
Exception Resolution for BPEL Processes: a Middleware-
based Framework and Performance Evaluation

Kareliotis Christos
PhD Candidate

Department of Informatics
and Telecommunications,

University of Athens,
Greece

+302107275220
ckar@di.uoa.gr

Dr. Costas Vassilakis
Assistant Professor,

Department of Computer
Science and Technology,

University of Peloponnese,
Greece

+302710372203
costas@uop.gr

Efstathios Rouvas
PhD Candidate

Department of Informatics
and Telecommunications,

University of Athens,
Greece

+302107275220
rouvas@di.uoa.gr

Dr. Panayiotis Georgiadis
Professor

Department of Informatics and
Telecommunications,
University of Athens,

Greece
+302107275235

p.georgiadis@di.uoa.gr

ABSTRACT
WS-BPEL has become the predominant technology for specifying
and executing composite business processes within the Service
Oriented Architecture. During the execution however of such a
composite business process, a number of faults stemming from
the distributed nature of the SOA architecture (e.g. network or
server failures) may occur. To this end, the WS-BPEL scenario
designer must exploit the provisions offered by WS-BPEL to
catch exceptions owing to system failures and resolve them,
typically by invoking some alternate equivalent web service that
is expected to be reachable and available. The task of system fault
handler specification is though an additional burden for the WS-
BPEL scenario designer and the presence of such handlers within
the WS-BPEL scenario necessitates additional maintenance
activities, as new alternate services become available or some of
the specified ones are withdrawn. In this paper, we propose a
middleware-based framework for system exception resolution,
which undertakes the tasks of failure interception, discovery of
alternate services and their invocation. The middleware is
deployed and maintained independently of the WS-BPEL
scenarios, removing thus the need for specifying and maintaining
system faults within the scenarios. We also present performance
measures, establishing that the overhead imposed by the addition
of the proposed middleware layer is minimal.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – distributed systems H.3.5 [Information Storage and
Retrieval]: Online Information Services – web-based services;
D.2.8 [Software Engineering]: Metrics – performance measures;

General Terms
Measurement, Performance, Design, Reliability.

Keywords
Web services; Exception handling; Middleware; Performance
metrics; Quality of service (QoS), Scalability.

1. INTRODUCTION
Web services are unanimously supported by major software
vendors of middleware technology [1]. The main objective of web
service technology and related research [2] is to provide the
means for enterprises to do business with each other and provide
joint services to their customers under specified Quality of

Service (QoS) levels. Business Process Management (BPM)
addresses how organizations can identify, model, develop, deploy,
and manage their business process, including processes that
involve IT systems and human interaction.
Business processes are typically complex operations, comprising
of numerous individual stages, and in the context of SOA each
such stage is realized as a web service. The composition of these
steps (control flow, data flow, etc) is frequently specified using
the Web Services Business Process Execution Language (WS-
BPEL) and executed by a Web Services Orchestration (WSO)
platform. Web Services due to their loosely-coupled nature in
Service Oriented Architectures (SOAs) provide the flexibility that
enterprises need to adapt quickly for satisfying the increased
business demands. However, they introduce new challenges when
it comes to ensuring superior performance and availability. IT
teams lack visibility into web services transactions as they
traverse these environments, where services are often shared
among several applications and failure (or exceptions) can occur
anywhere along the transaction path. In this paper we focus on
exceptions occurring in business process execution and
particularly when a service becomes unavailable; this can be
owing to a number of reasons, which may be both transient –e.g.
host inoperability, software malfunction, network failure/
partitioning- or permanent –e.g. the service has been withdrawn
or changed to some form incompatible to the previous one. In the
presence of these events, there is an issue on how to ensure the
availability of these services and eventually on how to ensure the
health of the business process execution in a real-time production
environment. Typically, a replacement component should be
identified and substituted for the failed one. The replacement
component should have the “same skills” with the failed one i.e.
to have same functionality, while some non-functional parameters
(e.g. security, performance, response time) can be taken into
account [3]. WS-BPEL provides constructs for catching
unavailability faults and invoking replacement services through
the Catch and CatchAll activities: the WS-BPEL scenario
designer may use these activities to intercept faults and specify
which replacement service(s) should be invoked when the
“normal flow” service is unavailable. This approach has however
the following shortcomings:
1. the WS-BPEL designer must undertake one extra task, i.e. to

locate equivalent services and include calls to them into fault
handlers within the WS-BPEL scenario.

2. as new services emerge, which might be more suitable as
replacements to “normal flow” services than the originally

specified replacements, the related WS-BPEL scenarios need
to be maintained. Maintenance activities need to be also taken
when replacement services are withdrawn.

Note that due to the static nature of WS-BPEL, which dictates
that service bindings should be hard-coded in the scenario, it is
not feasible to include calls to all replacement services within a
fault handler (typically 2 or 3 alternates will be specified) and not
possible at all to dynamically introduce new bindings or remove
outdated ones, to align with the changes in service availability.
Each such change should trigger a maintenance activity that will
lead to modifications in the WS-BPEL scenario code.
In this paper we introduce the Alternative Service Operation
Binding (ASOB) framework, which is a middleware-based
approach for dynamically resolving exceptions occurring in WS-
BPEL scenario executions, elevating the robustness and reliability
of business processes and simplifying the maintenance of their
specifications. The ASOB framework catches system exceptions
occurring in within WS-BPEL scenario execution and resolves
them by invoking operational replacement services that are
functionally equivalent to the failed ones. ASOB acts as a web
service proxy, so its is invoked every time the WS-BPEL engine
invokes a service operation. The real invocation is performed by
ASOB, and thus ASOB intercepts any faults that occur in this
invocation. If a failure is detected, ASOB queries an appropriate
registry to identify web services that are equivalent to the failed
one, and subsequently invokes them until one of them yields a
reply; finally the reply is returned to the WS-BPEL scenario.
The rest of the paper is organized as follows: section 2 presents
related work, while section 3 briefly presents the SOA and WS-
BPEL provisions used for our purposes. Section 4 presents the
overall architecture of ASOB. In section 5 we illustrate
implementation specifications and performance results aroused by
extended benchmarking when applying ASOB-based BPEL
process execution. Finally in section 6 conclusions are drawn and
future work is outlined.

2. RELATED WORK
Exception resolution is recognized as an important issue in the
context of WS-BPEL scenario design and execution. All WS-
BPEL design environments, such as ActiveBPEL [4], Oracle
BPEL Process Manager in Oracle Application Server [5], Eclipse
[6] OpenESB [7], include provisions through which designers
may specify the activities to be taken upon occurrence of some
specific (Catch construct) or a generic (CatchAll construct) fault;
these specifications are honored by WS-BPEL orchestrators.
Some environments cater for specialized handling of failed
requests, e.g. Oracle Process Manager addresses system faults by
sending an exception message in a JMS Dead Letter Queue.
The shortcomings of manual fault handler design have become
apparent to the industry and the research community alike, and
therefore numerous attempts have been made to enhance and/or
automate the exception handling process in WS-BPEL scenario
execution. [8] presents a methodology and related tools through
which various fault tolerance patterns can be mapped to WS-
BPEL including provisions for configuring fault tolerant
mechanisms on a per-operation basis. This work enhances the
original WS-BPEL scenario with fault handlers, employing nested
scoping for separating designer-provided fault handlers (usually
crafted to tackle application logic-level faults -such as insufficient

balance while withdrawing from an account- as opposed to
system-level faults which inhibit the execution of the web
service). This technique introduces however the need to either use
a specific development environment which will cater for the
generation of fault handlers, while it does not also address the
issue of introduction of new or withdrawal of existing alternate
services (in these cases, the definitions of alternate services
should be modified accordingly and the WS-BPEL scenario
should be regenerated).
An architecture on how exceptions can be resolved in a generic
way is presented in [9], which introduces an additional module,
SRRF, which undertakes the handling of exceptions, dynamically
discovering services equivalent to the failed one and performing
hot-swapping; however the communication of this module with
the executing scenario is unclear and details on how exceptions
will be directed to the SRRF module or how results of hot-
swapping will be returned to the WS-BPEL scenario. [10]
elaborates on this approach introducing a pre-processor which
enhances the WS-BPEL scenario with fault handlers within nested
scopes that redirect faults to the Alternate WS Locator Module
that returns to the WS-BPEL script the identity of the web service
that should be invoked in place of the failed one; however it
appears that since WS-BPEL does not allow dynamic service
bindings, the pre-processor would need to embed specific calls to
alternate services in the produced WS-BPEL script, inhibiting
thus dynamic discovery of alternate services and necessitating re-
runs of the pre-processor when the list of equivalent services is
modified.
In [11] a Web Service Manager for discovering the exception
location along the SOA transaction path is presented. This work
provides a detailed discussion of CA Wily Web Services Manager
and offers concrete examples of how IT teams are using it in the
real world to gain control over the performance and availability of
web services. Although this work addresses exceptions in
composite service execution, it is mainly targeted to pinpointing
the exact fault location in environments involving legacy systems,
web-based application and other components, while exception
resolution is not adequately addressed.
An essential underpinning for the fully automated and dynamic
resolution of exceptions during the execution of WS-BPEL
scenarios is the ability to locate services which can be substituted
for the failed one. A noteworthy approach towards this direction
is the one undertaken by METEOR-S project [12], [13] in
cooperation with WSMX (Web Services Execution Environment)
[14]. WSMX contains the discovery component, which
undertakes the role of locating the services that fulfill a specific
user request. This task is based on the WSMO conceptual
framework for discovery [15]. WSMO includes a Selection
component that applies different techniques ranging from simple
"always the first" to multi-criteria selection of variants (e.g., web
services non-functional properties as reliability, security, etc.) and
interactions with the service requestor. Both in the METEOR-S
and other approaches, functional and non-functional properties
are represented using shared ontologies, typically expressed using
DAML+OIL and the latter OWL-S. Such annotations enable the
semantically based discovery of relevant web services and can
contribute towards the goal of locating services with “same skills”
[3] in order to replace a failed service in the process flow.
METEOR-S and WSMX also address the issue of exception

resolution exploiting the service equivalence information, they
use however pre-determined exception resolution scenarios.

3. SOA PROVISIONS FOR FAULT
HANDLING
3.1 Logical Versus System Faults
Business processes specified in BPEL will interact with partner
processes through operation invocations on web services. We will
refer to these business processes as BPEL processes for the rest of
this paper. Loosely-coupled web services in Service Oriented
Environments are very sensitive on becoming unavailable for at
least a short period of time, since they usually communicate over
the internet. Since BPEL processes are -in most cases- long-
running transactions, the web services participating in those have
to be available and stable anytime. In BPEL processes two kinds
of faults can be raised: logical and system. The first category
includes those faults deliberately raised by constituent services to
indicate that some form of special handling is required. For
example, an InsufficientCredit exception thrown by some
CreditCardPayment service indicates that payment through the
credit card is impossible because the credit limit has been
exceeded; the BPEL scenario designer may catch this fault type
and either end the scenario or attempt to use alternative payment
methods, such as direct withdrawal from a savings account or
cash payment, if applicable. The second category, namely system
faults, includes faults not directly raised by constituent services
but rather detected by the execution environment. Examples of
such faults are the inability to communicate with the hosting
server (server down or network partitioning), system-generated
responses indicating that the service is not offered at the specific
address, parameter number or type mismatches (service has been
altered) and timeouts in receiving replies. If a system fault occurs
while executing a BPEL scenario, it is possible to remedy the
situation by invoking some alternate implementation, since the
fact that the particular invocation failed does not imply that other
implementations will fail as well (the failure reason is directly
bound to the particular invocation). For more information on the
distinction between system-level and business logic-level faults,
the interested reader is referred to [10].
Listing 1 presents a code expert in WSDL for declaring a logical
fault that may occur and how it is specified in a BPEL operation
process. For more information on these WSDL constructs, the
interested reader is referred to [16]. The logical faults declared in
web service’s WSDL can be encountered upon BPEL process
execution at runtime while fault handling mechanisms are taking
place if BPEL designer specified one. Web services’ developers
are strongly encouraged to specify all the logical faults that may
occur during web services’ operations execution giving to BPEL
designer fault handling capabilities in order to resolve this kind of
exceptions.

<message name="CreditApprovalFaultMsg">
<part name="approval" element="tns:error" />

</message>
<portType name="CreditApproval">

<operation name="process">
<input message="tns:CreditApprovalRequestMsg" />
<output message= "tns:CreditApprovalResponseMsg"/>
<fault name="InsufficientCredit"
message="tns:CreditApprovalFaultMsg" />

</operation>
</portType>

Listing 1. WSDL error type message

3.2 Fault Handling in BPEL
The WS-BPEL 2.0 specification [23] provides fault handling
capabilities via the faultHandler construct. BPEL programmers
are able to deal with logical faults in catch-and-handle fashion.
For system faults the WS-BPEL 2.0 specification provides
features like “failover” and “retry” to assist developers in dealing
with them. Failover strategy determines alternative service
invocations, when the first service invocation fails, in contrary to
retry strategy that determines a specific time interval between
invocation attempts to the same service and the number of
invocation retries. A combination of the above system fault
handling strategies is presented in Listing 2.
There are, however, other runtime faults that the failover and retry
mechanisms cannot handle, for example, if a new service with
different interface (other input and output parameters,
authentication, etc) has been deployed instead of the one defined
in BPEL process. In this kind of fault, the usual strategy adopted
by BPEL tools for dealing with is to delegate its handling to a
human administrator. Moreover, it is necessary for the BPEL
process designer to continuously maintain the BPEL scenarios,
keeping the alternate service specifications up-to-date -in case
failover strategy is adopted- whenever new such services are
introduced or existing ones are withdrawn. In this paper we are
proposing a middleware framework to resolve faults raised by
system inconsistency, previously named system faults.
<properties id="RatingService">

<property name="wsdlLocation">
http://localhost:8080/axis/servicesRatingService?wsdl

</property>
<property name="location">

http://localhost:2222/services/axis/RatingService
</property>
<property name="retryCount">2</property>
<property name="retryInterval">60</property>

</properties>
Listing 2. BPEL specification for automatic retry and failover

4. THE ASOB FRAMEWORK
The ASOB framework introduces a middleware layer, which acts
as a service proxy for web service invocation. As shown in the
architectural diagram of Figure 1, the ASOB module operates
independently from the BPEL executor, possibly running on a
distinct machine. The ASOB module intercepts web service
invocations originating from the BPEL executor, places the calls
to the actual service providers and arranges for resolving any
system exceptions that occur during these invocations. We
assume that business processes are comprised by services with a
web service interface. The BPEL scenario itself does not need to

include any designer-crafted handlers for system faults, though it
may probably include fault-handlers for application logic-level
faults, which are related to the scenario’s business logic and are
not handled by the ASOB module. There is also no need to apply
preprocessing to the BPEL scenario, as proposed in [10] or used
specialized development tools, as described in [8], in order to
embed system-generated fault handlers in the BPEL scenario. If
the designer has included system fault handlers in the BPEL
scenario, these will be activated only if the ASOB module has not
managed to resolve the exception, which may occur if no
equivalent services are found or if all services in the list of
equivalent services have been tried and none of these invocations
has succeeded. In order to direct web service invocations to the
service proxy (the ASOB module) rather than to the machines
actually delivering the services, two techniques may be used. The
first one is to designate the ASOB module as a generic HTTP
proxy to the module that undertakes the execution of the WS-
BPEL scenarios. This is illustrated in Figure 1, where the WS-
BPEL orchestrator is Java-based and the Java system properties
http.proxyHost and http.proxyPort are used to specify that all
HTTP requests should be directed to port 80 of the machine
running the ASOB module. Properties can be set from the Java
execution command line, e.g.
java -Dhttp.proxyHost=asob.mynet.com -Dhttp.proxyPort=80 \

bpelExecutor.jar
or by adding appropriate coding in BPEL component (JBI) as
shown in Listing 3.
In environments where HTTP proxying cannot be designated
through system properties, a transparent redirection router may be

employed, as illustrated in the architectural diagram of Figure 2.
Traffic from the machine executing the WS-BPEL orchestrator is
directed to the transparent router (effectively, the transparent
router is designated as the default TCP/IP router for the machine
executing the WS-BPEL orchestrator), and the router’s
configuration arranges for forwarding HTTP requests to the
ASOB module. Any layer four switch can perform such
redirections, while software routing/firewall modules such as
iptables and ipf can be employed as well [17]. In both cases, it is
possible to specify that the proxy will not be used if invocations
to specific servers are made (e.g. if some services are deployed on
a server within the organization’s intranet and should be accessed
there only). In the first case (Java library proxying) the system
property http.nonproxyHost can be set to the appropriate value
(e.g. localhost|wsrvs.myCorp.com) while in the second case
(transparent redirection router) rules dictating that traffic to the
specific hosts is routed normally should precede the generic
traffic redirection rule in the router’s configuration.
Properties systemSettings = System.getProperties();
systemSettings.put(“http.proxyHost”, “asob.mynet.com”);
systemSettings.put(“http.proxyPort”, “80”);
systemSettings.put(“http.nonproxyHost”, “localhost|wsrvs.myCorp.com”);
systemSettings.put(“http.agent”, “supplementary options”);

Listing 3. Applying proxy at programming level
The components internally comprising the ASOB module and the
overall ASOB framework operation are described in the following
sub-sections.

4.1 ASOB Components and Functionality
The ASOB module consists of five components, discussed in the

B
PE

L
sc

en
ar

io

Web Services
Platform

WS-BPEL
Orchestrator

Consumer

Alternate Service Operation Bind
(machine asob.mynet.com)

Web service
 invocation

(service spec,
parameters)

R
es

ul
ts

 o
r f

ai
lu

re

Equivalence +
QOS registry

(e.g. Meteor-S)Query
equiv.

services

List of
equivalent
services +

QOS

Equiv. Service
ranking

Request
interceptor

WS-1 WS-n...WS-2
Web Service

Implementations

Invocation Results or system-related exception or
business logic exception

Service
binder and

invoker

Initial
request

Results or business logic exception Check
result

Equivalent
services
locator

failed
request

Selected alternate
service

No remaining
equivalent
services

Transparent
redirection

router
Original
request Service

Repository (SR)

Figure 2. ASOB architecture in a redirection router setup

BPEL
scenario

Web Services
Platform

WS-BPEL
Orchestrator

Consumer

Alternate Service Operation Bind
(machine asob.mynet.com)Web service

 invocation
(service spec,
parameters)

Results or
failure

Equivalence +
QOS registry

(e.g. Meteor-S)Query
equiv.

services

List of
equivalent
services +

QOS

Equiv. Service
ranking

Request
interceptor

WS-1 WS-n...WS-2
Web Service

Implementations

Invocation Results or system-related exception or
business logic exception

java -Dhttp.proxyHost=asob.mynet.com
 -Dhttp.proxyPort=80 bpelExecutor.jar

Service
binder and

invoker

Initial
request

Results or business logic exception Check
result

Equivalent
services
locator

failed
request

Selected alternate
service

No remaining
equivalent
services

Service
Repository (SR)

Figure 1. ASOB architecture in a proxy-based setup

following paragraphs.

• the Request Interceptor (RI) component. RI intercepts the web
service call. In order to be able to accept any request, the
request interceptor is not a web service itself (which would
require it to adhere to some specific WSDL) and thus it does
not run in a web service container; instead, it is crafted as a
Java Server Page (JSP), and the JSP container is instructed to
run this page upon every request. RI extracts the original web
service specification and the payload (i.e. the SOAP-encoded
message containing the parameters to the request), and passes
them to Service Binder and Invoker module.

• the Service Binder and Invoker component (SBI). SBI is
responsible for invoking a specific web service. It accepts a
web service specification and a payload, and arranges for
invoking the particular web service, attaching the payload to
the invocation.

• the Equivalent Service Locator module (ESL). ESL is the
component which discovers functionally equivalent web
services to a designated one (in the context of ASOB
operation, this is always the service specified in the original
request). This is performed by querying an appropriate
repository.

• the Service Repository (SR). SR is a repository containing up-
to-date web services specification entries (WSDL location,
Endpoint addresses, Operation interfaces). In addition to this
information, SR should at least provide means for identifying
functionally equivalent groups of services using semantic
tagging (as, for example METEOR-S and WSMX) or any
other suitable approach. If the repository, additionally to
functional equivalence, can provide information on the
Quality of Service (QoS) characteristics of the services,
ASOB can exploit this information to resolve exceptions more
efficiently.

• the Equivalent Service Ranking component (ESR). ESR
module is responsible for sorting the equivalent service list
according to QoS criteria, in order to make the exception
resolution process more efficient. In order to perform this
sorting, the ESR component exploits data collected from
previous web service invocations, and more specifically
service availability and service response time. If SR contains
additional QoS attributes, these can be exploited as well. In
order to simplify our discussion in the remaining of this paper,
we will assume that SR contains data on service availability
and service response time, and the SBI component updates
this data when each web service invocation completes, either
successfully or with a failure.

In the following sub-section we describe in detail how a web
service invocation is performed within the ASOB framework and
how exceptions are resolved.

4.2 Request Processing in the ASOB
framework
Consider a BPEL scenario that has been designed and deployed in
the web services platform of figure 1, where an appropriate WS-
BPEL orchestrator resides. At some time point, the execution of
the BPEL scenario commences and a web service invocation is
executed. At this stage, either the execution environment sends

the request to the ASOB module, if the latter has been designated
as an HTTP proxy to the former [Figure 1], or the network
packets comprising the request will be sent to the transparent
redirection router, which will forward them to the ASOB module
[Figure 2]. In both cases, the request will reach the ASOB
module, where it will be intercepted by the RI component.
The ASOB RI component inspects the web service call request
and extracts from it the web service specification (i.e. the
requested URL) and the payload (the XML document containing
the SOAP envelope) from it, and passes these chunks to SBI. SBI
invokes the web service –at this stage, this is the service
originally specified by the BPEL designer- and waits for the
response. At this stage, one of the following possibilities may
occur:
1. the service does not return a reply within a predefined amount

of time. This is typically owing to the host providing the
service being down or unreachable. SBI informs SR that the
service has been found to be unavailable (thus SR updates the
service’s availability qualitative characteristic) and passes
control to the ESL module, to initiate the exception
resolution.

2. an exception of type “no route to host” or “connection
refused” is returned, then the service is again unavailable and
the same actions as in the previous case are taken.

3. a network-level exception of type “unknown host” is returned.
This exception indicates that the host that offered the service
has ceased to exist, thus the service has become permanently
unavailable. In this case, the SR is notified that the service
should not be considered any more as a candidate substitute
for other failed services which were functionally equivalent to
its original specifications. Subsequently, control is again
passed to the ESL module for resolving the exception.
Note that the failed service is not withdrawn from SR,
because such a withdrawal would break the process of finding
alternatives to the specific service (i.e. if a WS-BPEL
scenario contained an invocation to that service, then the
registry would not contain any information on which other
services are functionally equivalent to it, so as to enable the
ASOB module to invoke an alternative implementation). SR
may periodically check whether some “blacklisted” service
has become again available, and remove the “blacklist” flag,
possibly reducing in parallel the service’s availability and
reliability QoS characteristics.

4. a reply is received from the web service container (as opposed
to the previous cases where no reply is received). In this case,
the reply is checked and one of the following actions are
taken:
a) if the reply is a “Unknown service” or “Parameter

mismatch” fault (these fault types are produced by the
web service container), either the service has been
withdrawn from the host (“Unknown service”) or the
service’s interface has been modified and is now
incompatible to the specifications expected by the
application. These fault types correspond to permanent
errors, thus processing continues as in case (3) above.

b) if the reply is a “normal” response (i.e. it is a valid output
message declared in the service’s WSDL), the reply is
returned to the WS-BPEL script that made the invocation;

the time taken for the service to reply is noted, SR is
notified of the service’s availability and response time, to
update the respective QoS characteristics accordingly and
request processing concludes.

c) if the reply is not a valid output message, it corresponds to
a fault. In this case, ASOB attempts to discriminate
between application logic faults and other system-oriented
faults. This is accomplished by checking whether the
reported fault is declared in the web service’s WSDL
description as a fault type or not; if it is, the reply
constitutes an application-level exception which must be
passed back to the WS-BPEL script, where it will be
probably caught and handled via an appropriate Catch
construct; therefore, this reply is handled as a normal
reply [case (b), above], i.e. it is returned to the WS-BPEL
script, SR is notified of the service’s availability and
response time, to update the respective QoS
characteristics accordingly and request processing
concludes.
If the reply is neither a valid output message nor a
declared fault, then it is considered to be a system-level
error due to service unavailability or temporary
malfunction (e.g. inability to access a local database); this
case is handled similarly to other transient errors, i.e.
cases (1) and (2).

This stage of processing is reached if the original web service
invocation has failed due to a system error. ESL locates
equivalent web service operations, by issuing a query to SR. The
internals of query processing by SR are outside the scope of this
paper, and any pertinent technology (e.g. [12], [13] and [14]) can
be used. The query to SR will contain the endpoint URL of the
operation that failed (e.g.
http://www.domain.com/WebService/WSOperation), and SR’s
reply will include a list of records, with each record
corresponding to an equivalent service that can be substituted for
the failed one. Each such record will contain at least the service’s
endpoint and target namespace1 , while the service’s response
time, availability and other QoS characteristics may be included,
if available in SR.
Having received the alternative services list, the ESR component
checks whether QoS attributes are included in it, and in particular
response time. If this attribute is included, ESR sorts the list in
ascending order of this attribute, thus services with smaller
response time are placed first. The sorting criteria can be modified
by the ASOB administrator to consider alternate attributes (e.g.
availability, throughput and so forth [18]) or attribute value
combinations (e.g. [(70% / response_time) + 30% * availability)].
If no QoS attributes are included in SR’s reply, the sorting step is
skipped and the elements remain in the order they were presented
by SR.
Finally, ESR iterates over the alternate services list, starting from
the first (if sorting has taken place, the “most preferred” one will
be placed there) and moving towards the last (“least preferred”).
For each such service, the namespace in the payload is adjusted
and the web service is invoked; the results of each invocation are

1 The namespace is required for technical reasons, since the

payload complementing a web service invocation should refer
to the namespace declared by the web service in its WSDL file.

handled as described in steps (1)-(4) above, except for that in case
of a failure, where the next service in the list is tried rather than
invoking the ESL component anew. This stage can be repeatedly
performed until an alternate functionally equivalent service
responds as expected or until a number of attempts (defined by
the ASOB administrator) has been reached. If the maximum
number of unsuccessful attempts is reached or the list is exhausted
(or if it was initially empty), resolution is possible for the
exception and a special type of fault, namely PolicyFault, is
returned to the BPEL execution environment. The BPEL designer
may have included an appropriate fault handler in the BPEL
script, which will attempt to follow an alternate business process
for remedying the fault.
Listings 4 and 5 illustrate the way requests are processed in
ASOB using pseudo-code. One issue that must be noted here is
that the Service Repository update is an asynchronous task.
Currently, it is initiated as a separate thread immediately before
results are returned to the WS-BPEL script that placed the
original invocation; an alternative, more efficient approach would
construct update batches and submit them to the registry when a
certain amount of updates have been amassed or at specific time
intervals.
/* Variables list */
ewsLIST /* list of equivalent web service */
OWS /*originally selected web service */
owsRS /*web service operation invocation results of OWS */
EWS /*equivalent web service to the originally selected */
ewsRS /*web service operation invocation results of EWS */
finRS /* final result */
knownEXC /* exception listed in OWSs WSDL */
policyFAULT /* fault when equivalent services has been exhausted

and exception resolution was not achieved */

OWS getPart(request, “webService”);
payload getPart(request, “payload”);
owsRS invoke_bind_WS(OWS, payload);
if (not timeout_occured)
 if (is_normal_reply(owsRS))
 finRS owsRS;
 else
 /* Initialize list of known exceptions */
 knownEXC getExceptionsFromWSDL(OWS);
 if (owsRS in knownEXC)
 /* Known, application-logic exception, return it */
 finRS owsRS;
 else
 /* Unknown, system exception, attempt resolution */
 ewsLIST getEquivServices(OWS);
 ewsRS invoke_alternate_ws(ewsLIST, payload);
 finRS ewsRS;
 end if
 end if
end if
return finRS to BPEL execution environment;
exit();

Listing 4. Invocation algorithm

5. ASOB Implementation and Performance
Analysis
In order to assess the performance impact of the exception
resolution scheme presented in section 4, we implemented ASOB
and performed extensive tests using various configurations. Our

main goal was to evaluate the overhead incurred due to the
introduction of the additional middleware layer, both in terms of
request processing time and request throughput, and to gain
insights on the solution’s scalability in terms of concurrent
invocation handling. In the following sub-sections we describe the
test environment and the obtained results.
begin function invoke_alternate_ws (in ewsLIST, in payload, out
ewsRS)
 ewsLIST sort ewsLIST according to ASOB-wide criteria
 while ewsLIST not empty
 EWS first_element(ewsLIST)
 ewsRS invoke_bind_WS(EWS, payload)
 if (not timeout_occured)
 if (ewsRS in knownEXC)
 /* Known application-logic exception, return it */
 return ewsRS;
 else if (is_normal_reply(ewsRS))
 /* No exception occurred, return reply */
 return ewsRS;
 end if
 end if
 /* This code is reached if a timeout occurred or
 an unknown exception (system exception)
 was thrown. Proceed with next alternate service */
 ewsLIST remove first_element(ewsLIST);
 end while
 /* All alternate services have been tried and have failed */
 return policyFAULT;
end function

function invoke_bind_WS(in WS, in payload, out result)
 performBinding(WS);
 result invoke(WS, payload);
 if (timeout_occured)
 update_SR_QoS(WS, NULL, Unavailable, Transient);
 else if (is_normal_reply(result) || result in knownEXC)
 update_SR_QoS(WS, responseTime, Available, NULL);
 else if ((result == UnknownSrv) || (result == ParamMismatch))
 /* service has been withdrawn or updated to an incompatible and

thus unusable form */
 update_SR_QoS(WS, NULL, Unavailable, Permanent);
 else
 update_SR_QoS(WS, NULL, Unavailable, Transient);
 end if
end function

function update_SR_QoS(in WS, in respTime, in isAvail, in errType)
 /* start a new thread to forward QoS information to SR; return
immediately */
end function

Listing 5. Invocation routines

5.1 Testbed configuration
For our experiment we used three distinct machines: the first
machine (AMD Athlon XP 2000+ processor, 1GB of RAM,
Windows 2000 Server) executed the BPEL scenarios, which were
developed using Netbeans’s 6.0 IDE BPEL designer solution [19]
and executed using the WS-BPEL 2.0 compliant Java Business
Integration (JBI) component [20], deployed on Glassfish v2
application server [21]. The second machine (Pentium 4, 3GHz
processor, 1GB of RAM, Windows 2000 Server) was hosting the
ASOB module (operating within a Glassfish v2 application
server) and the service repository, implemented as a MySQL

database. The third machine(Pentium 4, 3GHz processor, 1GB of
RAM, Windows 2000 Server) hosted the target web services.
Both the proxy and the transparent router architectures were
considered having almost identical results, thus in the remaining
of this section we will only present data collected for the proxy
setup. For benchmark data collection we used the benchmarking
tool from Apache, ab [22] and internal timers. In all the
measurements and diagrams presented below, all the originally
selected web services were available and no system fault
occurred, and we forced however ASOB to retrieve and sort the
list of equivalent services. This approach was chosen because
service unavailabilities are reported with large variances in time
(depending on the root cause – e.g. the expiration of a timeout is
detected after much longer time as compared to a “no route to
host” error), and such a behavior would not allow results to be
conclusive.
Note that the obtained results actually depict a worst case for
ASOB, since ASOB performs exception resolution operations (i.e.
retrieval and sorting of the alternate services list - of course
alternate services are not invoked), while the non-mediated
invocations are not penalized in any way. Note also that in the
absence of ASOB, the BPEL processes would have crashed
anyway in the presence of errors.

5.2 Performance Analysis
Figure 3 illustrates the ASOB internal process time against the
database size (denoted as db-size) and the number of equivalent
services identified in the repository (denoted as qws in the
diagram legends). ASOB’s internal process time PTasob does not
include the actual web service invocation time or the time needed
for the extra network message transmission (from the BPEL script
to the middleware – it does however include the time to send back
the reply, since this activity is ASOB-initiated and can be thus
measured using internal timers) and comprises of the following
four terms:

• t1: web service call interception duration

• t2: equivalent web service discovery duration

• t3: equivalent service ranking and sorting duration

• t4: time to send back the results of actual web service
invocation

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

10000
20000

30000
40000

50000
60000

70000
80000

90000
100000

110000
120000

130000
140000

150000
db‐size in recs

Tm
e
in
 m

s

10 qws 1000 qws 2000 qws 3000 qws 4000 qws 5000 qws

Figure 3. ASOB internal process time

Figure 3 indicates that the internal process time (y-axis) mainly
depends on the number of equivalent services found in the
services’ repository (SR component) and not on the SR’s size (x-
axis). The very small dependency on the overall SR database size

can be attributed to the use of appropriate indexes within the
database, which effectively exclude the non-relevant tuples from
the database’s search, thus only 1-5 extra disk page accesses are
performed. The overhead increment, on the other hand, when the
number of alternate services increases is considerable, mainly
affecting terms t2 (due to query process time by the database and
interprocess communication/process switching to transfer the
result into the ASOB module) and t3 (sorting of the result,
typically of complexity O(n * log(n)). In real-world cases,
however, it is expected that the number of equivalent services will
be at most a few tens, thus the overhead introduced per invocation
will be in the range of 15-25 msec, which is typically a very small
fraction of the overall web service processing time.

0

10

20

30

40

50

1 10 20 30 40 50 60 70 80 90 100

concurrent invocations

op
er
at
io
ns
/s
ec

direct_invocations ASOB_invocations

Figure 4. ASOB-mediated vs. direct WS invocation

throughput
Figure 4 illustrates the number of invocations that can be served
in a unit of time against the number of concurrent invocations
when (a) services are directly invoked and (b) when invocations
are made through the ASOB middleware. The latter case exhibits
a throughput drop of 8-16%, except for the case of 70 concurrent
invocations, where the drop is approximately 25%. The
throughput drop is to be expected, since the use of ASOB incurs
the overhead of "extra processing" by the ASOB on top of the
processing required by the direct invocations. The anomaly
exhibited at the area of 70 ASOB-mediated concurrent
invocations can be attributed to various systemic reasons, such as
garbage collection, thread thrashing, buffer flushing, etc,
separately or to a combination of those reasons. From the above
diagram, it is also evident that at the point of 80 concurrent direct
invocations –that is without ASOB middleware– the maximum
throughput is reached. Diminishing rate of concurrent invocations
per second is apparent when further increasing the number of
invocations; at the point of 100 direct invocations the drop in
performance is so sharp (the machine resource's limits have been
reached) that there is no point in considering more concurrent
invocations.
For ASOB-mediated invocations it seems that the peak is reached
at the area of 90 concurrent invocations, while diminishing rates
are observed at the area of 100 concurrent invocations. In the area
between 80 and 100 concurrent invocations, the difference
between direct and ASOB-mediated invocations is gradually
becoming smaller. This phenomenon can be attributed to the fact
that while the web service execution machine has reached its
limits regarding request processing at 80 direct invocations, there
is still ample power available in the machine hosting the ASOB
module to handle the processing required by the specific module.
Summarizing the difference between the curves, we can roughly
observe three areas in the diagram:

1. from 1 to 50 aINV, where the difference between the
two is small or slightly increases (8%-12%)

2. from 50 to 80 aINV, where the difference between the
two is higher (12%-16%)

3. from 80 to 100 aINV, where the difference is
diminishing and tends to return to the difference
observed in the first area, which however is owing to
the diminishing direct invocation performance and not
to increased performance of ASOB.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 10 20 30 40 50 60 70 80 90 100

concurrent invocations
ti
m
e
in
 m

s

BPEL execution BPEL execution using ASOB

Figure 5. BPEL scenario execution time

Figure 5 illustrates the BPEL execution process time of a certain
BPEL scenario against the number of concurrent invocations. The
BPEL scenario consisted of three web services –all accessible at
the same server-, whose execution time was 100msec, 100msec
and 300msec. The x-axis represents the concurrent BPEL process
executions (or invocations if BPEL process provides a web
service interface) and y-axis the time passed until all of them
completed successfully. It is obvious that the BPEL process time
is slightly increased in the ASOB-mediated case, but the
increment is very small – less than 6% in all cases, except for two
anomaly points (20 and 40 concurrent invocations) where an
overhead of 23% and 14% is observed, owing probably to reasons
as those listed for Figure 4 above.
Figure 6 depicts the BPEL scenario execution throughput against
the number of concurrent invocations. The behavior is consistent
with the previous diagrams, i.e. the throughput drop is in the
range of 6%-10% in the normal cases, whereas two anomaly
points (20 and 50 concurrent invocations) are observed, for which
performance drops are quantified to 20% and 24%. Again,
reasons as those listed for Figure 4 above may explain these
anomalies. The peak throughput in this diagram appears to be
reached in the range of 50-70 concurrent invocations, and beyond
that point performance starts to drop.

0

1

2

3

4

5

6

7

8

9

10

1 10 20 30 40 50 60 70 80 90 100
concurrent invocations

op
er
at
io
ns
/s
ec

BPEL execution BPEL execution using ASOB

Figure 6. ASOB-mediated vs. direct invocation BPEL scenario

execution throughput

6. Conclusions and future work
Using BPEL to model business processes has many advantages,
including adherence to standards and speed of development and
deployment; due to the distributed nature of the target
environment, however, exceptions often arise during the BPEL
scenario executions and the exception handling mechanisms
provided by BPEL are too rigid to flexibly adopt to the
continuous SOA environment updates and to the diversity of the
exception causes. The work presented in this paper caters for the
resolution of exceptions generated due to system faults, such as
host unavailabilities or network errors, relieving thus the WS-
BPEL scenario designer from the burden of specifying (and
updating) handlers for these fault types and restricting exception
handling in the WS-BPEL scenario to the application-logic faults
only. The proposed approach uses a middleware layer, which
exploits a repository of functionally equivalent services and
attempts to remedy system faults by invoking a service equivalent
to the failed one. The middleware also issues updates to the
repository, notifying it of the services’ observed availabilities and
response times, and these QoS characteristics are taken into
account when a replacement service needs to be selected for
substituting a failed one.

One direction for further research is to consider different criteria
for replacement service selection for each invocation, rather than
specifying these criteria on an installation basis. To this end, each
invocation will need to be complemented with a specification of
these criteria, and mechanisms to this end must be devised. The
exploitation of the http.agent standard system property could be
considered for hosting this criteria, but since its value typically
remains constant throughout the execution of a BPEL scenario,
more fine-grained mechanisms are called for. Another envisaged
extension is the intervention of ASOB so as to modify even the
original invocations specified by the WS-BPEL scenario designer,
taking into account QoS criteria, selecting thus the optimal
service for each task and not necessarily the originally specified
one.

7. REFERENCES
[1] Leymann, F., Roller, D., and Schmidt, M.-T. 2002. Web

services and business process management, IBM Systems
Journal, Vol. 41, 198 No2.

[2] Newcomer, E. and Lomow, G., 2005. Understanding SOA
with Web Services, Addison-Wesley.

[3] Dellarocas, C. and Klein, M., 2000. A knowledge-based
approach for handling exceptions in business processes,
Information Technology and Management, 1, 3 (2000) 155-
169.

[4] ActiveVOS , 2008. Active Endpoints presentation,
http://www.activevos.com/index.php

[5] Oracle Corporation, 2008. Oracle BPEL Process Manager,
http://www.oracle.com/technology/bpel/

[6] The Eclipse BPEL Team, 2008. The Eclipse BPEL Project,
http://www.eclipse.org/bpel/

[7] Java.Net, 2008. Open ESB, https://open-esb.dev.java.net/
[8] Dobson, G., 2006. Using WS-BPEL to Implement Software

Fault Tolerance for Web Services. Proceedings of the 32nd

EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO-SEAA'06).

[9] Kareliotis C., Vassilakis C., Georgiadis P., 2006. Towards
Dynamic, Relevance-Driven Exception Resolution in
Composite Web Services, 4th International Workshop on
SOA & Web Services Best Practices, Portland, Oregon, USA
at OOPSLA.

[10] Kareliotis C., Vassilakis C., Georgiadis P., 2007. Enhancing
BPEL scenarios with Dynamic Relevance-Based Exception
Handling, Proceedings o f the IEEE 2007 International
Conference on Web Services (ICWS).

[11] CA Willy Technology, 2007. SOA and Web Services – The
Performance Paradox,
http://www.ca.com/us/whitepapers/collateral.aspx?cid=1479
47

[12] Kochut, K. J., 1999. METEOR Model version 3. Athens,
GA, Large Scale Distributed Information Systems Lab,
Department of Computer Science, University of Georgia.

[13] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.,
Oundhakar, S., Miller, J., 2005. METEOR-S WSDI: A
Scalable Infrastructure of Registries for Semantic Publication
and Discovery of Web services. Journal of Information
Technology and Management, Special Issue on Universal
Global Integration, 6, 1 (2005) 17-39

[14] Cimpian, E., Moran, M., Oren, E., Vitvar, T., Zaremba, M.,
2005. Overview and Scope of WSMX. Technical report,
WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.0/v0.2/

[15] Feier, C., Roman, D., Polleres, A. Domingue, J., Stollberg,
M., Fensel, D. (2005). Towards Intelligent Web Services:
Web Service Modeling Ontology, In Proc. of the
International Conf on Intelligent Computing (2005)

[16] Angelov D. et al., 2007. WSDL 1.1 Binding Extension for
SOAP 1.2,
http://www.w3.org/Submission/wsdl11soap12/#faultelement

[17] Wessels, D., 2001. Interception Proxying and Caching, in
Web Caching, O’Reilly, ISBN: 1-56592-536-X.

[18] Al-Masri, E., 2008. The QWS Dataset,
http://www.uoguelph.ca/~qmahmoud/qws/index.html

[19] NetBeans Project, 2008. Netbeans IDE
http://www.netbeans.org/

[20] JBI Team, 2008. Java Business Integration, https://open-
esb.dev.java.net/Components.html

[21] Glassfish Team, 2008. Glassfish Open Source Application
Server https://glassfish.dev.java.net/

[22] Apache foundation, 2007. ab Apache Open Source
benchmarking tool.
http://httpd.apache.org/docs/2.0/programs/ab.html

[23] OASIS, 2007. OASIS Web Services Business Process
Execution Language (WSBPEL) TC. http://www.oasis-
open.org/committees/wsbpel/

