of the packet scheduling algorithm can 
drastically affect the quality of service observed by the 
packets traversing the network and the overall network 
performance, since different algorithms aim to optimize 
different metrics of packet QoS, such as delay, delay jitter, 
throughput and fairness. Other algorithm properties that are 
taken into account for choosing the packet scheduling 
algorithm that will be implemented in a network are its 
space and time complexity [14] (since they affect the 
memory and the processing required to implement the 
algorithm, respectively) and the ease of implementation, 
since more complex algorithms are generally more 
demanding in space and time and their implementations are 
more prone to errors. 

Among the algorithms described above, strict priority 
queuing (i.e. servicing lower priority packets only when 
higher priority ones are not waiting to be serviced) and 
weighted round robin (i.e. assigning a portion of the 
available bandwidth to each priority queue) and class-based 
weighted fair queuing [i.e. having N data flows currently 
active, with weights w1,w2...wN, data flow i will achieve an 
average data rate of R*wi/(w1+w2+...+wN), where R is the 
data link rate] [46] have been adopted by the industry and 
implemented in most commercial products (e.g. [6], [17], 
[25], [3], [8], [47], [48]) mainly due to their following 
characteristics (a) they are easy to implement and verify (b) 
they exploit well the available network bandwidth (c) they 
have very small memory and processing power 
requirements and (d) network administrators find them easy 
to understand and configure. 

Regarding the network switch internal architecture, 
multistage interconnection networks (MINs) with crossbar 



switching elements (SEs) are frequently proposed for 
interconnecting processors and memory modules in parallel 
multiprocessor systems [1], [7], [33] and have also recently 
been identified as an efficient interconnection network for 
communication structures such as gigabit Ethernet switches, 
terabit routers and ATM switches [4], [29], [34]. Significant 
advantages of MINs include their low cost/performance 
ratio and their ability to route multiple communication tasks 
concurrently. MINs with the Banyan [12] property are 
proposed to connect a large number of processors to 
establish a multiprocessor system; they have also received 
considerable interest in the development of packet-switched 
networks. Non-Banyan MINs are, in general, more 
expensive than Banyan networks and more complex to 
control. 

In the current literature, the performance of multi-priority 
MINs under the strict priority queuing algorithm has been 
studied extensively through both analytical methods and 
simulation experiments (e.g. [38], [39], [20], [5], [23], [35]), 
considering various buffer sizes (mainly buffers of sizes 1, 2 
and 4), buffer size allocation to different priority classes 
(symmetric vs. asymmetric [39]), arrival processes (e.g. 
uniform vs. bursty [15]), traffic patterns (e.g. uniform vs. 
hotspot [41],[42],[19]; unicast vs. multicast [16],[30]) and 
internal MIN architectures (e.g. single-layer vs. multi-layer 
[36]). These studies have shown that under high network 
load (packet arrival probability λ > 0.6) the QoS offered to 
low priority packets rapidly deteriorates, with throughput 
significantly dropping and delay sharply increasing.  

Using class-based weighted fair queuing as a packet 
scheduling algorithm instead of strict priority queuing 
appears as a plausible solution for providing better QoS to 
low-priority packets under increased network load since one 
of the goals of this scheduling technique is to increase 
fairness, giving low-priority queues the opportunity to 
transmit packets even though the high-priority queues are 
not empty. Class-based weighted fair queuing overcomes 
some limitations of weighted round-robin, namely the fact 
that it cannot guarantee fair link sharing and the need to 
know the mean packet size of each connection in advance 
[49]. Insofar, however, there are no studies to quantify (a) 
the gains obtained for low-priority packets (and conversely 
the losses incurred for high-priority packets) by employing 
the class-based weighted fair queuing packet scheduling 
algorithm and (b) the effect of the individual queue weight 
assignment to the overall performance of the multistage 
interconnection network and the QoS offered to packets of 
different priority classes. 

In this paper, a simulation-based performance evaluation 
for a single-buffered MIN natively supporting two priority 
classes and employing the class-based weighted fair queuing 
packet scheduling algorithm is presented. Moreover, 
analytical equations have been derived from the new 
queuing modeling based on the one clock history 

consideration. In this performance evaluation, we calculate 
the QoS offered to packets of different priority classes, 
under high network loads and under different ratios of 
high/low priority packets within the overall network traffic. 
We also study the effect of queue weight assignment in the 
QoS offered to packets of different priorities. 

The rest of this paper is organized as follows: in section 
 II we present the dual priority MIN and give details on its 
operation and the class-based weighted fair queuing packet 
scheduling algorithm. In section III we present the analytical 
equations for the MIN, extending Mun’s [24] 3-state model 
to a six-state one for improving its accuracy. In sections  IV 
and  V we present the performance metrics and the 
simulation results, respectively, while in section  VI 
conclusions are drawn and future work is outlined. 

II. DUAL-PRIORITY MIN AND THE CLASS-BASED 

WEIGHTED FAIR QUEUING SCHEDULING ALGORITHM 

A Multistage Interconnection Network (MIN) can be 
defined as a network used to interconnect a group of N 
inputs to a group of M outputs using several stages of small 
size Switching Elements (SEs) followed (or preceded) by 
link states. Its main characteristics are its topology, routing 
algorithm, switching strategy and flow control mechanism. 
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Figure 1. A 3-stage Delta Network 

All types of blocking Multistage Interconnection 
Networks (Delta Networks [26], Omega Networks [21] and 
Generalized Cube Networks [2]) with the Banyan property 
which is defined in [12] are characterized by the fact that 



there is exactly a unique path from each source (input) to 
each sink (output). Banyan MINs are multistage self-routing 
switching fabrics. Consequently, each SE of kth stage, 
where k=1...n can decide in which output port to route a 
packet, depending on the corresponding kth bit of the 
destination address. 

A typical configuration of a (N X N) Delta Network is 
depicted in figure 1. In order to support priority handling, 
each SE has two transmission queues per link, 
accommodated in two (logical) buffers, with one queue 
dedicated to high priority packets and the other dedicated to 
low priority ones. In this paper, we consider a dual-priority 
Multistage Interconnection Network with the Banyan 
property that operates under the following assumptions: 
 The network clock cycle consists of two phases. In the 

first phase, flow control information passes through the 
network from the last stage to the first one. In the second 
phase, packets flow from one stage to the next in 
accordance to the flow control information.  

 The arrival process of each input of the network is a 
simple Bernoulli process, i.e. the probability that a packet 
arrives within a clock cycle is constant and the arrivals 
are independent of each other. We will denote this 
probability as λ. This probability can be further broken 
down to λh and λl, which represent the arrival probability 
for high and low priority packets, respectively. It holds 
that λ = λh + λl. 

 Under the dual-priority mechanism, when applications or 
architectural modules enter a packet to the network they 
specify its priority, designating it either as high or low. 
The criteria for priority selection may stem from the 
nature of packet data (e.g. packets containing streaming 
media data can be designated as high-priority while FTP 
data can be characterized as low-priority), from protocol 
intrinsics (e.g. TCP out-of-band/expedited data vs. 
normal connection data [31]) or from properties of the 
interconnected system architecture elements. 

 A high/low priority packet arriving at the first stage (k=1) 
is discarded if the high/low priority buffer of the 
corresponding SE is full, respectively. 

 A high/low priority packet is blocked at a stage if the 
destination high/low priority buffer at the next stage is 
full, respectively. 

 Both high and low priority packets are uniformly 
distributed across all destinations, and each high/low 
priority queue uses a FIFO policy for all output ports. 

 Each packet priority queue is statically assigned a weight, 
which specifies the bandwidth ratio that will be dedicated 
to the particular queue. Naturally, the sum of all weights 
must be equal to 1. 

 Upon reception, packets are first classified according to 
their priority, and are then assigned to the queue 
specifically dedicated to the particular priority (figure 2). 

 At each network cycle, the class-based weighted fair 
queuing algorithm examines the priority queues to select 
the packet to be forwarded through the output link, 
always observing the bandwidth ratio that has been 
assigned to each queue. A prominent method for 
achieving this is to determine the set S of non-empty 
queues in the system and choosing a queue among them 

with probability
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assigned to queue k [46]. This is analogous to lottery 
scheduling used in operating systems [43]. We note here 
that the class-based weighted fair queuing algorithm 
considered in this paper is work conserving, i.e. a packet 
is always transmitted when there is traffic waiting, as 
opposed to non-work conserving algorithms which do not 
transmit a packet if the queue whose turn is to transmit a 
packet is found to be empty [22]. If a queue does not use 
its bandwidth ratio within a time window, this bandwidth 
is divided among the queues that do have packets to 
transmit, proportionally to their weights. 

 When two packets at a stage contend for a buffer at the 
next stage and there is no adequate free space for both of 
them to be stored (i.e. only one buffer position is 
available at the next stage), there is a conflict. Conflict 
resolution in a single-priority mechanism operates under 
the following scheme: one packet will be accepted at 
random and the other will be blocked by means of 
upstream control signals. In a dual-priority mechanism 
the class-based weighted fair queuing algorithm 
determines which class of two buffer-queues is serviced 
by the SE processor. 
The priority class of each packet is indicated through a 
priority bit in the packet header, thus it suffices for the 
SE to read the header in order to make a decision on 
which packet to store and which one to block. 

 All SEs have deterministic service time. 
 Finally, all packets in input ports contain both the data to 

be transferred and the routing tag. In order to achieve 
synchronously operating SEs, the MIN is internally 
clocked. As soon as packets reach a destination port they 
are removed from the MIN, so, packets cannot be 
blocked at the last stage. 
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Figure 2. Class-based weighted fair queuing algorithm 



III. ANALYTICAL EQUATIONS FOR THE DUAL-PRIORITY 

MIN 

Our analysis introduces a novel model, which considers 
not only the current state of the associated buffer, but also 
the previous one. Based on the one clock history 
consideration we enhance the Mun’s [24] three states model 
with a six states buffer model, which is described in the 
following paragraphs. 

A. State notations for c-class priority queues 

Since the proposed model is exemplified in a single-
buffered configuration the buffer state will be either empty 
(‘0’) or full (‘1’) at each clock cycle. Taking into account 
the history of covering one clock cycle, the following states 
are examined: 
 State ‘00c’: c-class priority buffer was empty at the 

beginning of the previous clock cycle and it is also empty 
at beginning of the current clock cycle. 
 

 State ‘01c’: c-class priority buffer was empty at the 
beginning of the previous clock cycle, while it contains a 
new c-class priority packet at the current clock cycle (a 
new packet arrived). 

 
 State ‘10c’: c-class priority buffer had a packet at the 

previous clock cycle, while it contains no packet at the 
current clock cycle (the packet was transmitted and no 
new packet was received). 

 
 State ‘11nc’: c-class buffer had a packet at the previous 

clock cycle and has a new one at the current clock cycle 
(the previous one was successfully transmitted and the 
new packet was just received).  

 
 State ‘11bc’: c-class buffer had a packet at the previous 

clock cycle and has the same packet at the current clock 
cycle; an attempt was made to transmit the packet during 
the previous clock cycle but it failed due to blocking. 

 
 State ‘11wc’: c-class buffer had a packet at the previous 

clock cycle and has the same packet waiting at the 
current clock cycle, because the conjugate priority queue 
(c~-class priority queue) had also a packet ready to be 
transmitted in the previous clock cycle, and the 
bandwidth allocation algorithm selected the packet in the 
c~-class priority queue for transmission. Within a 
switching element SE, the conjugate of the high-priority 
queue is the low-priority queue of the same element SE, 
and vice versa. 

B. Definitions for c-class priority queues 

The following variables are defined in order to develop 
an analytical model. In all definitions, SE(k) denotes a SE at 
stage k of the MIN 

 
 P00(k,t)c is the probability that a c-class priority buffer of 

SE(k) is empty at both (t-1)th and tth network cycles. 
 

 P01(k,t)c is the probability that a c-class priority buffer of 
SE(k) is empty at (t-1)th network cycle and has a new c-
class priority packet at tth network cycle. 

 
 P10(k,t)c is the probability that a c-class priority buffer of 

SE(k) has a c-class priority packet at (t-1)th network cycle 
and is empty at tth network cycle. 

 
 P11n(k,t)c is the probability that a c-class priority buffer of 

SE(k) has a packet at (t-1)th network cycle and has a new 
one at tth network cycle. 

 
 P11b(k,t)c is the probability that a c-class priority buffer of 

SE(k) has a packet at (t-1)th network cycle and still has 
the same packet at tth network cycle, as the packet could 
not be transmitted due to blocking. 

 
 P11w(k,t)c is the probability that a c-class priority buffer of 

SE(k) has a packet at (t-1)th network cycle and still has 
the same packet at tth network cycle, as the packet could 
not be transmitted because the conjugate priority queue 
(c~-class priority queue) had also a packet ready to be 
transmitted at (t-1)th network cycle, and the bandwidth 
allocation algorithm selected the packet in the c~-class 
priority queue for transmission.. 
 

 q(k,t)c is the probability that a c-class priority packet is 
ready to be sent into a buffer of SE(k) at tth network cycle 
(i.e. a c-class priority packet will be transmitted by an 
SE(k-1) to SE(k)). 
 

 r01(k,t)c is the probability that a c-class priority packet in 
a buffer of SE(k) is ready to move forward during the tth 
network cycle, given that the buffer is in ‘01c’state. 
 

 r11n(k,t)c is the probability that a c-class priority packet in 
a buffer of SE(k) is ready to move forward during the tth 

network cycle, given that the buffer is in ‘11nc’ state. 
 

 r11b(k,t)c is the probability that a c-class priority packet in 
a buffer of SE(k) is ready to move forward during the tth 

network cycle, given that the buffer is in ‘11bc’ state. 
 

 r11w(k,t)c is the probability that a c-class priority packet in 
a buffer of SE(k) is ready to move forward during the tth 

network cycle, given that the buffer is in ‘11wc’ state. 

C. Mathematical analysis for c-class priority queues 

The following equations, derived from the state transition 
diagram in figure 3, represent the state transition 



probabilities of c-class priority queues as clock cycles 
advance.  
 

 
Figure 3. A state transition diagram of a c-class priority buffer of SE(k) 

The probability that a c-class priority buffer of SE(k) was 
empty at the (t-1)th network cycle is P00(k,t-1)c + P10(k,t-1)c. 
Therefore, the probability that a c-class priority buffer of 
SE(k) is empty both at the current tth and previous (t-1)th 
network cycles is the probability that the SE(k) was empty 
at the previous (t-1)th network cycle multiplied by the 
probability [1-q(k,t-1)c] of no c-class priority packet was 
ready to be forwarded to SE(k) during the previous network 
cycle (the two facts are statistically independent, thus the 
probability that both are true is equal to the product of the 
individual probabilities). Formally, this probability P00(k,t)c 
can be expressed by 

P00(k,t)c = [1-q(k,t-1)c] * [P00(k,t-1)c +P10(k,t-1)c] (1) 

The probability that a c-class priority buffer of SE(k) was 
empty at the (t-1)th network cycle and a new c-class priority 
packet has arrived at the current tth network cycle is the 
probability that the SE(k) was empty at the (t-1)th network 
cycle [which is equal to P00(k,t-1)c + P10(k,t-1)c] multiplied 
by the probability q(k,t-1)c that a new c-class priority packet 
was ready to be transmitted to SE(k) during the (t-1)th 
network cycle. Formally, this probability P01(k,t)c can be 
expressed by 

P01(k,t)c = q(k,t-1)c * [P00(k,t-1)c + P10(k,t-1)c] (2) 

The case that a c-class priority buffer of SE(k) was full at 
the (t-1)th network cycle but is empty during the tth network 
cycle effectively requires the following two facts to be true: 
(a) a c-class priority buffer of SE(k) was full at the (t-1)th 

network cycle and the c-class priority packet was 
successfully transmitted and (b) no c-class priority packet 
was received during the (t-1)th network cycle to replace the 
transmitted c-class priority packet into the buffer. The 
probability for fact (a) is equal to the product of the 
following two probabilities: i) the probability that the SE 
processor was not occupied by the packet of the adjacent 
queue of SE(k), which is just [1-U(k,t-1)c~ 

* sc~ ], where 
U(k,t-1)c~ expresses the probability that a packet exists in 
the adjacent c~-class priority queue of SE(k) during network 
cycle t-1 and sc~ denotes the service-rate given by the class-
based weighted fair queuing this c~-class priority queue. ii) 
[r01(k,t-1)c 

* P01(k,t-1)c + r11n(k,t-1)c 
* P11n(k,t-1)c + r11b(k,t-1)c 

* P11b(k,t-1)c + r11w(k,t-1)c * P11w(k,t-1)c]; this probability is 
computed by considering all cases that during the network 
cycle t-1 the SE had a c-class priority packet in its buffer 
and multiplying the probability of each state by the 
corresponding probability that the packet was successfully 
transmitted to a next stage SE. Finally, the probability of 
fact (b), i.e. that no c-class priority packet was ready to be 
transmitted to SE(k) during the previous network cycle is 
equal to [1-q(k,t-1)c]. Consequently, the probability P10(k,t)c 
can be computed by the following formula: 

P10(k,t)c = [1-U(k,t-1)c~ * sc~ ] * [1-q(k,t-1)c] * [r01(k,t-1)c * 
P01(k,t-1)c + r11n(k,t-1)c * P11n(k,t-1)c + r11b(k,t-1)c * P11b(k,t-
1)c + r11w(k,t-1)c * P11w(k,t-1)c ] (3) 

The probability that a c-class priority buffer of SE(k) had 
a packet at the (t-1)th network cycle and has also a new one 
(different than the previous; the case of having the same 
packet in the buffer is addressed in the next paragraphs) at 
the tth network cycle is the probability that the SE processor 
was not occupied by the packet of the adjacent queue of 
SE(k) at the (t-1)th network cycle, which is just [1-U(k,t-1)c~ 

* s
c~ ], multiplied firstly by the probability of having a ready 

c-class priority packet to move forward at the previous (t-
1)th network cycle [which is equal to r01(k,t-1)c * P01(k,t-1)c + 
r11n(k,t-1)c * P11n(k,t-1)c + r11b(k,t-1)c * P11b(k,t-1)c + r11w(k,t-
1)c * P11w(k,t-1)c] and multiplied secondly by q(k,t-1)c, i.e. 
the probability that a c-class priority packet was ready to be 
transmitted to SE(k) during the previous network cycle. 
Formally, this probability P11n(k,t)c can be expressed by 

 
P11n(k,t)c = [1-U(k,t-1)c~ 

* s
c~] * q(k,t-1)c * [r01(k,t-1)c * P01(k,t-

1)c + r11n(k,t-1)c * P11n(k,t-1)c + r11b(k,t-1)c * P11b(k,t-1)c + 
r11w(k,t-1)c * P11w(k,t-1)c]                                       (4) 
 

The next case that should be considered is when a c-class 
priority buffer of SE(k) had a packet at the (t-1)th network 
cycle and still contains the same packet blocked at the tth 

network cycle. This occurs when the packet in the c-class 
priority buffer of SE(k) was ready to move forward at the (t-
1)th network cycle, but it was blocked (not forwarded) 
during that cycle, due to a blocking event - either (a) the 



associated c-class priority buffer of the next stage SE was 
already full due to another blocking, or (b) buffer space was 
available at stage k+1 but it was occupied by a second 
packet of the current stage contending for the same c-class 
priority buffer during the process of forwarding. The 
probability for this case can be formally defined as 

P11b(k,t)c = [1-U(k,t-1)c~ 
* s

c~] * {[1-r01(k,t-1)c] * P01(k,t-1)c + 
[1-r11n(k,t-1)c] * P11n(k,t-1)c + [1-r11b(k,t-1)c] * P11b(k,t-1)c + 
[1-r11w(k,t-1)c] * P11w(k,t-1)c} (5) 

The final case that should be considered is when a c-class 
priority buffer of SE(k) had a packet at the (t-1)th network 
cycle and still contains the same packet waiting to get 
access to SE processor at the tth network cycle. This occurs 
when the packet in the c-class priority buffer of SE(k) 
remained in a wait-state during that cycle, due to the fact 
that the SE processor was occupied by the packet of the 
adjacent queue of SE(k); this probability is [U(k,t-1)c~ 

* s
c~ ]. 

Consequently, the probability for this case can be formally 
defined as 

P11w(k,t)c = U(k,t-1)c~ * sc~ * [P01(k,t-1)c + P11n(k,t-1)c + 
P11b(k,t-1)c+ P11w(k,t-1)c]             (6) 

The factor U(k,t-1)c~ can be evaluated by the following 
equation: 

 
U(k,t-1)c~ = r01(k,t-1)c~ * P01(k,t-1)c~ + r11n(k,t-1)c~ * P11n(k,t-
1)c~ + r11b(k,t-1)c~ * P11b(k,t-1)c~ + r11w(k,t-1)c~ * P11w(k,t-1)c ~   
                                                                                  (7) 

 
The factor [1-U(k,t-1)c~ 

* sc~] appearing in the previous 
equations effectively manifests that the corresponding states 
may only be reached if the adjacent c~-class priority queues 
do not use the SE processor: this holds because the pertinent 
states may be reached if only a packet is transmitted from a 
c-class priority queue, where an empty or waiting c~-class 
priority queue is a prerequisite for such a transmission to 
occur. 

Adding the equations (1) … (6), both left and right-hand 
sides are equal to 1, validating thus that all possible cases 
are covered.; indeed P00(k,t)c + P01(k,t)c + P10(k,t)c + 
P11n(k,t)c + P11b(k,t)c + P11w(k,t)c = 1 and P00(k,t-1)c + P01(k,t-
1)c + P10(k,t-1)c + P11n(k,t-1)c + P11b(k,t-1)c + P11w(k,t-1)c = 1. 
 The system of equations presented in the previous 
paragraphs extends the ones presented in other works (e.g. 
[32]) by considering the state and transitions occurring 
within an additional clock cycle. All previous works were 
based on a three states model. This enhancement with a six 
states buffer model can improve the accuracy of the 
performance parameters calculation (throughput and delay). 
The simulation presented in following sections takes into 
account all the above presented dependencies among the 
queues of each SE(k) of the MIN. In our future work we 
intend to have additionally a closed form solution providing 

thus an analytical model for single-buffered MINs 
incorporating the class-based weighted fair queuing 
algorithm on a dual- priority scheme. 

IV. PERFORMANCE EVALUATION METRICS FOR DUAL-
PRIORITY MINS 

The two most important network performance factors, 
namely packet throughput and delay are evaluated and 
analyzed in this section. The Universal performance factor 
introduced in [37], which combines the above two metrics 
into a single one is also applied. In this study, when 
calculating the value of this combined factor, we have 
considered the individual performance factors (packet 
throughput and delay) to be of equal importance. This is not 
necessarily true for all application classes, e.g. for batch 
data transfers throughput is more important, whereas for 
streaming media the delay must be optimized. In order to 
evaluate the performance of a (NXN) MIN the following 
metrics are used. Let Th and D be the normalized 
throughput and normalized delay of a MIN. 

Relative normalized throughput RTh(h) of high priority 
packets is the normalized throughput Th(h) of such packets 
divided by the corresponding ratio of offered load rh. 
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Similarly, relative normalized throughput RTh(l) of low 
priority packets can be expressed by the ratio of normalized 
throughput Th(l) of such packets to the corresponding ratio 
of offered load rl . 
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This extra normalization of both high and low priority 
traffic leads to a common value domain needed for 
comparing their absolute performance values in all 
configuration setups. 

Universal performance factor Upf is defined by a 
relation involving the two major above normalized factors, 
D and Th [37] : the performance of a MIN is considered 
optimal when D is minimized and Th is maximized, thus the 
formula for computing the universal factor arranges so that 
the overall performance metric follows that rule. Formally, 
Upf can be expressed by 
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2 1
**
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where wd and wth denote the corresponding weights for 
each factor participating in the Upf, designating thus its 
importance for the corporate environment. Consequently, 



the performance of a MIN can be expressed in a single 
metric that is tailored to the needs that a specific MIN setup 
will serve. It is obvious that, when the packet delay factor 
becomes smaller or/and throughput factor becomes larger 
the Upf becomes smaller, thus smaller Upf values indicate 
better overall MIN performance. Because the above factors 
(parameters) have different measurement units and scaling, 
they are normalized them to obtain a reference value do-
main. Normalization is performed by dividing the value of 
each factor by the (algebraic) minimum or maximum value 
that this factor may attain. Thus, equation (10) can be 
replaced by: 
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where Dmin is the minimum value of normalized packet 
delay (D) and Thmax is the maximum value of normalized 
throughput. Consistently to equation (10), when the 
universal performance factor Upf, as computed by equation 
(11) is close to 0, the performance a MIN is considered 
optimal whereas, when the value of Upf increases, its 
performance deteriorates. Moreover, taking into account 
that the values of both delay and throughput appearing in 
equation (11) are normalized, Dmin = Thmax = 1, thus the 
equation can be simplified to: 
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The extra normalization of both high and low priority 
traffic considered in the evaluation of relative normalized 
throughput leads to the following formula at dual-priority 
MINs  
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(13) 

where p={h , l} stands for high and low priority traffic 
respectively.  

In the remaining of this paper we will consider both 
weight factors of equal importance, setting thus wd = wth =1. 

Finally, we list the major parameters affecting the 
performance of examining dual-priority MIN. 

Buffer size (b) is the maximum number of packets that an 
input buffer of a SE can hold. In our paper we consider a 
single-buffered (b=1) MINs.  

Offered load (λ) is the steady-state fixed probability of 
arriving packets at each queue on inputs. In our simulation 
the λ is assumed to be λ = 0.65 or 1. 

Ratio of high priority offered load (rh), where rh = λh/λ. In 
our study rh is assumed to be rh =0.20 or 0.30. 

Service rate of high priority packets (sh) is the percentage 
rate of processor dedicated to high priority packets by the 

class-based weighted fair queuing. In our simulation sh is 
assumed to be sh = 0, 0.1, 0.2 … 0.9, 1. 

Network size n, where n=log2N, is the number of stages 
of an (N X N) MIN. In our simulation n is assumed to be 
n=6. 

V.  SIMULATION AND PERFORMANCE RESULTS 

In this paper we developed a special simulator in C++, 
capable of handling dual-priority MINs using the class-
based weighted fair queuing. Each (2X2) SE was modeled 
by four non-shared buffer queues, where buffer operation 
was based on the first come first serviced principle; the first 
two buffer queues for high priority packets (one per 
incoming link), and the other two for low priority ones.  

Performance evaluation was conducted by using 
simulation experiments. Within the simulator several 
parameters such as the buffer-length, the number of input 
and output ports, the ratio of high priority offered load, the 
service rate of high priority packets, and the traffic shape 
was considered.  

Finally, the simulations were performed at packet level, 
assuming fixed-length packets transmitted in equal-length 
time slots, while the number of simulation runs was again 
adjusted at 105 clock cycles with an initial stabilization 
process 103 network cycles, ensuring a steady-state 
operating condition. 

A. Simulator validation 
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Figure 4. Normalized throughput of a single buffered 6-stage MIN 

To validate our simulator, we compared the results 
obtained from our simulator against the results reported in 
other works, selecting among them the ones considered 
most accurate. Figure 4 shows the normalized throughput of 
a single-buffered, single-priority MIN with 6 stages as a 



function of the probability of arrivals for the three classical 
models [32], [24], [18] and our simulation.  

All models are very accurate at low loads. The accuracy 
reduces as input load increases. Especially, when input load 
approaches the network maximum throughput, the accuracy 
of Jenq's model is insufficient. One of the reasons is the fact 
that many packets are blocked mainly at the network first 
stages at high traffic rates. Thus, Mun introduced a 
"blocked" state to his model to improve accuracy. Theimer’s 
model considers the dependencies between the two buffers 
of an SE; this has lead to further improvement in accuracy 
and therefore Theimer’s model is considered the most 
accurate insofar. Our simulation was also tested by 
comparing the results of the Theimer's model with those of 
our simulation experiments, which were found to be in close 
agreement (differences are less than 1%). 

B. Overall MIN performance 

Before examining the QoS offered to each priority class 
under different settings of the queue weights in CBWFQ, 
we will present the simulation results regarding the effect of 
queue weight setting to the overall performance of the MIN. 

Figure 5 depicts the total normalized throughput 
[th=th(h)+th(l)] of a MIN using a dual-priority scheme vs. 
the bandwidth dedicated to high priority packets by the 
class-based weighted fair queuing. In the diagram, curve 
high-X (λ=y) depicts the total normalized throughput of a 2-
class priority, single-buffered 6-stage MIN, when the 
service ratio of high priority packets is X% and offered load 
is y. We can notice here that the gains on total normalized 
throughput of a dual-priority scheme for a 6-stage, single-
buffered MIN using the class-based weighted fair queuing 
algorithm versus the strict priority queuing mechanism are 
considerable. The performance of the strict priority queuing 
mechanism is effectively represented by the last value of 
each curve: if the weight of the high priority queue is set to 
1, then low-priority packets are served only when no high-
priority packets are available, which is exactly the behavior 
of the strict priority queuing mechanism. 

It is obvious that when offering greater servicing rates to 
low priority queues the total normalized throughput 
increases (except for the case of High-30 (λ=1) where the 
performance remains at the same level) because the network 
resources are better exploited. This particularly applies to 
network buffers dedicated to low-priority queues within the 
SEs: under the strict priority mechanism, these buffers have 
decreased probability of transmitting the packets they hold, 
which in turn leads to increased probability of blockings, in 
the event that a new low-priority packet arrives at the 
corresponding SE. Nevertheless, the primary goal of 
classifying the packets into two priority classes is to provide 
better QoS to high priority ones. This goal can simply 
achieved when the weight of the high-priority queue for 
CBWFQ algorithm is set to a value greater than the 

anticipated load of high-priority packets. The exact setting 
of this parameter can be determined by balancing between 
the factors of achieving optimal overall network 
performance and delivering better QoS to high-priority 
packets. The QoS level delivered to packets of different 
priority classes under the CBWFQ algorithm is discussed in 
the following paragraphs. 
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Figure 5. MIN throughput under varying high priority queue weights 

C. Dual- Priority MINs Performance under Full-load 
Traffic Conditions 

In this subsection we examine the QoS offered to packets 
of different priorities when the MIN is fully loaded (λ=1). 
Figure 6 illustrates the relative normalized throughput for 
high- and low-priority packets under varying high priority 
queue weights, and considering high-priority packet ratios 
of 20% and 30%. In this diagram we can observe 
that -expectedly- when the high priority queue weight 
increases, high-priority packets are offered better quality of 
service, while the QoS offered to low-priority packets drops. 
The leftmost part of the x-axis, where the high priority 
queue weight is less than the ratio of high priority packets in 
the network is not bound to be used, since within that part 
high-priority packets are offered worse quality of service 
than low-priority ones. Further increasing the high priority 
queue weight up to 0.7 delivers an improvement of 30%-
42% for high-priority packets, whereas the corresponding 
deterioration for low-priority packets is much lower, 
ranging from 12% to 20%. For the last portion of the curves 
(high priority queue weight between 0.7 and 1), the benefits 
for the high priority packets is small (between 7.5% and 
11.6%) and similar are the losses for low-priority packets 
(between 5.8 and 12%). 
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Figure 6. Normalized throughput for different priority classes under 
varying high priority queue weights and full load 

Note that since the diagram depicts the relative 
normalized throughput metric (which is normalized by the 
ratio of packets of the corresponding priority in the total 
load), a higher value in the diagram does not necessarily 
indicate higher number of packets, but merely the fact that 
the network handles packets more efficiently. Consequently, 
the fact that curve Low-80 crosses over curve Low-70 at 
high priority queue weight  65% is interpreted that before 
this point low priority packets in a 30/70 ratio are handled 
more efficiently than low priority packets in a 20/80 ratio, 
whereas beyond this point the situation is reversed. 

 
Figure 7 illustrates the normalized delay for high- and 

low-priority packets under varying high priority queue 
weights, and considering high-priority packet ratios of 20% 
and 30%. Again, as the high priority queue weight 
increases, high-priority packets are served faster, to the 
expense of the low priority packets’ delay. The overall 
variations in the delay, at least in the range 0.3-1.0 for the 
high priority queue weight, are small (less than 12%), 
mainly due to the fact that the MIN considered in this paper 
is single-buffered, and single-buffered MINs tend to exhibit 
low values in delay, to the having however lower 
throughput and higher number of dropped packets [38], 
[39], [40]. The crossover of lines Low-80 and Low-70 at 
high priority queue weight  70% is explained similarly to 
the case of the relative normalized throughput, discussed 
above. 

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

D
 -

 N
or

m
al

iz
ed

 D
el

ay
   

 
High-20 Low-80

High-30 Low-70
 

Figure 7. Normalized delay for different priority classes under varying high 
priority queue weights and full load 
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Figure 8. Universal performance factor for different priority classes under 
varying high priority queue weights and full load 

Finally, figure 8 depicts the universal performance factor 
(Upf) for different priority classes under varying high 
priority queue weights and two high/low packet ratios 
(20/80 and 30/70). Since the individual performance factors 
(throughput and delay) combined in Upf evolve along a 
specific pattern (i.e. high priority packets are served better 
as the high priority queue weight increases while the inverse 



holds for low-priority packets), the same pattern is exhibited 
by the Upf too: its value drops (i.e. improves) for high-
priority packets as the high priority queue weight increases, 
while for low-priority packets its value rises (i.e. 
deteriorates) as the high priority queue weight increases. 

D. Dual- Priority  MINs Performance under High Network 
Load 

In this subsection we examine the QoS offered to packets 
of different priorities when the MIN operates under high 
load, i.e. the packet arrival probability λ is equal to 65% 
(approximately 2/3 of the full load). Figure 9 illustrates the 
relative normalized throughput for high- and low-priority 
packets under varying high priority queue weights, and 
considering high-priority packet ratios of 20% and 30%. 
The trends of the curves are similar to the case of the full 
load (figure 6), but the absolute values are smaller, since the 
offered load is smaller too. The improvement observed for 
high-priority packets when increasing the high priority 
queue weight from 0.3 to 0.7 ranges from 9.0% to 14.5%, 
while in the full load case the corresponding improvement 
ranged from 30% to 42%. The smaller improvement is 
owing to the decreased network load, due to which high-
priority packets are offered an increased quality of service, 
even for low values of high priority queue weight, and 
therefore the margins for improvement are more limited. 
Similarly, the deterioration in the low-priority packets’ 
throughput is limited, ranging from 6.2% to 9.8% (12% to 
20% in the full load case). For the last portion of the curves 
(high priority queue weight between 0.7 and 1), both the 
gains of high-priority packets and the losses for low-priority 
ones are less than 5% in all cases. 
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Figure 9. Normalized throughput for different priority classes under 
varying high priority queue weights and high load 
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Figure 10. Normalized delay for different priority classes under varying 
high priority queue weights and high load 

Figure 10 presents the normalized delay for different 
priority classes under varying high priority queue weights 
and high load. When increasing the high priority queue 
weight from 0.3 to 0.7, the delay for high-priority packets is 
improved between 6% and 8%, while the respective 
deterioration for low priority packets ranges between 3% 
and 5%. The variations are small because, similarly to the 
case of throughput (figure 9), the decreased network load 
results in small delays for packets for “reasonable” settings 
of the high priority queue weight, and therefore the margins 
for improvement/deterioration are small. For the last portion 
of the curves (high priority queue weight between 0.7 and 
1), both the gains of high-priority packets and the losses for 
low-priority ones are less than 3% in all cases. 

Finally, figure 11 depicts the universal performance 
factor (Upf) for different priority classes under varying high 
priority queue weights, high network load and two high/low 
packet ratios (20/80 and 30/70). Similarly to the full load 
case, since the individual performance factors (throughput 
and delay) combined in Upf evolve along a specific pattern 
(i.e. high priority packets are served better as the high 
priority queue weight increases while the inverse holds for 
low-priority packets), the same pattern is exhibited by the 
Upf too: its value drops (i.e. improves) for high-priority 
packets as the high priority queue weight increases, while 
for low-priority packets its value rises (i.e. deteriorates) as 
the high priority queue weight increases. Note that the 
absolute values of Upf in figure 11 are higher (i.e. worse) 
than the respective values of the full load case (figure 8), 
indicating that network resources are underutilized. 
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Figure 11. Universal performance factor for different priority classes under 
varying high priority queue weights and high load 

VI. CONCLUSIONS 

In this paper we have addressed the performance 
evaluation of a dual-priority, single-buffered, 6-stage MIN, 
employing the class-based weighted fair queuing packet 
scheduling algorithm. We have presented analytical 
equations for modelling their operation, employing a 
scheme that takes into account both the previous and the last 
state of the SEs’ queues, providing thus better accuracy than 
schemes considering only the last state. 

We have also evaluated through simulations the overall 
performance of the MIN and the quality of service offered 
to each priority class under varying high priority queue 
weights, different high/low priority packet ratios (20/80 and 
30/70) and different MIN loads (full load and high load) 
when using the class-based weighted fair queuing algorithm 
and compared these results against the strict priority 
algorithm. The performance evaluation results show that the 
strict priority algorithm does offer the high-priority packets 
better quality of service, but on the other hand it degrades 
the overall MIN performance and significantly degrades the 
quality of service offered to low-priority packets. 
Configuring the high-priority queue weight in the range 
[0.7, 1] has marginal effects both on the overall MIN 
performance and the QoS offered to packets of different 
priority classes. On the other hand, setting the high-priority 
queue weight in the range [0.45, 0.7) appears to achieve a 
good balance among overall MIN performance, 
prioritization of high-priority packets and acceptable QoS 
for low-priority packets (always considering the high/low 
priority packet ratios 20/80 and 30/70). MIN designers and 

operators can use the results presented in this paper to 
optimally configure the weights of the queues, taking into 
account the QoS they want to offer to packets of different 
priorities and the overall MIN performance they want to 
achieve. 

Future work will focus on examining other load 
configurations, including hot-spot and burst loads, as well as 
different buffer sizes and handling schemes. 
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