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ABSTRACT 
WS-BPEL has become the predominant technology for specifying 
and executing composite business processes within the Service 
Oriented Architecture. During the execution however of such a 
composite business process, a number of faults stemming from 
the distributed nature of the SOA architecture (e.g. network or 
server failures) may occur. To this end, the WS-BPEL scenario 
designer must exploit the provisions offered by WS-BPEL to 
catch exceptions owing to system failures and resolve them, 
typically by invoking some alternate equivalent web service that 
is expected to be reachable and available. The task of system fault 
handler specification is though an additional burden for the WS-
BPEL scenario designer and the presence of such handlers within 
the WS-BPEL scenario necessitates additional maintenance 
activities, as new alternate services become available or some of 
the specified ones are withdrawn. In this paper, we propose a 
middleware-based framework for system exception resolution, 
which undertakes the tasks of failure interception, discovery of 
alternate services and their invocation. The middleware is 
deployed and maintained independently of the WS-BPEL 
scenarios, removing thus the need for specifying and maintaining 
system faults within the scenarios. We also present performance 
measures, establishing that the overhead imposed by the addition 
of the proposed middleware layer is minimal. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 
Software – distributed systems  H.3.5 [Information Storage and 
Retrieval]: Online Information Services – web-based services; 
D.2.8 [Software Engineering]: Metrics – performance measures;  

General Terms 
Measurement, Performance, Design, Reliability. 

Keywords 
Web services; Exception handling; Middleware; Performance 
metrics; Quality of service (QoS), Scalability. 

1. INTRODUCTION 
Web services are unanimously supported by major software 
vendors of middleware technology [1]. The main objective of web 
service technology and related research [2] is to provide the 
means for enterprises to do business with each other and provide 
joint services to their customers under specified Quality of 

Service (QoS) levels. Business Process Management (BPM) 
addresses how organizations can identify, model, develop, deploy, 
and manage their business process, including processes that 
involve IT systems and human interaction.  
Business processes are typically complex operations, comprising 
of numerous individual stages, and in the context of SOA each 
such stage is realized as a web service. The composition of these 
steps (control flow, data flow, etc) is frequently specified using 
the Web Services Business Process Execution Language (WS-
BPEL) and executed by a Web Services Orchestration (WSO) 
platform. Web Services due to their loosely-coupled nature in 
Service Oriented Architectures (SOAs) provide the flexibility that 
enterprises need to adapt quickly for satisfying the increased 
business demands. However, they introduce new challenges when 
it comes to ensuring superior performance and availability. IT 
teams lack visibility into web services transactions as they 
traverse these environments, where services are often shared 
among several applications and failure (or exceptions) can occur 
anywhere along the transaction path. In this paper we focus on 
exceptions occurring in business process execution and 
particularly when a service becomes unavailable; this can be 
owing to a number of reasons, which may be both transient –e.g. 
host inoperability, software malfunction, network failure/ 
partitioning- or permanent –e.g. the service has been withdrawn 
or changed to some form incompatible to the previous one. In the 
presence of these events, there is an issue on how to ensure the 
availability of these services and eventually on how to ensure the 
health of the business process execution in a real-time production 
environment. Typically, a replacement component should be 
identified and substituted for the failed one. The replacement 
component should have the “same skills” with the failed one i.e. 
to have same functionality, while some non-functional parameters 
(e.g. security, performance, response time) can be taken into 
account [3]. WS-BPEL provides constructs for catching 
unavailability faults and invoking replacement services through 
the Catch and CatchAll activities: the WS-BPEL scenario 
designer may use these activities to intercept faults and specify 
which replacement service(s) should be invoked when the 
“normal flow” service is unavailable. This approach has however 
the following shortcomings: 
1. the WS-BPEL designer must undertake one extra task, i.e. to 

locate equivalent services and include calls to them into fault 
handlers within the WS-BPEL scenario. 

2. as new services emerge, which might be more suitable as 
replacements to “normal flow” services than the originally 



specified replacements, the related WS-BPEL scenarios need 
to be maintained. Maintenance activities need to be also taken 
when replacement services are withdrawn. 

Note that due to the static nature of WS-BPEL, which dictates 
that service bindings should be hard-coded in the scenario, it is 
not feasible to include calls to all replacement services within a 
fault handler (typically 2 or 3 alternates will be specified) and not 
possible at all to dynamically introduce new bindings or remove 
outdated ones, to align with the changes in service availability. 
Each such change should trigger a maintenance activity that will 
lead to modifications in the WS-BPEL scenario code. 
In this paper we introduce the Alternative Service Operation 
Binding (ASOB) framework, which is a middleware-based 
approach for dynamically resolving exceptions occurring in WS-
BPEL scenario executions, elevating the robustness and reliability 
of business processes and simplifying the maintenance of their 
specifications. The ASOB framework catches system exceptions 
occurring in within WS-BPEL scenario execution and resolves 
them by invoking operational replacement services that are 
functionally equivalent to the failed ones. ASOB acts as a web 
service proxy, so its is invoked every time the WS-BPEL engine 
invokes a service operation. The real invocation is performed by 
ASOB, and thus ASOB intercepts any faults that occur in this 
invocation. If a failure is detected, ASOB queries an appropriate 
registry to identify web services that are equivalent to the failed 
one, and subsequently invokes them until one of them yields a 
reply; finally the reply is returned to the WS-BPEL scenario. 
The rest of the paper is organized as follows: section 2 presents 
related work, while section 3 briefly presents the SOA and WS-
BPEL provisions used for our purposes. Section 4 presents the 
overall architecture of ASOB. In section 5 we illustrate 
implementation specifications and performance results aroused by 
extended benchmarking when applying ASOB-based BPEL 
process execution. Finally in section 6 conclusions are drawn and 
future work is outlined. 

2. RELATED WORK 
Exception resolution is recognized as an important issue in the 
context of WS-BPEL scenario design and execution. All WS-
BPEL design environments, such as ActiveBPEL [4], Oracle 
BPEL Process Manager in Oracle Application Server [5], Eclipse 
[6] OpenESB [7], include provisions through which designers 
may specify the activities to be taken upon occurrence of some 
specific (Catch construct) or a generic (CatchAll construct) fault; 
these specifications are honored by WS-BPEL orchestrators. 
Some environments cater for specialized handling of failed 
requests, e.g. Oracle Process Manager addresses system faults by 
sending an exception message in a JMS Dead Letter Queue. 
The shortcomings of manual  fault handler design have become 
apparent to the industry and the research community alike, and 
therefore numerous attempts have been made to enhance and/or 
automate the exception handling process in WS-BPEL scenario 
execution. [8] presents a methodology and related tools through 
which various fault tolerance patterns can be mapped to WS-
BPEL including provisions for configuring fault tolerant 
mechanisms on a per-operation basis. This work enhances the 
original WS-BPEL scenario with fault handlers, employing nested 
scoping for separating designer-provided fault handlers (usually 
crafted to tackle application logic-level faults -such as insufficient 

balance while withdrawing from an account- as opposed to 
system-level faults which inhibit the execution of the web 
service). This technique introduces however the need to either use 
a specific development environment which will cater for the 
generation of fault handlers, while it does not also address the 
issue of introduction of new or withdrawal of existing alternate 
services (in these cases, the definitions of alternate services 
should be modified accordingly and the WS-BPEL scenario 
should be regenerated). 
An architecture on how exceptions can be resolved in a generic 
way is presented in [9], which introduces an additional module, 
SRRF, which undertakes the handling of exceptions, dynamically 
discovering services equivalent to the failed one and performing 
hot-swapping; however the communication of this module with 
the executing scenario is unclear and details on how exceptions 
will be directed to the SRRF module or how results of hot-
swapping will be returned to the WS-BPEL scenario. [10] 
elaborates on this approach introducing a pre-processor which 
enhances the WS-BPEL scenario with fault handlers within nested 
scopes that redirect faults to the Alternate WS Locator Module 
that returns to the WS-BPEL script the identity of the web service 
that should be invoked in place of the failed one; however it 
appears that since WS-BPEL does not allow dynamic service 
bindings, the pre-processor would need to embed specific calls to 
alternate services in the produced WS-BPEL script, inhibiting 
thus dynamic discovery of alternate services and necessitating re-
runs of the pre-processor when the list of equivalent services is 
modified. 
In [11] a Web Service Manager for discovering the exception 
location along the SOA transaction path is presented. This work 
provides a detailed discussion of CA Wily Web Services Manager 
and offers concrete examples of how IT teams are using it in the 
real world to gain control over the performance and availability of 
web services. Although this work addresses exceptions in 
composite service execution, it is mainly targeted to pinpointing 
the exact fault location in environments involving legacy systems, 
web-based application and other components, while exception 
resolution is not adequately addressed. 
An essential underpinning for the fully automated and dynamic 
resolution of exceptions during the execution of WS-BPEL 
scenarios is the ability to locate services which can be substituted 
for the failed one. A noteworthy approach towards this direction 
is the one undertaken by METEOR-S project [12], [13] in 
cooperation with WSMX (Web Services Execution Environment) 
[14]. WSMX contains the discovery component, which 
undertakes the role of locating the services that fulfill a specific 
user request. This task is based on the WSMO conceptual 
framework for discovery [15]. WSMO includes a Selection 
component that applies different techniques ranging from simple 
"always the first" to multi-criteria selection of variants (e.g., web 
services non-functional properties as reliability, security, etc.) and 
interactions with the service requestor. Both in the METEOR-S 
and other approaches, functional and non-functional properties 
are represented using shared ontologies, typically expressed using 
DAML+OIL and the latter OWL-S. Such annotations enable the 
semantically based discovery of relevant web services and can 
contribute towards the goal of locating services with “same skills” 
[3] in order to replace a failed service in the process flow. 
METEOR-S and WSMX also address the issue of exception 



resolution exploiting the service equivalence information, they 
use however pre-determined exception resolution scenarios. 

3. SOA PROVISIONS FOR FAULT 
HANDLING 
3.1  Logical Versus System Faults 
Business processes specified in BPEL will interact with partner 
processes through operation invocations on web services. We will 
refer to these business processes as BPEL processes for the rest of 
this paper. Loosely-coupled web services in Service Oriented 
Environments are very sensitive on becoming unavailable for at 
least a short period of time, since they usually communicate over 
the internet. Since BPEL processes are -in most cases- long- 
running transactions, the web services participating in those have 
to be available and stable anytime. In BPEL processes two kinds 
of faults can be raised: logical and system. The first category 
includes those faults deliberately raised by constituent services to 
indicate that some form of special handling is required. For 
example, an InsufficientCredit exception thrown by some 
CreditCardPayment service indicates that payment through the 
credit card is impossible because the credit limit has been 
exceeded; the BPEL scenario designer may catch this fault type 
and either end the scenario or attempt to use alternative payment 
methods, such as direct withdrawal from a savings account or 
cash payment, if applicable. The second category, namely system 
faults, includes faults not directly raised by constituent services 
but rather detected by the execution environment. Examples of 
such faults are the inability to communicate with the hosting 
server (server down or network partitioning), system-generated 
responses indicating that the service is not offered at the specific 
address, parameter number or type mismatches (service has been 
altered) and timeouts in receiving replies. If a system fault occurs 
while executing a BPEL scenario, it is possible to remedy the 
situation by invoking some alternate implementation, since the 
fact that the particular invocation failed does not imply that other 
implementations will fail as well (the failure reason is directly 
bound to the particular invocation). For more information on the 
distinction between system-level and business logic-level faults, 
the interested reader is referred to [10].  
Listing 1 presents a code expert in WSDL for declaring a logical 
fault that may occur and how it is specified in a BPEL operation 
process. For more information on these WSDL constructs, the 
interested reader is referred to [16]. The logical faults declared in 
web service’s WSDL can be encountered upon BPEL process 
execution at runtime while fault handling mechanisms are taking 
place if BPEL designer specified one. Web services’ developers 
are strongly encouraged to specify all the logical faults that may 
occur during web services’ operations execution giving to BPEL 
designer fault handling capabilities in order to resolve this kind of 
exceptions.  

<message name="CreditApprovalFaultMsg"> 
<part name="approval" element="tns:error" /> 

</message> 
<portType name="CreditApproval"> 

<operation name="process"> 
<input message="tns:CreditApprovalRequestMsg" /> 
<output message= "tns:CreditApprovalResponseMsg"/> 
<fault name="InsufficientCredit" 
message="tns:CreditApprovalFaultMsg" /> 

</operation> 
</portType> 

Listing 1. WSDL error type message  

3.2 Fault Handling in BPEL 
The WS-BPEL 2.0 specification [23] provides fault handling 
capabilities via the faultHandler construct. BPEL programmers 
are able to deal with logical faults in catch-and-handle fashion. 
For system faults the WS-BPEL 2.0 specification provides 
features like “failover” and “retry” to assist developers in dealing 
with them. Failover strategy determines alternative service 
invocations, when the first service invocation fails, in contrary to 
retry strategy that determines a specific time interval between 
invocation attempts to the same service and the number of 
invocation retries. A combination of the above system fault 
handling strategies is presented in Listing 2. 
There are, however, other runtime faults that the failover and retry 
mechanisms cannot handle, for example, if a new service with 
different interface (other input and output parameters, 
authentication, etc) has been deployed instead of the one defined 
in BPEL process. In this kind of fault, the usual strategy adopted 
by BPEL tools for dealing with is to delegate its handling to a 
human administrator. Moreover, it is necessary for the BPEL 
process designer to continuously maintain the BPEL scenarios, 
keeping the alternate service specifications up-to-date -in case 
failover strategy is adopted- whenever new such services are 
introduced or existing ones are withdrawn. In this paper we are 
proposing a middleware framework to resolve faults raised by 
system inconsistency, previously named system faults. 
<properties id="RatingService"> 

<property name="wsdlLocation"> 
http://localhost:8080/axis/servicesRatingService?wsdl 

</property> 
<property name="location"> 

http://localhost:2222/services/axis/RatingService 
</property> 
<property name="retryCount">2</property> 
<property name="retryInterval">60</property> 

</properties> 
Listing 2. BPEL specification for automatic retry and failover  

4. THE ASOB FRAMEWORK 
The ASOB framework introduces a middleware layer, which acts 
as a service proxy for web service invocation. As shown in the 
architectural diagram of Figure 1, the ASOB module operates 
independently from the BPEL executor, possibly running on a 
distinct machine. The ASOB module intercepts web service 
invocations originating from the BPEL executor, places the calls 
to the actual service providers and arranges for resolving any 
system exceptions that occur during these invocations. We 
assume that business processes are comprised by services with a 
web service interface. The BPEL scenario itself does not need to 



include any designer-crafted handlers for system faults, though it 
may probably include fault-handlers for application logic-level 
faults, which are related to the scenario’s business logic and are 
not handled by the ASOB module. There is also no need to apply 
preprocessing to the BPEL scenario, as proposed in [10] or used 
specialized development tools, as described in [8], in order to 
embed system-generated fault handlers in the BPEL scenario. If 
the designer has included system fault handlers in the BPEL 
scenario, these will be activated only if the ASOB module has not 
managed to resolve the exception, which may occur if no 
equivalent services are found or if all services in the list of 
equivalent services have been tried and none of these invocations 
has succeeded. In order to direct web service invocations to the 
service proxy (the ASOB module) rather than to the machines 
actually delivering the services, two techniques may be used. The 
first one is to designate the ASOB module as a generic HTTP 
proxy to the module that undertakes the execution of the WS-
BPEL scenarios. This is illustrated in Figure 1, where the WS-
BPEL orchestrator is Java-based and the Java system properties 
http.proxyHost and http.proxyPort are used to specify that all 
HTTP requests should be directed to port 80 of the machine 
running the ASOB module. Properties can be set from the Java 
execution command line, e.g.  
java -Dhttp.proxyHost=asob.mynet.com -Dhttp.proxyPort=80 \ 

bpelExecutor.jar 
or by adding appropriate coding in BPEL component (JBI) as 
shown in Listing 3. 
In environments where HTTP proxying cannot be designated 
through system properties, a transparent redirection router may be 

employed, as illustrated in the architectural diagram of Figure 2. 
Traffic from the machine executing the WS-BPEL orchestrator is 
directed to the transparent router (effectively, the transparent 
router is designated as the default TCP/IP router for the machine 
executing the WS-BPEL orchestrator), and the router’s 
configuration arranges for forwarding HTTP requests to the 
ASOB module. Any layer four switch can perform such 
redirections, while software routing/firewall modules such as 
iptables and ipf can be employed as well [17]. In both cases, it is 
possible to specify that the proxy will not be used if invocations 
to specific servers are made (e.g. if some services are deployed on 
a server within the organization’s intranet and should be accessed 
there only). In the first case (Java library proxying) the system 
property http.nonproxyHost can be set to the appropriate value 
(e.g. localhost|wsrvs.myCorp.com) while in the second case 
(transparent redirection router) rules dictating that traffic to the 
specific hosts is routed normally should precede the generic 
traffic redirection rule in the router’s configuration. 
Properties systemSettings = System.getProperties(); 
systemSettings.put(“http.proxyHost”, “asob.mynet.com”); 
systemSettings.put(“http.proxyPort”, “80”); 
systemSettings.put(“http.nonproxyHost”, “localhost|wsrvs.myCorp.com”); 
systemSettings.put(“http.agent”, “supplementary options”); 

Listing 3. Applying proxy at programming level 
The components internally comprising the ASOB module and the 
overall ASOB framework operation are described in the following 
sub-sections. 

4.1  ASOB Components and Functionality 
The ASOB module consists of five components, discussed in the 
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Figure 2. ASOB architecture in a redirection router setup 
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following paragraphs. 

• the Request Interceptor (RI) component. RI intercepts the web 
service call. In order to be able to accept any request, the 
request interceptor is not a web service itself (which would 
require it to adhere to some specific WSDL) and thus it does 
not run in a web service container; instead, it is crafted as a 
Java Server Page (JSP), and the JSP container is instructed to 
run this page upon every request. RI extracts the original web 
service specification and the payload (i.e. the SOAP-encoded 
message containing the parameters to the request), and passes 
them to Service Binder and Invoker module. 

• the Service Binder and Invoker component (SBI). SBI is 
responsible for invoking a specific web service. It accepts a 
web service specification and a payload, and arranges for 
invoking the particular web service, attaching the payload to 
the invocation. 

• the Equivalent Service Locator module (ESL). ESL is the 
component which discovers functionally equivalent web 
services to a designated one (in the context of ASOB 
operation, this is always the service specified in the original 
request). This is performed by querying an appropriate 
repository. 

• the Service Repository (SR). SR is a repository containing up-
to-date web services specification entries (WSDL location, 
Endpoint addresses, Operation interfaces). In addition to this 
information, SR should at least provide means for identifying 
functionally equivalent groups of services using semantic 
tagging (as, for example METEOR-S and WSMX) or any 
other suitable approach. If the repository, additionally to 
functional equivalence, can provide information on the 
Quality of Service (QoS) characteristics of the services, 
ASOB can exploit this information to resolve exceptions more 
efficiently. 

• the Equivalent Service Ranking component (ESR). ESR 
module is responsible for sorting the equivalent service list 
according to QoS criteria, in order to make the exception 
resolution process more efficient. In order to perform this 
sorting, the ESR component exploits data collected from 
previous web service invocations, and more specifically 
service availability and service response time. If SR contains 
additional QoS attributes, these can be exploited as well. In 
order to simplify our discussion in the remaining of this paper, 
we will assume that SR contains data on service availability 
and service response time, and the SBI component updates 
this data when each web service invocation completes, either 
successfully or with a failure. 

In the following sub-section we describe in detail how a web 
service invocation is performed within the ASOB framework and 
how exceptions are resolved. 

4.2 Request Processing in the ASOB 
framework 
Consider a BPEL scenario that has been designed and deployed in 
the web services platform of figure 1, where an appropriate WS-
BPEL orchestrator resides. At some time point, the execution of 
the BPEL scenario commences and a web service invocation is 
executed. At this stage, either the execution environment sends 

the request to the ASOB module, if the latter has been designated 
as an HTTP proxy to the former [Figure 1], or the network 
packets comprising the request will be sent to the transparent 
redirection router, which will forward them to the ASOB module 
[Figure 2]. In both cases, the request will reach the ASOB 
module, where it will be intercepted by the RI component. 
The ASOB RI component inspects the web service call request 
and extracts from it the web service specification (i.e. the 
requested URL) and the payload (the XML document containing 
the SOAP envelope) from it, and passes these chunks to SBI. SBI 
invokes the web service –at this stage, this is the service 
originally specified by the BPEL designer- and waits for the 
response. At this stage, one of the following possibilities may 
occur: 
1. the service does not return a reply within a predefined amount 

of time. This is typically owing to the host providing the 
service being down or unreachable. SBI informs SR that the 
service has been found to be unavailable (thus SR updates the 
service’s availability qualitative characteristic) and passes 
control to the ESL module, to initiate the exception 
resolution. 

2. an exception of type “no route to host” or “connection 
refused” is returned, then the service is again unavailable and 
the same actions as in the previous case are taken. 

3. a network-level exception of type “unknown host” is returned. 
This exception indicates that the host that offered the service 
has ceased to exist, thus the service has become permanently 
unavailable. In this case, the SR is notified that the service 
should not be considered any more as a candidate substitute 
for other failed services which were functionally equivalent to 
its original specifications. Subsequently, control is again 
passed to the ESL module for resolving the exception. 
Note that the failed service is not withdrawn from SR, 
because such a withdrawal would break the process of finding 
alternatives to the specific service (i.e. if a WS-BPEL 
scenario contained an invocation to that service, then the 
registry would not contain any information on which other 
services are functionally equivalent to it, so as to enable the 
ASOB module to invoke an alternative implementation). SR 
may periodically check whether some “blacklisted” service 
has become again available, and remove the “blacklist” flag, 
possibly reducing in parallel the service’s availability and 
reliability QoS characteristics. 

4. a reply is received from the web service container (as opposed 
to the previous cases where no reply is received). In this case, 
the reply is checked and one of the following actions are 
taken: 
a) if the reply is a “Unknown service” or “Parameter 

mismatch” fault (these fault types are produced by the 
web service container), either the service has been 
withdrawn from the host (“Unknown service”) or the 
service’s interface has been modified and is now 
incompatible to the specifications expected by the 
application. These fault types correspond to permanent 
errors, thus processing continues as in case (3) above. 

b) if the reply is a “normal” response (i.e. it is a valid output 
message declared in the service’s WSDL), the reply is 
returned to the WS-BPEL script that made the invocation; 



the time taken for the service to reply is noted, SR is 
notified of the service’s availability and response time, to 
update the respective QoS characteristics accordingly and 
request processing concludes. 

c) if the reply is not a valid output message, it corresponds to 
a fault. In this case, ASOB attempts to discriminate 
between application logic faults and other system-oriented 
faults. This is accomplished by checking whether the 
reported fault is declared in the web service’s WSDL 
description as a fault type or not; if it is, the reply 
constitutes an application-level exception which must be 
passed back to the WS-BPEL script, where it will be 
probably caught and handled via an appropriate Catch 
construct; therefore, this reply is handled as a normal 
reply [case (b), above], i.e. it is returned to the WS-BPEL 
script, SR is notified of the service’s availability and 
response time, to update the respective QoS 
characteristics accordingly and request processing 
concludes. 
If the reply is neither a valid output message nor a 
declared fault, then it is considered to be a system-level 
error due to service unavailability or temporary 
malfunction (e.g. inability to access a local database); this 
case is handled similarly to other transient errors, i.e. 
cases (1) and (2). 

This stage of processing is reached if the original web service 
invocation has failed due to a system error. ESL locates 
equivalent web service operations, by issuing a query to SR. The 
internals of query processing by SR are outside the scope of this 
paper, and any pertinent technology (e.g. [12], [13] and [14]) can 
be used. The query to SR will contain the endpoint URL of the 
operation that failed (e.g. 
http://www.domain.com/WebService/WSOperation), and SR’s 
reply will include a list of records, with each record 
corresponding to an equivalent service that can be substituted for 
the failed one. Each such record will contain at least the service’s 
endpoint and target namespace1 , while the service’s response 
time, availability and other QoS characteristics may be included, 
if available in SR. 
Having received the alternative services list, the ESR component 
checks whether QoS attributes are included in it, and in particular 
response time. If this attribute is included, ESR sorts the list in 
ascending order of this attribute, thus services with smaller 
response time are placed first. The sorting criteria can be modified 
by the ASOB administrator to consider alternate attributes (e.g. 
availability, throughput and so forth [18]) or attribute value 
combinations (e.g. [(70% / response_time) + 30% * availability)]. 
If no QoS attributes are included in SR’s reply, the sorting step is 
skipped and the elements remain in the order they were presented 
by SR. 
Finally, ESR iterates over the alternate services list, starting from 
the first (if sorting has taken place, the “most preferred” one will 
be placed there) and moving towards the last (“least preferred”). 
For each such service, the namespace in the payload is adjusted 
and the web service is invoked; the results of each invocation are 
                                                                 
1 The namespace is required for technical reasons, since the 

payload complementing a web service invocation should refer 
to the namespace declared by the web service in its WSDL file. 

handled as described in steps (1)-(4) above, except for that in case 
of a failure, where the next service in the list is tried rather than 
invoking the ESL component anew. This stage can be repeatedly 
performed until an alternate functionally equivalent service 
responds as expected or until a number of attempts (defined by 
the ASOB administrator) has been reached. If the maximum 
number of unsuccessful attempts is reached or the list is exhausted 
(or if it was initially empty), resolution is possible for the 
exception and a special type of fault, namely PolicyFault, is 
returned to the BPEL execution environment. The BPEL designer 
may have included an appropriate fault handler in the BPEL 
script, which will attempt to follow an alternate business process 
for remedying the fault. 
Listings 4 and 5 illustrate the way requests are processed in 
ASOB using pseudo-code. One issue that must be noted here is 
that the Service Repository update is an asynchronous task. 
Currently, it is initiated as a separate thread immediately before 
results are returned to the WS-BPEL script that placed the 
original invocation; an alternative, more efficient approach would 
construct update batches and submit them to the registry when a 
certain amount of updates have been amassed or at specific time 
intervals.  
/* Variables list */ 
ewsLIST /* list of equivalent web service */ 
OWS /*originally selected web service */ 
owsRS /*web service operation invocation results of OWS */ 
EWS /*equivalent web service to the originally selected */ 
ewsRS /*web service operation invocation results of EWS */ 
finRS /* final result */ 
knownEXC /* exception listed in OWSs WSDL */ 
policyFAULT /* fault when equivalent services has been exhausted 

and exception resolution was not achieved */ 
 
OWS  getPart(request, “webService”); 
payload  getPart(request, “payload”); 
owsRS  invoke_bind_WS(OWS, payload); 
if (not timeout_occured) 
 if (is_normal_reply(owsRS)) 
  finRS  owsRS; 
 else  
  /* Initialize list of known exceptions */ 
  knownEXC  getExceptionsFromWSDL(OWS); 
  if (owsRS in knownEXC) 
   /* Known, application-logic exception, return it */ 
   finRS  owsRS; 
  else 
  /* Unknown, system exception, attempt resolution */ 
   ewsLIST  getEquivServices(OWS); 
   ewsRS  invoke_alternate_ws(ewsLIST, payload); 
   finRS  ewsRS; 
  end if 
 end if 
end if 
return finRS to BPEL execution environment; 
exit(); 

Listing 4. Invocation algorithm 

5. ASOB Implementation and Performance 
Analysis 
In order to assess the performance impact of the exception 
resolution scheme presented in section 4, we implemented ASOB 
and performed extensive tests using various configurations. Our 



main goal was to evaluate the overhead incurred due to the 
introduction of the additional middleware layer, both in terms of 
request processing time and request throughput, and to gain 
insights on the solution’s scalability in terms of concurrent 
invocation handling. In the following sub-sections we describe the 
test environment and the obtained results. 
begin function invoke_alternate_ws (in ewsLIST, in payload, out 
ewsRS) 
 ewsLIST  sort ewsLIST according to ASOB-wide criteria 
 while ewsLIST not empty 
  EWS  first_element(ewsLIST) 
  ewsRS  invoke_bind_WS(EWS, payload) 
  if (not timeout_occured) 
   if (ewsRS in knownEXC) 
   /* Known application-logic exception, return it */ 
    return ewsRS; 
   else if (is_normal_reply(ewsRS)) 
   /* No exception occurred, return reply */ 
    return ewsRS; 
   end if 
  end if 
  /* This code is reached if a timeout occurred or 
  an unknown exception (system exception) 
  was thrown. Proceed with next alternate service */ 
  ewsLIST  remove first_element(ewsLIST); 
 end while 
 /* All alternate services have been tried and have failed */ 
 return policyFAULT; 
end function 
 
function invoke_bind_WS(in WS, in payload, out result) 
 performBinding(WS); 
 result  invoke(WS, payload); 
 if (timeout_occured) 
  update_SR_QoS(WS, NULL, Unavailable, Transient); 
 else if (is_normal_reply(result) || result in knownEXC) 
  update_SR_QoS(WS, responseTime, Available, NULL); 
 else if ((result == UnknownSrv) || (result == ParamMismatch)) 
  /* service has been withdrawn or updated to an incompatible and 

thus unusable form */ 
  update_SR_QoS(WS, NULL, Unavailable, Permanent); 
 else 
  update_SR_QoS(WS, NULL, Unavailable, Transient); 
 end if 
end function 
 
function update_SR_QoS(in WS, in respTime, in isAvail, in errType) 
 /* start a new thread to forward QoS information to SR; return 
immediately */ 
end function 

Listing 5. Invocation routines 

5.1 Testbed configuration 
For our experiment we used three distinct machines: the first 
machine (AMD Athlon XP 2000+ processor, 1GB of RAM, 
Windows 2000 Server) executed the BPEL scenarios, which were 
developed using Netbeans’s 6.0 IDE BPEL designer solution [19] 
and executed using the WS-BPEL 2.0 compliant Java Business 
Integration (JBI) component [20], deployed on Glassfish v2 
application server [21]. The second machine (Pentium 4, 3GHz 
processor, 1GB of RAM, Windows 2000 Server) was hosting the 
ASOB module (operating within a Glassfish v2 application 
server) and the service repository, implemented as a MySQL 

database. The third machine(Pentium 4, 3GHz processor, 1GB of 
RAM, Windows 2000 Server) hosted the target web services. 
Both the proxy and the transparent router architectures were 
considered having almost identical results, thus in the remaining 
of this section we will only present data collected for the proxy 
setup. For benchmark data collection we used the benchmarking 
tool from Apache, ab [22] and internal timers. In all the 
measurements and diagrams presented below, all the originally 
selected web services were available and no system fault 
occurred, and we forced however ASOB to retrieve and sort the 
list of equivalent services. This approach was chosen because 
service unavailabilities are reported with large variances in time 
(depending on the root cause – e.g. the expiration of a timeout is 
detected after much longer time as compared to a “no route to 
host” error), and such a behavior would not allow results to be 
conclusive. 
Note that the obtained results actually depict a worst case for 
ASOB, since ASOB performs exception resolution operations (i.e. 
retrieval and sorting of the alternate services list - of course 
alternate services are not invoked), while the non-mediated 
invocations are not penalized in any way. Note also that in the 
absence of ASOB, the BPEL processes would have crashed 
anyway in the presence of errors. 

5.2  Performance Analysis 
Figure 3 illustrates the ASOB internal process time against the 
database size (denoted as db-size) and the number of equivalent 
services identified in the repository (denoted as qws in the 
diagram legends). ASOB’s internal process time PTasob does not 
include the actual web service invocation time or the time needed 
for the extra network message transmission (from the BPEL script 
to the middleware – it does however include the time to send back 
the reply, since this activity is ASOB-initiated and can be thus 
measured using internal timers) and comprises of the following 
four terms: 

• t1: web service call interception duration 

• t2: equivalent web service discovery duration 

• t3: equivalent service ranking and sorting duration 

• t4: time to send back the results of actual web service 
invocation 
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Figure 3. ASOB internal process time 

Figure 3 indicates that the internal process time (y-axis) mainly 
depends on the number of equivalent services found in the 
services’ repository (SR component) and not on the SR’s size (x-
axis). The very small dependency on the overall SR database size 



can be attributed to the use of appropriate indexes within the 
database, which effectively exclude the non-relevant tuples from 
the database’s search, thus only 1-5 extra disk page accesses are 
performed. The overhead increment, on the other hand, when the 
number of alternate services increases is considerable, mainly 
affecting terms t2 (due to query process time by the database and 
interprocess communication/process switching to transfer the 
result into the ASOB module) and t3 (sorting of the result, 
typically of complexity O(n * log(n)). In real-world cases, 
however, it is expected that the number of equivalent services will 
be at most a few tens, thus the overhead introduced per invocation 
will be in the range of 15-25 msec, which is typically a very small 
fraction of the overall web service processing time. 
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Figure 4. ASOB-mediated vs. direct WS invocation 

throughput 
Figure 4 illustrates the number of invocations that can be served 
in a unit of time against the number of concurrent invocations 
when (a) services are directly invoked and (b) when invocations 
are made through the ASOB middleware. The latter case exhibits 
a throughput drop of 8-16%, except for the case of 70 concurrent 
invocations, where the drop is approximately 25%. The 
throughput drop is to be expected, since the use of ASOB incurs 
the overhead of "extra processing" by the ASOB on top of the 
processing required by the direct invocations. The anomaly 
exhibited at the area of 70 ASOB-mediated concurrent 
invocations can be attributed to various systemic reasons, such as 
garbage collection, thread thrashing, buffer flushing, etc, 
separately or to a combination of those reasons. From the above 
diagram, it is also evident that at the point of 80 concurrent direct 
invocations –that is without ASOB middleware– the maximum 
throughput is reached. Diminishing rate of concurrent invocations 
per second is apparent when further increasing the number of 
invocations; at the point of 100 direct invocations the drop in 
performance is so sharp (the machine resource's limits have been 
reached) that there is no point in considering more concurrent 
invocations. 
For ASOB-mediated invocations it seems that the peak is reached 
at the area of 90 concurrent invocations, while diminishing rates 
are observed at the area of 100 concurrent invocations. In the area 
between 80 and 100 concurrent invocations, the difference 
between direct and ASOB-mediated invocations is gradually 
becoming smaller. This phenomenon can be attributed to the fact 
that while the web service execution machine has reached its 
limits regarding request processing at 80 direct invocations, there 
is still ample power available in the machine hosting the ASOB 
module to handle the processing required by the specific module. 
Summarizing the difference between the curves, we can roughly 
observe three areas in the diagram: 

1. from 1 to 50 aINV, where the difference between the 
two is small or slightly increases (8%-12%) 

2. from 50 to 80 aINV, where the difference between the 
two is higher (12%-16%)   

3. from 80 to 100 aINV, where the difference is 
diminishing and tends to return to the difference 
observed in the first area, which however is owing to 
the diminishing direct invocation performance and not 
to increased performance of ASOB. 
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Figure 5. BPEL scenario execution time 

Figure 5 illustrates the BPEL execution process time of a certain 
BPEL scenario against the number of concurrent invocations. The 
BPEL scenario consisted of three web services –all accessible at 
the same server-, whose execution time was 100msec, 100msec 
and 300msec. The x-axis represents the concurrent BPEL process 
executions (or invocations if BPEL process provides a web 
service interface) and y-axis the time passed until all of them 
completed successfully. It is obvious that the BPEL process time 
is slightly increased in the ASOB-mediated case, but the 
increment is very small – less than 6% in all cases, except for two 
anomaly points (20 and 40 concurrent invocations) where an 
overhead of 23% and 14% is observed, owing probably to reasons 
as those listed for Figure 4 above. 
Figure 6 depicts the BPEL scenario execution throughput against 
the number of concurrent invocations. The behavior is consistent 
with the previous diagrams, i.e. the throughput drop is in the 
range of 6%-10% in the normal cases, whereas two anomaly 
points (20 and 50 concurrent invocations) are observed, for which 
performance drops are quantified to 20% and 24%. Again, 
reasons as those listed for Figure 4 above may explain these 
anomalies. The peak throughput in this diagram appears to be 
reached in the range of 50-70 concurrent invocations, and beyond 
that point performance starts to drop. 
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Figure 6. ASOB-mediated vs. direct invocation BPEL scenario 
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6. Conclusions and future work 
Using BPEL to model business processes has many advantages, 
including adherence to standards and speed of development and 
deployment; due to the distributed nature of the target 
environment, however, exceptions often arise during the BPEL 
scenario executions and the exception handling mechanisms 
provided by BPEL are too rigid to flexibly adopt to the 
continuous SOA environment updates and to the diversity of the 
exception causes. The work presented in this paper caters for the 
resolution of exceptions generated due to system faults, such as 
host unavailabilities or network errors, relieving thus the WS-
BPEL scenario designer from the burden of specifying (and 
updating) handlers for these fault types and restricting exception 
handling in the WS-BPEL scenario to the application-logic faults 
only. The proposed approach uses a middleware layer, which 
exploits a repository of functionally equivalent services and 
attempts to remedy system faults by invoking a service equivalent 
to the failed one. The middleware also issues updates to the 
repository, notifying it of the services’ observed availabilities and 
response times, and these QoS characteristics are taken into 
account when a replacement service needs to be selected for 
substituting a failed one. 

One direction for further research is to consider different criteria 
for replacement service selection for each invocation, rather than 
specifying these criteria on an installation basis. To this end, each 
invocation will need to be complemented with a specification of 
these criteria, and mechanisms to this end must be devised. The 
exploitation of the http.agent standard system property could be 
considered for hosting this criteria, but since its value typically 
remains constant throughout the execution of a BPEL scenario, 
more fine-grained mechanisms are called for. Another envisaged 
extension is the intervention of ASOB so as to modify even the 
original invocations specified by the WS-BPEL scenario designer, 
taking into account QoS criteria, selecting thus the optimal 
service for each task and not necessarily the originally specified 
one. 
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