
Class-Based Weighted Fair Queuing Scheduling on Dual-Priority Delta
Networks

D. C. Vasiliadisa,b, G. E. Rizosa,b, C. Vassilakisa
aDepartment of Computer Science and Technology

University of Peloponnese
Tripolis, Greece

bTechnological Educational Institute of Epirus,
Arta, Greece

dvas@uop.gr, georizos@uop.gr, costas@uop.gr

Abstract— Contemporary networks accommodate handling of
multiple priorities, aiming to provide suitable QoS levels to
different traffic classes. In the presence of multiple priorities, a
scheduling algorithm is employed to select each time the next
packet to transmit over the data link. Class-based Weighted
Fair Queuing (CBWFQ) scheduling and its variations, is
widely used as a scheduling technique, since it is easy to
implement and prevents the low-priority queues from being
completely neglected during periods of high-priority traffic. By
using this scheduling, low-priority queues have the opportunity
to transmit packets even though the high-priority queues are
not empty. In this paper, the modeling, analysis and
performance evaluation of a single-buffered, dual priority
multistage interconnection network (MIN) operating under the
CBWFQ scheduling policy is presented. Performance
evaluation is conducted through simulation, and the
performance measures obtained can be valuable assets for
MIN designers, in order to minimize the overall deployment
costs and delivering efficient systems.

Keywords-Multistage Interconnection Networks; Delta
Netwoks; Performance Evaluation

I. INTRODUCTION

During the last decade, we have witnessed a dramatic
increase in both network speeds and the amount of network
traffic. In order to provide high quality-of-service (QoS) in
today's high-speed networks, different priorities are assigned
to packets entering the networks, and packet scheduling
algorithms are employed to select each time the next packet
to transmit over the data link. To this end, a number of
packet scheduling algorithms have been proposed, with the
most prominent ones including strict priority queuing [27],
round-robin [44] and its variations (e.g. weighted round-
robin [10] [19], deficit round-robin [28], smoothed round-
robin [14]), generalized processor sharing (GPS) [11],
weighted fair queuing (P-GPS) [9], class-based weighted
fair queuing [46], virtual clock [45] and self-clocked fair
queuing [13]. In a number of works (e.g. [50], [51], [52])
packets enter the MIN without a priority (as opposed to the
previous approaches where the where priorities are assigned
to packets before they enter the MIN), and the MIN

internally prioritizes packets aiming either to offload the
most heavily loaded queues and reduce blockings [50] or
avoid crosstalk in optical MINs ([51], [52]); in essence,
however, only the priority source changes (internal vs.
externally defined), while for selecting the most prominent
packet for forwarding, one of the previously listed
algorithms is applied.

The selection of the packet scheduling algorithm can
drastically affect the quality of service observed by the
packets traversing the network and the overall network
performance, since different algorithms aim to optimize
different metrics of packet QoS, such as delay, delay jitter,
throughput and fairness. Other algorithm properties that are
taken into account for choosing the packet scheduling
algorithm that will be implemented in a network are its
space and time complexity [14] (since they affect the
memory and the processing required to implement the
algorithm, respectively) and the ease of implementation,
since more complex algorithms are generally more
demanding in space and time and their implementations are
more prone to errors.

Among the algorithms described above, strict priority
queuing (i.e. servicing lower priority packets only when
higher priority ones are not waiting to be serviced) and
weighted round robin (i.e. assigning a portion of the
available bandwidth to each priority queue) and class-based
weighted fair queuing [i.e. having N data flows currently
active, with weights w1,w2...wN, data flow i will achieve an
average data rate of R*wi/(w1+w2+...+wN), where R is the
data link rate] [46] have been adopted by the industry and
implemented in most commercial products (e.g. [6], [17],
[25], [3], [8], [47], [48]) mainly due to their following
characteristics (a) they are easy to implement and verify (b)
they exploit well the available network bandwidth (c) they
have very small memory and processing power
requirements and (d) network administrators find them easy
to understand and configure.

Regarding the network switch internal architecture,
multistage interconnection networks (MINs) with crossbar

switching elements (SEs) are frequently proposed for
interconnecting processors and memory modules in parallel
multiprocessor systems [1], [7], [33] and have also recently
been identified as an efficient interconnection network for
communication structures such as gigabit Ethernet switches,
terabit routers and ATM switches [4], [29], [34]. Significant
advantages of MINs include their low cost/performance
ratio and their ability to route multiple communication tasks
concurrently. MINs with the Banyan [12] property are
proposed to connect a large number of processors to
establish a multiprocessor system; they have also received
considerable interest in the development of packet-switched
networks. Non-Banyan MINs are, in general, more
expensive than Banyan networks and more complex to
control.

In the current literature, the performance of multi-priority
MINs under the strict priority queuing algorithm has been
studied extensively through both analytical methods and
simulation experiments (e.g. [38], [39], [20], [5], [23], [35]),
considering various buffer sizes (mainly buffers of sizes 1, 2
and 4), buffer size allocation to different priority classes
(symmetric vs. asymmetric [39]), arrival processes (e.g.
uniform vs. bursty [15]), traffic patterns (e.g. uniform vs.
hotspot [41],[42],[19]; unicast vs. multicast [16],[30]) and
internal MIN architectures (e.g. single-layer vs. multi-layer
[36]). These studies have shown that under high network
load (packet arrival probability λ > 0.6) the QoS offered to
low priority packets rapidly deteriorates, with throughput
significantly dropping and delay sharply increasing.

Using class-based weighted fair queuing as a packet
scheduling algorithm instead of strict priority queuing
appears as a plausible solution for providing better QoS to
low-priority packets under increased network load since one
of the goals of this scheduling technique is to increase
fairness, giving low-priority queues the opportunity to
transmit packets even though the high-priority queues are
not empty. Class-based weighted fair queuing overcomes
some limitations of weighted round-robin, namely the fact
that it cannot guarantee fair link sharing and the need to
know the mean packet size of each connection in advance
[49]. Insofar, however, there are no studies to quantify (a)
the gains obtained for low-priority packets (and conversely
the losses incurred for high-priority packets) by employing
the class-based weighted fair queuing packet scheduling
algorithm and (b) the effect of the individual queue weight
assignment to the overall performance of the multistage
interconnection network and the QoS offered to packets of
different priority classes.

In this paper, a simulation-based performance evaluation
for a single-buffered MIN natively supporting two priority
classes and employing the class-based weighted fair queuing
packet scheduling algorithm is presented. Moreover,
analytical equations have been derived from the new
queuing modeling based on the one clock history

consideration. In this performance evaluation, we calculate
the QoS offered to packets of different priority classes,
under high network loads and under different ratios of
high/low priority packets within the overall network traffic.
We also study the effect of queue weight assignment in the
QoS offered to packets of different priorities.

The rest of this paper is organized as follows: in section
 II we present the dual priority MIN and give details on its
operation and the class-based weighted fair queuing packet
scheduling algorithm. In section III we present the analytical
equations for the MIN, extending Mun’s [24] 3-state model
to a six-state one for improving its accuracy. In sections IV
and V we present the performance metrics and the
simulation results, respectively, while in section VI
conclusions are drawn and future work is outlined.

II. DUAL-PRIORITY MIN AND THE CLASS-BASED

WEIGHTED FAIR QUEUING SCHEDULING ALGORITHM

A Multistage Interconnection Network (MIN) can be
defined as a network used to interconnect a group of N
inputs to a group of M outputs using several stages of small
size Switching Elements (SEs) followed (or preceded) by
link states. Its main characteristics are its topology, routing
algorithm, switching strategy and flow control mechanism.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

...
. . .

...

. . .
...

.

. . .
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Figure 1. A 3-stage Delta Network

All types of blocking Multistage Interconnection
Networks (Delta Networks [26], Omega Networks [21] and
Generalized Cube Networks [2]) with the Banyan property
which is defined in [12] are characterized by the fact that

there is exactly a unique path from each source (input) to
each sink (output). Banyan MINs are multistage self-routing
switching fabrics. Consequently, each SE of kth stage,
where k=1...n can decide in which output port to route a
packet, depending on the corresponding kth bit of the
destination address.

A typical configuration of a (N X N) Delta Network is
depicted in figure 1. In order to support priority handling,
each SE has two transmission queues per link,
accommodated in two (logical) buffers, with one queue
dedicated to high priority packets and the other dedicated to
low priority ones. In this paper, we consider a dual-priority
Multistage Interconnection Network with the Banyan
property that operates under the following assumptions:
 The network clock cycle consists of two phases. In the

first phase, flow control information passes through the
network from the last stage to the first one. In the second
phase, packets flow from one stage to the next in
accordance to the flow control information.

 The arrival process of each input of the network is a
simple Bernoulli process, i.e. the probability that a packet
arrives within a clock cycle is constant and the arrivals
are independent of each other. We will denote this
probability as λ. This probability can be further broken
down to λh and λl, which represent the arrival probability
for high and low priority packets, respectively. It holds
that λ = λh + λl.

 Under the dual-priority mechanism, when applications or
architectural modules enter a packet to the network they
specify its priority, designating it either as high or low.
The criteria for priority selection may stem from the
nature of packet data (e.g. packets containing streaming
media data can be designated as high-priority while FTP
data can be characterized as low-priority), from protocol
intrinsics (e.g. TCP out-of-band/expedited data vs.
normal connection data [31]) or from properties of the
interconnected system architecture elements.

 A high/low priority packet arriving at the first stage (k=1)
is discarded if the high/low priority buffer of the
corresponding SE is full, respectively.

 A high/low priority packet is blocked at a stage if the
destination high/low priority buffer at the next stage is
full, respectively.

 Both high and low priority packets are uniformly
distributed across all destinations, and each high/low
priority queue uses a FIFO policy for all output ports.

 Each packet priority queue is statically assigned a weight,
which specifies the bandwidth ratio that will be dedicated
to the particular queue. Naturally, the sum of all weights
must be equal to 1.

 Upon reception, packets are first classified according to
their priority, and are then assigned to the queue
specifically dedicated to the particular priority (figure 2).

 At each network cycle, the class-based weighted fair
queuing algorithm examines the priority queues to select
the packet to be forwarded through the output link,
always observing the bandwidth ratio that has been
assigned to each queue. A prominent method for
achieving this is to determine the set S of non-empty
queues in the system and choosing a queue among them

with probability

Sj
j

i
i w

w
qp)(, where wk is the weight

assigned to queue k [46]. This is analogous to lottery
scheduling used in operating systems [43]. We note here
that the class-based weighted fair queuing algorithm
considered in this paper is work conserving, i.e. a packet
is always transmitted when there is traffic waiting, as
opposed to non-work conserving algorithms which do not
transmit a packet if the queue whose turn is to transmit a
packet is found to be empty [22]. If a queue does not use
its bandwidth ratio within a time window, this bandwidth
is divided among the queues that do have packets to
transmit, proportionally to their weights.

 When two packets at a stage contend for a buffer at the
next stage and there is no adequate free space for both of
them to be stored (i.e. only one buffer position is
available at the next stage), there is a conflict. Conflict
resolution in a single-priority mechanism operates under
the following scheme: one packet will be accepted at
random and the other will be blocked by means of
upstream control signals. In a dual-priority mechanism
the class-based weighted fair queuing algorithm
determines which class of two buffer-queues is serviced
by the SE processor.
The priority class of each packet is indicated through a
priority bit in the packet header, thus it suffices for the
SE to read the header in order to make a decision on
which packet to store and which one to block.

 All SEs have deterministic service time.
 Finally, all packets in input ports contain both the data to

be transferred and the routing tag. In order to achieve
synchronously operating SEs, the MIN is internally
clocked. As soon as packets reach a destination port they
are removed from the MIN, so, packets cannot be
blocked at the last stage.

Classify

High

Low

70%

30% Incoming
Packets

Queue weight

Figure 2. Class-based weighted fair queuing algorithm

III. ANALYTICAL EQUATIONS FOR THE DUAL-PRIORITY

MIN

Our analysis introduces a novel model, which considers
not only the current state of the associated buffer, but also
the previous one. Based on the one clock history
consideration we enhance the Mun’s [24] three states model
with a six states buffer model, which is described in the
following paragraphs.

A. State notations for c-class priority queues

Since the proposed model is exemplified in a single-
buffered configuration the buffer state will be either empty
(‘0’) or full (‘1’) at each clock cycle. Taking into account
the history of covering one clock cycle, the following states
are examined:
 State ‘00c’: c-class priority buffer was empty at the

beginning of the previous clock cycle and it is also empty
at beginning of the current clock cycle.

 State ‘01c’: c-class priority buffer was empty at the
beginning of the previous clock cycle, while it contains a
new c-class priority packet at the current clock cycle (a
new packet arrived).

 State ‘10c’: c-class priority buffer had a packet at the

previous clock cycle, while it contains no packet at the
current clock cycle (the packet was transmitted and no
new packet was received).

 State ‘11nc’: c-class buffer had a packet at the previous

clock cycle and has a new one at the current clock cycle
(the previous one was successfully transmitted and the
new packet was just received).

 State ‘11bc’: c-class buffer had a packet at the previous

clock cycle and has the same packet at the current clock
cycle; an attempt was made to transmit the packet during
the previous clock cycle but it failed due to blocking.

 State ‘11wc’: c-class buffer had a packet at the previous

clock cycle and has the same packet waiting at the
current clock cycle, because the conjugate priority queue
(c~-class priority queue) had also a packet ready to be
transmitted in the previous clock cycle, and the
bandwidth allocation algorithm selected the packet in the
c~-class priority queue for transmission. Within a
switching element SE, the conjugate of the high-priority
queue is the low-priority queue of the same element SE,
and vice versa.

B. Definitions for c-class priority queues

The following variables are defined in order to develop
an analytical model. In all definitions, SE(k) denotes a SE at
stage k of the MIN

 P00(k,t)c is the probability that a c-class priority buffer of

SE(k) is empty at both (t-1)th and tth network cycles.

 P01(k,t)c is the probability that a c-class priority buffer of
SE(k) is empty at (t-1)th network cycle and has a new c-
class priority packet at tth network cycle.

 P10(k,t)c is the probability that a c-class priority buffer of

SE(k) has a c-class priority packet at (t-1)th network cycle
and is empty at tth network cycle.

 P11n(k,t)c is the probability that a c-class priority buffer of

SE(k) has a packet at (t-1)th network cycle and has a new
one at tth network cycle.

 P11b(k,t)c is the probability that a c-class priority buffer of

SE(k) has a packet at (t-1)th network cycle and still has
the same packet at tth network cycle, as the packet could
not be transmitted due to blocking.

 P11w(k,t)c is the probability that a c-class priority buffer of

SE(k) has a packet at (t-1)th network cycle and still has
the same packet at tth network cycle, as the packet could
not be transmitted because the conjugate priority queue
(c~-class priority queue) had also a packet ready to be
transmitted at (t-1)th network cycle, and the bandwidth
allocation algorithm selected the packet in the c~-class
priority queue for transmission..

 q(k,t)c is the probability that a c-class priority packet is
ready to be sent into a buffer of SE(k) at tth network cycle
(i.e. a c-class priority packet will be transmitted by an
SE(k-1) to SE(k)).

 r01(k,t)c is the probability that a c-class priority packet in
a buffer of SE(k) is ready to move forward during the tth
network cycle, given that the buffer is in ‘01c’state.

 r11n(k,t)c is the probability that a c-class priority packet in
a buffer of SE(k) is ready to move forward during the tth

network cycle, given that the buffer is in ‘11nc’ state.

 r11b(k,t)c is the probability that a c-class priority packet in
a buffer of SE(k) is ready to move forward during the tth

network cycle, given that the buffer is in ‘11bc’ state.

 r11w(k,t)c is the probability that a c-class priority packet in
a buffer of SE(k) is ready to move forward during the tth

network cycle, given that the buffer is in ‘11wc’ state.

C. Mathematical analysis for c-class priority queues

The following equations, derived from the state transition
diagram in figure 3, represent the state transition

probabilities of c-class priority queues as clock cycles
advance.

Figure 3. A state transition diagram of a c-class priority buffer of SE(k)

The probability that a c-class priority buffer of SE(k) was
empty at the (t-1)th network cycle is P00(k,t-1)c + P10(k,t-1)c.
Therefore, the probability that a c-class priority buffer of
SE(k) is empty both at the current tth and previous (t-1)th
network cycles is the probability that the SE(k) was empty
at the previous (t-1)th network cycle multiplied by the
probability [1-q(k,t-1)c] of no c-class priority packet was
ready to be forwarded to SE(k) during the previous network
cycle (the two facts are statistically independent, thus the
probability that both are true is equal to the product of the
individual probabilities). Formally, this probability P00(k,t)c
can be expressed by

P00(k,t)c = [1-q(k,t-1)c] * [P00(k,t-1)c +P10(k,t-1)c] (1)

The probability that a c-class priority buffer of SE(k) was
empty at the (t-1)th network cycle and a new c-class priority
packet has arrived at the current tth network cycle is the
probability that the SE(k) was empty at the (t-1)th network
cycle [which is equal to P00(k,t-1)c + P10(k,t-1)c] multiplied
by the probability q(k,t-1)c that a new c-class priority packet
was ready to be transmitted to SE(k) during the (t-1)th
network cycle. Formally, this probability P01(k,t)c can be
expressed by

P01(k,t)c = q(k,t-1)c * [P00(k,t-1)c + P10(k,t-1)c] (2)

The case that a c-class priority buffer of SE(k) was full at
the (t-1)th network cycle but is empty during the tth network
cycle effectively requires the following two facts to be true:
(a) a c-class priority buffer of SE(k) was full at the (t-1)th

network cycle and the c-class priority packet was
successfully transmitted and (b) no c-class priority packet
was received during the (t-1)th network cycle to replace the
transmitted c-class priority packet into the buffer. The
probability for fact (a) is equal to the product of the
following two probabilities: i) the probability that the SE
processor was not occupied by the packet of the adjacent
queue of SE(k), which is just [1-U(k,t-1)c~

* sc~], where
U(k,t-1)c~ expresses the probability that a packet exists in
the adjacent c~-class priority queue of SE(k) during network
cycle t-1 and sc~ denotes the service-rate given by the class-
based weighted fair queuing this c~-class priority queue. ii)
[r01(k,t-1)c

* P01(k,t-1)c + r11n(k,t-1)c
* P11n(k,t-1)c + r11b(k,t-1)c

* P11b(k,t-1)c + r11w(k,t-1)c * P11w(k,t-1)c]; this probability is
computed by considering all cases that during the network
cycle t-1 the SE had a c-class priority packet in its buffer
and multiplying the probability of each state by the
corresponding probability that the packet was successfully
transmitted to a next stage SE. Finally, the probability of
fact (b), i.e. that no c-class priority packet was ready to be
transmitted to SE(k) during the previous network cycle is
equal to [1-q(k,t-1)c]. Consequently, the probability P10(k,t)c
can be computed by the following formula:

P10(k,t)c = [1-U(k,t-1)c~ * sc~] * [1-q(k,t-1)c] * [r01(k,t-1)c *
P01(k,t-1)c + r11n(k,t-1)c * P11n(k,t-1)c + r11b(k,t-1)c * P11b(k,t-
1)c + r11w(k,t-1)c * P11w(k,t-1)c] (3)

The probability that a c-class priority buffer of SE(k) had
a packet at the (t-1)th network cycle and has also a new one
(different than the previous; the case of having the same
packet in the buffer is addressed in the next paragraphs) at
the tth network cycle is the probability that the SE processor
was not occupied by the packet of the adjacent queue of
SE(k) at the (t-1)th network cycle, which is just [1-U(k,t-1)c~

* s
c~], multiplied firstly by the probability of having a ready

c-class priority packet to move forward at the previous (t-
1)th network cycle [which is equal to r01(k,t-1)c * P01(k,t-1)c +
r11n(k,t-1)c * P11n(k,t-1)c + r11b(k,t-1)c * P11b(k,t-1)c + r11w(k,t-
1)c * P11w(k,t-1)c] and multiplied secondly by q(k,t-1)c, i.e.
the probability that a c-class priority packet was ready to be
transmitted to SE(k) during the previous network cycle.
Formally, this probability P11n(k,t)c can be expressed by

P11n(k,t)c = [1-U(k,t-1)c~

* s
c~] * q(k,t-1)c * [r01(k,t-1)c * P01(k,t-

1)c + r11n(k,t-1)c * P11n(k,t-1)c + r11b(k,t-1)c * P11b(k,t-1)c +
r11w(k,t-1)c * P11w(k,t-1)c] (4)

The next case that should be considered is when a c-class
priority buffer of SE(k) had a packet at the (t-1)th network
cycle and still contains the same packet blocked at the tth

network cycle. This occurs when the packet in the c-class
priority buffer of SE(k) was ready to move forward at the (t-
1)th network cycle, but it was blocked (not forwarded)
during that cycle, due to a blocking event - either (a) the

associated c-class priority buffer of the next stage SE was
already full due to another blocking, or (b) buffer space was
available at stage k+1 but it was occupied by a second
packet of the current stage contending for the same c-class
priority buffer during the process of forwarding. The
probability for this case can be formally defined as

P11b(k,t)c = [1-U(k,t-1)c~
* s

c~] * {[1-r01(k,t-1)c] * P01(k,t-1)c +
[1-r11n(k,t-1)c] * P11n(k,t-1)c + [1-r11b(k,t-1)c] * P11b(k,t-1)c +
[1-r11w(k,t-1)c] * P11w(k,t-1)c} (5)

The final case that should be considered is when a c-class
priority buffer of SE(k) had a packet at the (t-1)th network
cycle and still contains the same packet waiting to get
access to SE processor at the tth network cycle. This occurs
when the packet in the c-class priority buffer of SE(k)
remained in a wait-state during that cycle, due to the fact
that the SE processor was occupied by the packet of the
adjacent queue of SE(k); this probability is [U(k,t-1)c~

* s
c~].

Consequently, the probability for this case can be formally
defined as

P11w(k,t)c = U(k,t-1)c~ * sc~ * [P01(k,t-1)c + P11n(k,t-1)c +
P11b(k,t-1)c+ P11w(k,t-1)c] (6)

The factor U(k,t-1)c~ can be evaluated by the following
equation:

U(k,t-1)c~ = r01(k,t-1)c~ * P01(k,t-1)c~ + r11n(k,t-1)c~ * P11n(k,t-
1)c~ + r11b(k,t-1)c~ * P11b(k,t-1)c~ + r11w(k,t-1)c~ * P11w(k,t-1)c ~
 (7)

The factor [1-U(k,t-1)c~

* sc~] appearing in the previous
equations effectively manifests that the corresponding states
may only be reached if the adjacent c~-class priority queues
do not use the SE processor: this holds because the pertinent
states may be reached if only a packet is transmitted from a
c-class priority queue, where an empty or waiting c~-class
priority queue is a prerequisite for such a transmission to
occur.

Adding the equations (1) … (6), both left and right-hand
sides are equal to 1, validating thus that all possible cases
are covered.; indeed P00(k,t)c + P01(k,t)c + P10(k,t)c +
P11n(k,t)c + P11b(k,t)c + P11w(k,t)c = 1 and P00(k,t-1)c + P01(k,t-
1)c + P10(k,t-1)c + P11n(k,t-1)c + P11b(k,t-1)c + P11w(k,t-1)c = 1.
 The system of equations presented in the previous
paragraphs extends the ones presented in other works (e.g.
[32]) by considering the state and transitions occurring
within an additional clock cycle. All previous works were
based on a three states model. This enhancement with a six
states buffer model can improve the accuracy of the
performance parameters calculation (throughput and delay).
The simulation presented in following sections takes into
account all the above presented dependencies among the
queues of each SE(k) of the MIN. In our future work we
intend to have additionally a closed form solution providing

thus an analytical model for single-buffered MINs
incorporating the class-based weighted fair queuing
algorithm on a dual- priority scheme.

IV. PERFORMANCE EVALUATION METRICS FOR DUAL-
PRIORITY MINS

The two most important network performance factors,
namely packet throughput and delay are evaluated and
analyzed in this section. The Universal performance factor
introduced in [37], which combines the above two metrics
into a single one is also applied. In this study, when
calculating the value of this combined factor, we have
considered the individual performance factors (packet
throughput and delay) to be of equal importance. This is not
necessarily true for all application classes, e.g. for batch
data transfers throughput is more important, whereas for
streaming media the delay must be optimized. In order to
evaluate the performance of a (NXN) MIN the following
metrics are used. Let Th and D be the normalized
throughput and normalized delay of a MIN.

Relative normalized throughput RTh(h) of high priority
packets is the normalized throughput Th(h) of such packets
divided by the corresponding ratio of offered load rh.

hr

hTh
hRTh

)(
)(

Similarly, relative normalized throughput RTh(l) of low
priority packets can be expressed by the ratio of normalized
throughput Th(l) of such packets to the corresponding ratio
of offered load rl .

lr

lTh
lRTh

)(
)(

This extra normalization of both high and low priority
traffic leads to a common value domain needed for
comparing their absolute performance values in all
configuration setups.

Universal performance factor Upf is defined by a
relation involving the two major above normalized factors,
D and Th [37] : the performance of a MIN is considered
optimal when D is minimized and Th is maximized, thus the
formula for computing the universal factor arranges so that
the overall performance metric follows that rule. Formally,
Upf can be expressed by

2

2 1
**

Th
wDwUpf thd

where wd and wth denote the corresponding weights for
each factor participating in the Upf, designating thus its
importance for the corporate environment. Consequently,

the performance of a MIN can be expressed in a single
metric that is tailored to the needs that a specific MIN setup
will serve. It is obvious that, when the packet delay factor
becomes smaller or/and throughput factor becomes larger
the Upf becomes smaller, thus smaller Upf values indicate
better overall MIN performance. Because the above factors
(parameters) have different measurement units and scaling,
they are normalized them to obtain a reference value do-
main. Normalization is performed by dividing the value of
each factor by the (algebraic) minimum or maximum value
that this factor may attain. Thus, equation (10) can be
replaced by:

2max2

min

min

**

Th

ThTh
w

D

DD
wUpf thd

where Dmin is the minimum value of normalized packet
delay (D) and Thmax is the maximum value of normalized
throughput. Consistently to equation (10), when the
universal performance factor Upf, as computed by equation
(11) is close to 0, the performance a MIN is considered
optimal whereas, when the value of Upf increases, its
performance deteriorates. Moreover, taking into account
that the values of both delay and throughput appearing in
equation (11) are normalized, Dmin = Thmax = 1, thus the
equation can be simplified to:

2

2 1
1

Th

Th
wDwUpf thd

The extra normalization of both high and low priority
traffic considered in the evaluation of relative normalized
throughput leads to the following formula at dual-priority
MINs

2

2

)(

)(1
1)()(

pRTh

pRTh
wpDwpUpf thd

(13)

where p={h , l} stands for high and low priority traffic
respectively.

In the remaining of this paper we will consider both
weight factors of equal importance, setting thus wd = wth =1.

Finally, we list the major parameters affecting the
performance of examining dual-priority MIN.

Buffer size (b) is the maximum number of packets that an
input buffer of a SE can hold. In our paper we consider a
single-buffered (b=1) MINs.

Offered load (λ) is the steady-state fixed probability of
arriving packets at each queue on inputs. In our simulation
the λ is assumed to be λ = 0.65 or 1.

Ratio of high priority offered load (rh), where rh = λh/λ. In
our study rh is assumed to be rh =0.20 or 0.30.

Service rate of high priority packets (sh) is the percentage
rate of processor dedicated to high priority packets by the

class-based weighted fair queuing. In our simulation sh is
assumed to be sh = 0, 0.1, 0.2 … 0.9, 1.

Network size n, where n=log2N, is the number of stages
of an (N X N) MIN. In our simulation n is assumed to be
n=6.

V. SIMULATION AND PERFORMANCE RESULTS

In this paper we developed a special simulator in C++,
capable of handling dual-priority MINs using the class-
based weighted fair queuing. Each (2X2) SE was modeled
by four non-shared buffer queues, where buffer operation
was based on the first come first serviced principle; the first
two buffer queues for high priority packets (one per
incoming link), and the other two for low priority ones.

Performance evaluation was conducted by using
simulation experiments. Within the simulator several
parameters such as the buffer-length, the number of input
and output ports, the ratio of high priority offered load, the
service rate of high priority packets, and the traffic shape
was considered.

Finally, the simulations were performed at packet level,
assuming fixed-length packets transmitted in equal-length
time slots, while the number of simulation runs was again
adjusted at 105 clock cycles with an initial stabilization
process 103 network cycles, ensuring a steady-state
operating condition.

A. Simulator validation

0,0

0,1

0,2

0,3

0,4

0,5

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

λ - input load

T
h

-
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

Our Simulation Theimer's Model
Mun's model Jenq's Model

Figure 4. Normalized throughput of a single buffered 6-stage MIN

To validate our simulator, we compared the results
obtained from our simulator against the results reported in
other works, selecting among them the ones considered
most accurate. Figure 4 shows the normalized throughput of
a single-buffered, single-priority MIN with 6 stages as a

function of the probability of arrivals for the three classical
models [32], [24], [18] and our simulation.

All models are very accurate at low loads. The accuracy
reduces as input load increases. Especially, when input load
approaches the network maximum throughput, the accuracy
of Jenq's model is insufficient. One of the reasons is the fact
that many packets are blocked mainly at the network first
stages at high traffic rates. Thus, Mun introduced a
"blocked" state to his model to improve accuracy. Theimer’s
model considers the dependencies between the two buffers
of an SE; this has lead to further improvement in accuracy
and therefore Theimer’s model is considered the most
accurate insofar. Our simulation was also tested by
comparing the results of the Theimer's model with those of
our simulation experiments, which were found to be in close
agreement (differences are less than 1%).

B. Overall MIN performance

Before examining the QoS offered to each priority class
under different settings of the queue weights in CBWFQ,
we will present the simulation results regarding the effect of
queue weight setting to the overall performance of the MIN.

Figure 5 depicts the total normalized throughput
[th=th(h)+th(l)] of a MIN using a dual-priority scheme vs.
the bandwidth dedicated to high priority packets by the
class-based weighted fair queuing. In the diagram, curve
high-X (λ=y) depicts the total normalized throughput of a 2-
class priority, single-buffered 6-stage MIN, when the
service ratio of high priority packets is X% and offered load
is y. We can notice here that the gains on total normalized
throughput of a dual-priority scheme for a 6-stage, single-
buffered MIN using the class-based weighted fair queuing
algorithm versus the strict priority queuing mechanism are
considerable. The performance of the strict priority queuing
mechanism is effectively represented by the last value of
each curve: if the weight of the high priority queue is set to
1, then low-priority packets are served only when no high-
priority packets are available, which is exactly the behavior
of the strict priority queuing mechanism.

It is obvious that when offering greater servicing rates to
low priority queues the total normalized throughput
increases (except for the case of High-30 (λ=1) where the
performance remains at the same level) because the network
resources are better exploited. This particularly applies to
network buffers dedicated to low-priority queues within the
SEs: under the strict priority mechanism, these buffers have
decreased probability of transmitting the packets they hold,
which in turn leads to increased probability of blockings, in
the event that a new low-priority packet arrives at the
corresponding SE. Nevertheless, the primary goal of
classifying the packets into two priority classes is to provide
better QoS to high priority ones. This goal can simply
achieved when the weight of the high-priority queue for
CBWFQ algorithm is set to a value greater than the

anticipated load of high-priority packets. The exact setting
of this parameter can be determined by balancing between
the factors of achieving optimal overall network
performance and delivering better QoS to high-priority
packets. The QoS level delivered to packets of different
priority classes under the CBWFQ algorithm is discussed in
the following paragraphs.

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

T
h

-
T

ot
al

 T
hr

ou
gh

pu
t

High-20 (λ=1) Ηigh-30 (λ=1)

High-20 (λ=0.65) High-30 (λ=0.65)

Figure 5. MIN throughput under varying high priority queue weights

C. Dual- Priority MINs Performance under Full-load
Traffic Conditions

In this subsection we examine the QoS offered to packets
of different priorities when the MIN is fully loaded (λ=1).
Figure 6 illustrates the relative normalized throughput for
high- and low-priority packets under varying high priority
queue weights, and considering high-priority packet ratios
of 20% and 30%. In this diagram we can observe
that -expectedly- when the high priority queue weight
increases, high-priority packets are offered better quality of
service, while the QoS offered to low-priority packets drops.
The leftmost part of the x-axis, where the high priority
queue weight is less than the ratio of high priority packets in
the network is not bound to be used, since within that part
high-priority packets are offered worse quality of service
than low-priority ones. Further increasing the high priority
queue weight up to 0.7 delivers an improvement of 30%-
42% for high-priority packets, whereas the corresponding
deterioration for low-priority packets is much lower,
ranging from 12% to 20%. For the last portion of the curves
(high priority queue weight between 0.7 and 1), the benefits
for the high priority packets is small (between 7.5% and
11.6%) and similar are the losses for low-priority packets
(between 5.8 and 12%).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

R
T

h
-

R
el

at
iv

e
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t

High-20 Low-80

High-30 Low-70

Figure 6. Normalized throughput for different priority classes under
varying high priority queue weights and full load

Note that since the diagram depicts the relative
normalized throughput metric (which is normalized by the
ratio of packets of the corresponding priority in the total
load), a higher value in the diagram does not necessarily
indicate higher number of packets, but merely the fact that
the network handles packets more efficiently. Consequently,
the fact that curve Low-80 crosses over curve Low-70 at
high priority queue weight 65% is interpreted that before
this point low priority packets in a 30/70 ratio are handled
more efficiently than low priority packets in a 20/80 ratio,
whereas beyond this point the situation is reversed.

Figure 7 illustrates the normalized delay for high- and

low-priority packets under varying high priority queue
weights, and considering high-priority packet ratios of 20%
and 30%. Again, as the high priority queue weight
increases, high-priority packets are served faster, to the
expense of the low priority packets’ delay. The overall
variations in the delay, at least in the range 0.3-1.0 for the
high priority queue weight, are small (less than 12%),
mainly due to the fact that the MIN considered in this paper
is single-buffered, and single-buffered MINs tend to exhibit
low values in delay, to the having however lower
throughput and higher number of dropped packets [38],
[39], [40]. The crossover of lines Low-80 and Low-70 at
high priority queue weight 70% is explained similarly to
the case of the relative normalized throughput, discussed
above.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

D
 -

 N
or

m
al

iz
ed

 D
el

ay

High-20 Low-80

High-30 Low-70

Figure 7. Normalized delay for different priority classes under varying high
priority queue weights and full load

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

U
pf

 -
 U

ni
ve

rs
al

 P
er

fo
rm

an
ce

 F
ac

to
r

High-20 Low-80

High-30 Low-70

Figure 8. Universal performance factor for different priority classes under
varying high priority queue weights and full load

Finally, figure 8 depicts the universal performance factor
(Upf) for different priority classes under varying high
priority queue weights and two high/low packet ratios
(20/80 and 30/70). Since the individual performance factors
(throughput and delay) combined in Upf evolve along a
specific pattern (i.e. high priority packets are served better
as the high priority queue weight increases while the inverse

holds for low-priority packets), the same pattern is exhibited
by the Upf too: its value drops (i.e. improves) for high-
priority packets as the high priority queue weight increases,
while for low-priority packets its value rises (i.e.
deteriorates) as the high priority queue weight increases.

D. Dual- Priority MINs Performance under High Network
Load

In this subsection we examine the QoS offered to packets
of different priorities when the MIN operates under high
load, i.e. the packet arrival probability λ is equal to 65%
(approximately 2/3 of the full load). Figure 9 illustrates the
relative normalized throughput for high- and low-priority
packets under varying high priority queue weights, and
considering high-priority packet ratios of 20% and 30%.
The trends of the curves are similar to the case of the full
load (figure 6), but the absolute values are smaller, since the
offered load is smaller too. The improvement observed for
high-priority packets when increasing the high priority
queue weight from 0.3 to 0.7 ranges from 9.0% to 14.5%,
while in the full load case the corresponding improvement
ranged from 30% to 42%. The smaller improvement is
owing to the decreased network load, due to which high-
priority packets are offered an increased quality of service,
even for low values of high priority queue weight, and
therefore the margins for improvement are more limited.
Similarly, the deterioration in the low-priority packets’
throughput is limited, ranging from 6.2% to 9.8% (12% to
20% in the full load case). For the last portion of the curves
(high priority queue weight between 0.7 and 1), both the
gains of high-priority packets and the losses for low-priority
ones are less than 5% in all cases.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

R
T

h
-

R
el

at
iv

e
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t

High-20 Low-80

High-30 Low-70

Figure 9. Normalized throughput for different priority classes under
varying high priority queue weights and high load

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

D
 -

 N
or

m
al

iz
ed

 D
el

ay

High-20 Low-80

High-30 Low-70

Figure 10. Normalized delay for different priority classes under varying
high priority queue weights and high load

Figure 10 presents the normalized delay for different
priority classes under varying high priority queue weights
and high load. When increasing the high priority queue
weight from 0.3 to 0.7, the delay for high-priority packets is
improved between 6% and 8%, while the respective
deterioration for low priority packets ranges between 3%
and 5%. The variations are small because, similarly to the
case of throughput (figure 9), the decreased network load
results in small delays for packets for “reasonable” settings
of the high priority queue weight, and therefore the margins
for improvement/deterioration are small. For the last portion
of the curves (high priority queue weight between 0.7 and
1), both the gains of high-priority packets and the losses for
low-priority ones are less than 3% in all cases.

Finally, figure 11 depicts the universal performance
factor (Upf) for different priority classes under varying high
priority queue weights, high network load and two high/low
packet ratios (20/80 and 30/70). Similarly to the full load
case, since the individual performance factors (throughput
and delay) combined in Upf evolve along a specific pattern
(i.e. high priority packets are served better as the high
priority queue weight increases while the inverse holds for
low-priority packets), the same pattern is exhibited by the
Upf too: its value drops (i.e. improves) for high-priority
packets as the high priority queue weight increases, while
for low-priority packets its value rises (i.e. deteriorates) as
the high priority queue weight increases. Note that the
absolute values of Upf in figure 11 are higher (i.e. worse)
than the respective values of the full load case (figure 8),
indicating that network resources are underutilized.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
High Priority Queue Weight

U
pf

 -
 U

ni
ve

rs
al

 P
er

fo
rm

an
ce

 F
ac

to
r

High-20 Low-80

High-30 Low-70

Figure 11. Universal performance factor for different priority classes under
varying high priority queue weights and high load

VI. CONCLUSIONS

In this paper we have addressed the performance
evaluation of a dual-priority, single-buffered, 6-stage MIN,
employing the class-based weighted fair queuing packet
scheduling algorithm. We have presented analytical
equations for modelling their operation, employing a
scheme that takes into account both the previous and the last
state of the SEs’ queues, providing thus better accuracy than
schemes considering only the last state.

We have also evaluated through simulations the overall
performance of the MIN and the quality of service offered
to each priority class under varying high priority queue
weights, different high/low priority packet ratios (20/80 and
30/70) and different MIN loads (full load and high load)
when using the class-based weighted fair queuing algorithm
and compared these results against the strict priority
algorithm. The performance evaluation results show that the
strict priority algorithm does offer the high-priority packets
better quality of service, but on the other hand it degrades
the overall MIN performance and significantly degrades the
quality of service offered to low-priority packets.
Configuring the high-priority queue weight in the range
[0.7, 1] has marginal effects both on the overall MIN
performance and the QoS offered to packets of different
priority classes. On the other hand, setting the high-priority
queue weight in the range [0.45, 0.7) appears to achieve a
good balance among overall MIN performance,
prioritization of high-priority packets and acceptable QoS
for low-priority packets (always considering the high/low
priority packet ratios 20/80 and 30/70). MIN designers and

operators can use the results presented in this paper to
optimally configure the weights of the queues, taking into
account the QoS they want to offer to packets of different
priorities and the overall MIN performance they want to
achieve.

Future work will focus on examining other load
configurations, including hot-spot and burst loads, as well as
different buffer sizes and handling schemes.

VII. REFERENCES
[1] G.A. Abandah and E.S. Davidson, “Modeling the communication

performance of the IBM SP2”, in Proceedings of the 10th International
Parallel Processing Symposium (IPPS’96), IEEE Q3 Computer Society
Press, Hawaii, pp. 249-257, 1996.

[2] G. B. Adams and H. J. Siegel, “The extra stage cube: A fault-tolerant
interconnection network for supersystems”, IEEE Trans. on
Computers, 31(4)5, pp. 443-454, May 1982.

[3] Avaya Inc. Avaya “Automatic QoS Technical Configuration Guide for
the ERS 4500, 5000, Avaya BCM 50, 450, Avaya CS 1000, Avaya CS
2100 and Avaya SRG 50”,
http://support.avaya.com/css/P8/documents/100123842, accessed July
19, 2011.

[4] R.Y. Awdeh and H.T. Mouftah, “Survey of ATM switch
architectures”, Comput. Netw. ISDN Syst. 27 (1995), pp. 1567–1613,
1995.

[5] C. Bouras, J. Garofalakis, P. Spirakis, V. Triantafillou., “An analytical
performance model for multistage interconnection networks with
finite, infinite and zero length buffers”, in Performance Evaluation
34(98) , pp. 169-182, 1998

[6] Cisco Systems. QoS Scheduling and Queueing on the Catalyst 3550
Switches.
http://www.cisco.com/en/US/tech/tk389/tk813/technologies_tech_note
09186a00801558cb.shtml, accessed July 19, 2011

[7] C.-H. Choi and S.-C. Kim, “Hierarchical multistage interconnection
network for sharedmemory multiprocessor system”, Proceedings of the
1997 ACM Symposium on Applied Computing, pp. 468–472, 1997.

[8] Dax networks. Dax Dx-5048GM technical specifications.
http://www.daxnetworks.com/products-dec2010/switches/dax%20dx-
5048gm.asp?Page=3&Print=

[9] A. Demers, S. Keshav and S. Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm”, Journal of Internetworking Research and
Experience, V1, N1, pp 3-26, September 1990.

[10] A. Elwalid , D. Mitra, “Analysis, Approximations and Admission
Control of a Multi-Service Multiplexing System with Priorities”,
Proceedings of IEEE INFOCOM '95, pp. 463-472, 1995.

[11] A. Elwalid , D. Mitra, “Design of generalized processor sharing
schedulers which statistically multiplex heterogeneous QoS classes”,
Proceedings of the Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM '99), pp. 1220 –
1230, 1999.

[12] G.F. Goke, G.J. Lipovski. “Banyan Networks for Partitioning
Multiprocessor Systems” Procs. of 1st Annual Symposium on
Computer Architecture, pp. 21-28, 1973.

[13] S.J. Golestani. A self-clocked fair queueing scheme for broadband
applications. Proceedings of the 13th Conference on Networking for
Global Communications (INFOCOM '94), pp. 636 – 646,1994.

[14] C. Guo. SRR, “An O(1) time complexity packet scheduler for flows in
multi-service packet networks”, IEEE/ACM trans. Networking,
12(6):pp. 1144–1155, Dec. 2004.

[15] A. K. Gupta, L. O. Barbosa, N.D. Georganas, “Switching modules for
ATM switching systems and their interconnection networks”,
Computer Networks and ISDN Systems, Volume 26, Issue 4, pp. 433-
445, December 1993.

[16] S. Hiyama, Y. Nishino and I. Sasase, “Multistage Interconnection
Multicast ATM Switch with Exclusive Routes for Delay-Sensitive and

Loss-Sensitive Cells”, Journal of High Speed Networks - JHSN , vol.
15, no. 2, pp. 131-155, 2006.

[17] Hewlet Packard. 3Com SuperStack 3 Switch 3800 – Overview.
http://bizsupport1.austin.hp.com/bizsupport/TechSupport/Document.js
p?objectID=c02642521&printver=true, accessed July 19, 2011

[18] Y.-C.Jenq, “Performance analysis of a packet switch based on single-
buffered banyan network”, IEEE Journal Selected Areas of
Communications (83), pp. 1014-1021, 1983.

[19] J. Kim, T. Shin, and M. Yang, “Analytical modeling of a Multistage
Interconnection Network with Buffered axa Switches under Hot-spot
Environment”, Procs. of PACRIM’07, 2007.

[20] S. Kumar, “Mathematical Modelling and Simulation of a Buffered
Fault Tolerant Double Tree Network”, International Conference on
Advanced Computing and Communications ADCOM’07, Volume ,
Issue pp.422 – 433, 18-21 Dec. 2007.

[21] D.A. Lawrie. “Access and alignment of data in an array processor”,
IEEE Transactions on Computers, C-24(12):11451155, Dec. 1975.

[22] J. Liebeherr, E. Yilmaz., “Workconserving vs. Non-workconserving
Packet Scheduling”, An Issue Revisited. Seventh International
Workshop on Quality of Service (IWQoS '99), 1999, pp. 248 – 256,
1999.

[23] T.Lin, L. Kleinrock, “Performance Analysis of Finite-Buffered
Multistage Interconnection Networks with a General Traffic Pattern”,
Joint International Conference on Measurement and Modeling of
Computer Systems, Proceedings of the 1991 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, San
Diego, California, United States, Pages: 68 - 78, 1991

[24] H. Mun and H.Y. Youn. “Performance analysis of finite buffered
multistage interconnection networks”, IEEE Transactions on
Computers, pp. 153-161, 1994.

[25] Nortel Networks. Nortel Ethernet Switch 460/470 Overview —
System Configuration.
http://support.avaya.com/css/P8/documents/100099692, accessed July
19, 2011

[26] J.H. Patel. “Processor-memory interconnections for mutliprocessors”,
Procs. of 6th Annual Symposium on Computer Architecture. New
York, pp. 168-177, 1979.

[27] B. Prabhakar, N. McKeown. On the speedup required for combined
input- and output-queued switching. Automatica, Volume 35, Issue 12,
pp.1909-1920, December 1999.

[28] M. Shreedhar, G. Varghese, “Efficient fair queuing using deficit
round-robin”, IEEE/ACM Transactions on Networking, vol. 4 issue 3,
pp. 375 – 385, June 1996.

[29] T. Soumiya, K. Nakamichi, S. Kakuma, T. Hatano, and A. Hakata,
The large capacity ATM backbone switch “FETEX-150 ESP”,
Comput. Netw. 31(6) , pp. 603–615, 1999.

[30] E. Stergiou, G. Garofalakis, “Performance evaluation for multistage
interconnection networks servicing unicast and multicast traffic (by
partial operation)” Proceedings of the Performance Evaluation of
Computer and Telecommunication Systems (SPECTS’09), IEEE Press,
pp. 311 - 318 , July, 2009.

[31] W.R. Stevens, “TCP/IP Illustrated”, Volume 1. The protocols, (10th
Ed), Addison-Wesley Pub Company, 1997.

[32] T.H. Theimer, E. P. Rathgeb and M.N. Huber. “Performance Analysis
of Buffered Banyan Networks”, IEEE Transactions on
Communications, vol. 39, no. 2, pp. 269-277, February 1991.

[33] J. Torrellas and Z. Zhang, “The performance of the cedar multistage
switching network”, IEEE Trans. Parallel Distrib. Syst. 8(4) , pp. 321–
336, 1997.

[34] E.S.H. Tse, “Switch fabric architecture analysis for a scalable bi-
directionally reconfigurable IP router”, Journal of Systems
Architecture, EUROMICRO J. 50(1) , pp. 35–60, 2004.

[35] D. Tutsch, G.Hommel. “Comparing Switch and Buffer Sizes of
Multistage Interconnection Networks in Case of Multicast Traffic”,
Procs. of the High Performance Computing Symposium, (HPC 2002);
San Diego, SCS, pp. 300-305, 2002.

[36] D. Tutsch and G. Hommel. “Multilayer Multistage Interconnection
Networks”, Proceedings of 2003 Design, Analysis, and Simulation of
Distributed Systems (DASD'03). Orlando, USA, pp. 155-162, 2003.

[37] D.C. Vasiliadis, G.E. Rizos, and C. Vassilakis. “Performance Analysis
of blocking Banyan Swithces”, Procs. of CISSE 06, December, 2006.

[38] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis, and E.Glavas.
“Performance evaluation of two-priority network schema for single-
buffered Delta Network”, Procs. of IEEE PIMRC' 07, 2007.

[39] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis. “Improving Performance of
Finite-buffered Blocking Delta Networks with 2-class Priority Routing
through Asymmetric-sized Buffer Queues”, Proceedings of the Fourth
Advanced International Conference on Telecommunications AICT08,
IEEE Press, 2008.

[40] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis, E. Glavas. “Routing and
Performance Analysis of Double-Buffered Omega Networks
Supporting Multi-Class Priority Traffic”, Proceedings of International
Conference on Systems and Networks Communications ICSNC08,
IEEE Press, 2008.

[41] D.C. Vasiliadis, G.E. Rizos, and C. Vassilakis. “Routing and
Performance Evaluation of Dual Priority Delta Networks under
Hotspot Environment”, Proceedings of the First International
Conference on Advances in Future Internet AFIN09, IEEE Press, pp.
24-30, 2009.

[42] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis. Performance Study of
Multilayered Multistage Interconnection Networks under Hotspot
Traffic Conditions. Journal of Computer Systems, Networks, and
Communications, doi:10.1155/2010/403056, Volume 2010 (2010).

[43] C. A. Waldspurger, W. E. Weihl, “Lottery Scheduling: Flexible
Proportional-Share Resource Management”, In Proceedings of
symposim on Operating System Design and Implementation,
November 1994.

[44] Xin. Li, L. Mhamdi, J. Liu, K. Pun, M. Hamdi,, “Architectures of
Internet Switches and Routers”, In High-performance Packet
Switching Architectures, I. Elhanany and M. Hamdi (eds), ISBN: 1-
84628-273-X, Springer-Verlag London Limited 2007

[45] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet-
Switched Networks. ACM Transactions on Computer Systems, Vol 9,
No. 2.,,pp. 101-124, May 1991.

[46] J. Shortle, M. Fisher. Approximation for a two-class weighted fair
queueing discipline. Performance Evaluation 67 (2010) 946-958.

[47] Cisco Systems. Class-Based Weighted Fair Queueing. Chapter in
Cisco IOS Software Releases 12.0 T, 2010.
http://www.cisco.com/en/US/docs/ios/12_0t/12_0t5/feature/guide/cbwf
q.html accessed July 28, 2011

[48] Hewlet-Packard. HP ProCurve Secure Router 7000dl Series. Available
at
http://www.hp.com/rnd/pdfs/datasheets/ProCurve_Secure_Router_700
0dl_Series.pdf accessed July 28, 2011.

[49] M. Nabeshima. Packet-based scheduling for ATM networks based on
comparing a packet-based queue and a virtual queue. IEICE
Transactions on Communications. vol e82-b, no 6, June 1999.

[50] D. C. Vasiliadis, G. Ε. Rizos, C. Vassilakis, and E. Glavas. Modelling
and performance evaluation of a novel internal priority routing scheme
for finite-buffered multistage interconnection networks,. International
Journal of Parallel, Emergent and Distributed Systems, Taylor &
Francis, DOI: 10.1080/17445760.2010.539218

[51] M. Moudi and M. Othman. A Challenge for Routing Algorithms in
Optical Multistage Interconnection Networks. Journal of Computer
Science 7 (11): 1685-1690, 2011

[52] M. Othman and T.D. Shahida. The development of crosstalk-free
scheduling algorithms for routing in optical multistage interconnection
networks. Trends Telecommunication Technologies, March 2010.
http://www.intechopen.com/download/pdf/pdfs_id/9696

