
 
Complex Systems Informatics and Modeling Quarterly  

CSIMQ, Article 75, Issue 13, December 2017/January 2018, Pages 22–42 

Published online by RTU Press, https://csimq-journals.rtu.lv 

https://doi.org/10.7250/csimq.2017-13.02 

ISSN: 2255-9922 online 

Using Time Clusters for Following Users’ Shifts in Rating Practices 

Dionisis Margaris
1
 and Costas Vassilakis

2*
 

1
 Department of Informatics and Telecommunications, University of Athens, 

Panepistimioupoli, Athens, 15784, Athens, Greece 
2
 Department of Informatics and Telecommunications, University of the Peloponnese, 

Akadimaikou G.K. Vlachou, Tripoli, 22100, Greece 

margaris@di.uoa.gr, costas@uop.gr 

 

Abstract. Users that enter ratings for items follow different rating practices, in 

the sense that, when rating items, some users are more lenient, while others are 

stricter. This aspect is taken into account by the most widely used similarity 

metric in user-user collaborative filtering, namely, the Pearson Correlation, 

which adjusts each individual user rating by the mean value of the ratings 

entered by the specific user, when computing similarities. However, a user’s 

rating practices change over time, i.e. a user could start as strict and 

subsequently become lenient or vice versa. In that sense, the practice of using a 

single mean value for adjusting users’ ratings is inadequate, since it fails to 

follow such shifts in users’ rating practices, leading to decreased rating 

prediction accuracy. In this work, we address this issue by using the concept of 

dynamic averages introduced earlier and we extend earlier work by (1) 

introducing the concept of rating time clusters and (2) presenting a novel 

algorithm for calculating dynamic user averages and exploiting them in user-

user collaborative, filtering implementations. The proposed algorithm 

incorporates the aforementioned concept and is able to follow more successfully 

shifts in users’ rating practices. It has been evaluated using numerous datasets, 

and has been found to introduce significant gains in rating prediction accuracy, 

while outperforming the dynamic average computation approaches that are 

presented earlier. 

Keywords: Recommender systems, collaborative filtering, rating time clusters, 

dynamic average, rating abstention interval, ratings’ timestamps. 

1 Introduction 

Collaborative filtering (CF), which is the most successful and most applied technique in the 

design of recommender systems [1], computes personalized recommendations, by taking into 

account the users’ past likings and tastes, in the form of ratings entered in the CF rating database. 

                                                 

* Corresponding author 

© 2017 Dionisis Margaris and Costas Vassilakis. This is an open access article licensed under the Creative Commons Attribution 

License (http://creativecommons.org/licenses/by/4.0). 

Reference: D. Margaris and C. Vassilakis, “Using Time Clusters for Following Users’ Shifts in Rating Practices,” Complex 

Systems Informatics and Modeling Quarterly, CSIMQ, no. 13, pp. 22–42, 2017. Available:  

https://doi.org/10.7250/csimq.2017-13.02 

Additional information. Author's ORCID iD: D. Margaris – orcid.org/0000-0002-7487-374X, C. Vassilakis –  
orcid.org/0000-0001-9940-1821. Article PII S225599221700075X. Article received: 2017 October 01. Accepted: 2017 

December 21. Available online: 2017 December 29.  

http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-7487-374X
https://orcid.org/0000-0001-9940-1821


23 

 

User-user CF algorithms firstly identify people having similar tastes, by examining the 

resemblance of already entered ratings; for each user u, other users having highly similar tastes 

with u are designated as u’s nearest neighbors (NNs). Afterwards, in order to predict the rating 

that u would give to an item i, that u has not reviewed yet, the ratings assigned to item i by u’s 

NNs are combined [2], under the assumption that users are highly likely to exhibit similar tastes 

in the future, if they have done so in the past as well [3], [4]. To measure similarity between 

users, the Pearson Correlation Coefficient is the most commonly used formula in CF 

recommender systems. In this context, the Pearson correlation coefficient adjusts the ratings of a 

user u by the mean value of all ratings entered by u, so as to tackle the issue that some users may 

rate items either higher or lower than others. However, relying on a single mean value presumes 

that the users’ marking practices remain constant over time; in practice though, a user’s marking 

practices may change over time, i.e. a user could start off being lenient and subsequently change 

to being strict, or vice versa.  

For instance, consider that a user watches 8 movies, day after day and rates them from 4/10 to 

7/10 (assuming a uniform distribution, starting with 4/10 and ending with 7/10); hence a movie 

that has been rated with 4/10 is considered as a relatively bad one. Afterwards, the user abstains 

from watching/rating movies for 5 days and then she watches 4 movies, one every two days, 

rating them from 7/10 to 10/10 (starting with 10/10 and ending with 7/10, this time). We can 

understand that the first movie of the second rating set, that has been rated with 10/10 is 

considered as an excellent one, but we cannot be certain how the first period movie that has been 

rated with 7/10 compares with the second period movie that has been rated with the same mark: 

it may be the case that after the user has watched the movie that she considered excellent and 

rated with 10/10, her standards have risen, therefore in reality the second period movie that was 

rated with 7/10 is actually better than the equally ranked first period movie. It is also possible 

that the ratings entered by the user during the two periods were affected by a change in her mood 

[5]. In any case, the user’s 5-day abstention signifies a change in her rating practices. The 

Pearson Correlation, which is predominantly used for computing user similarity in CF 

algorithms, does not consider such changes in rating practices, and therefore inaccuracies may be 

introduced in the user neighborhood computation process. 

Insofar, while many efforts have been made to improve the CF prediction accuracy, and the 

aspect of changes in users’ interests has been extensively studied ([6] provides a comprehensive 

review), the issue of shifts in rating practices has not received adequate attention. Margaris and 

Vassilakis [7] introduce the concept of dynamic user rating averages which follow the users’ 

marking practices shifts and present two alternative algorithms, namely the DAvicinity and 

DAprevious algorithms, for computing a user’s dynamic averages. These algorithms are validated in 

the context of user-user CF, and have been found to achieve better rating prediction accuracy 

than the plain CF algorithm. 

In this article, we extend the work in [7] as follows: 

(1) We introduce the concept of rating time clusters; a rating time cluster corresponds to a 

group of ratings which have some temporal cohesion and for which the user is assumed to 

follow the same rating practice 

(2) We present a novel algorithm, namely DAclusters, for computing rating time clusters. After 

formulating rating time clusters, DAclusters computes one dynamic average per cluster; this 

dynamic average is then used in the rating prediction process. To validate our approach, we 

present an extensive evaluation, comparing the presented algorithm against the DAprevious 

and DAvicinity algorithms proposed in [7] and the plain CF algorithm, which is used as a 

yardstick. Experiments have shown that using the per cluster dynamic averages, which are 

computed by the DAclusters algorithm leads to more accurate predictions as compared to the 

per-rating dynamic averages that are computed by the DAprevious and DAvicinity algorithms 

proposed in [7]. Improvement in accuracy indicates that the DAclusters algorithm is able to 

follow more accurately shifts in rating prediction practices. The DAclusters algorithm also 



24 

 

introduces significant space savings in comparison to the DAprevious and DAvicinity algorithms 

[7]. 

The proposed algorithm, as well as the two algorithms presented in [7], are based on the 

exploitation of timestamp information which is associated with ratings; hence in this work, we 

use the Amazon datasets [8], [9], the MovieLens datasets [10], [11] and the Netflix dataset [12], 

which include the ratings’ timestamps. It is worth noting that the proposed algorithm can be 

combined with other techniques that have been proposed for either improving prediction 

accuracy in CF-based systems, including consideration of social network data (e.g. [13], [14], 

[15]), location data [16], [17] and pruning of old user ratings [18], [19], or techniques for 

speeding up prediction computation time, such as clustering [20], [21], [22]. The rest of the 

article is structured as follows: Section 2 overviews related work, while Section 3 introduces the 

proposed algorithm and briefly describes the dynamic average-based algorithms presented in [7] 

for self-containment purposes. Section 4 evaluates the proposed algorithm using the 

aforementioned datasets and finally, Section 5 concludes the article and outlines future work. 

2 Related Work 

The accuracy of CF-based systems is a topic that has attracted considerable research efforts. 

Koren [23] proposes a new neighborhood-based model, which is based on formally optimizing a 

global cost function and leads to improved prediction accuracy, while maintaining merits of the 

neighborhood approach such as explainability of predictions and ability to handle new ratings (or 

new users) without retraining the model. In addition, it suggests a factorized version of the 

neighborhood model, which improves its computational complexity while retaining prediction 

accuracy. Liu et al. [24] present a new user similarity model to improve the recommendation 

performance when only few ratings are available to calculate the similarities for each user. The 

model considers the local context information of user ratings, as well as the global preference of 

user behavior. Ramezani et al. [25] propose a method to find the neighbor users based on the 

users’ interest patterns in order to overcome challenges like sparsity and computational issues, 

following the idea that users who are interested in the same set of items share similar interest 

patterns, therefore, the non-redundant item subspaces are extracted to indicate the different 

patterns of interest and then, a user’s tree structure is created based on the patterns she has in 

common with the active user. 

Research has shown that exploiting time in the rating prediction computation can improve 

prediction accuracy, due to concept drift; concept drift is the phenomenon when the relation 

between the input data and the target variable changes over time [6]. Change of interests [26], 

[6], is a typical example of concept drift. To this end, Zliobaite et al. [27] develop an intelligent 

approach for sales prediction, which uses a mechanism for model switching, depending on the 

sales behavior of a product. This research presents an intelligent two level sales prediction 

approach that switches the predictors depending on the properties of the historical sales, such as 

product moving average sales, cumulative sales, holidays and seasonal sales. This approach is 

shown to achieve better results as compared to both (a) a baseline predictor and (b) an ensemble 

of predictors. Ang et al. [28] address the problem of adaptation when external changes are 

asynchronous, by developing an ensemble approach, called PINE, which combines reactive 

adaptation via drift detection, and proactive handling of upcoming changes via early warning and 

adaptation across the peers. In addition, PINE is parameter-insensitive and incurs less 

communication cost while achieving better accuracy. Elwell and Polikar [29] tackle the issue of 

concept drift in the context of online learning, introducing a batch-based ensemble of classifiers, 

called Learn++.NSE, where NSE stands for Non-Stationary Environments. Learn++.NSE learns 

from consecutive batches of data without making any assumptions on the nature or rate of drift; 

it can learn from such environments that experience constant or variable rate of drift, addition or 

deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other 

members of the Learn++ family of algorithms, that is, without requiring access to previously 



25 

 

seen data. Learn++.NSE trains one new classifier for each batch of data it receives, and 

combines these classifiers using a dynamically weighted majority voting. The algorithm is 

evaluated on several synthetic datasets designed to simulate a variety of nonstationary 

environments, as well as a real-world weather prediction dataset. Minku et al. [30] present a new 

categorization for concept drift, separating drifts according to different criteria into mutually 

exclusive and non-heterogeneous categories. Moreover, they present a diversity analysis in the 

presence of different types of drifts and it shows that, before the drift, ensembles with less 

diversity obtain lower test errors. Nishida and Yamauchi [31] have developed a detection method 

that includes an online classifier and monitors its prediction errors during the learning, which 

uses a statistical test of equal proportions. Experimental results showed that this method 

performed well in detecting the concept drift in five synthetic datasets that contained various 

types of concept drift. Vaz et al. [32] propose an adaptation of the item-based CF algorithm to 

incorporate rating age influence in predictions. It considers ratings in two dimensions: the active 

user ratings and the community ratings and it inserts a time weight, which gave more relevance 

to more recent ratings than to older ones, both in the similarity calculation and in the rating 

prediction equation. Koenigstein et al. [33] consider the temporal dimension in the context of 

recommender systems by capturing different temporal dynamics of music ratings, along with 

information from the taxonomy of music-related items; both these dimensions are exploited by a 

rich bias model. The method proposed in this work is applied on a sparse, large-scale dataset, 

and the particular characteristics of the dataset are extracted and utilized. Liu et al. [34] present a 

social temporal collaborative ranking model that can simultaneously achieve three objectives: (1) 

combines both explicit and implicit user feedback, (2) supports time awareness using an 

expressive sequential matrix factorization model and a temporal smoothness regularization 

function to tackle overfitting, and (3) supports social network awareness by incorporating a 

network regularization term. Dias and Fonseca [35] explore the usage of temporal context and 

session diversity in session-based CF techniques for music recommendation. They compare two 

techniques to capture the users’ listening patterns over time: one explicitly extracts temporal 

properties and session diversity, to group and compare the similarity of sessions, the other uses a 

generative topic modeling algorithm, which is able to implicitly model temporal patterns. Results 

reveal that the inclusion of temporal information, either explicitly or implicitly, increases 

significantly the accuracy of the recommendation, as compared to the traditional session-based 

CF.  

Li et al. [36] study the problem of predicting the popularity of social multimedia content 

embedded in short microblog messages, exploiting the idea of concept drift to capture the 

phenomenon that through the social networks’ “re-share” feature, the popularity of a multimedia 

item may revive or evolve. They model the social multimedia item popularity prediction problem 

using a classification-based approach which is used for two sub-tasks, namely re-share 

classification and popularity score classification. Furthermore, they develop a concept drift-

based popularity predictor by ensembling multiple trained classifiers from social multimedia 

instances in different time intervals. 

Lu et al. [37] present a novel evolutionary view of user’s profile by proposing a Collaborative 

Evolution (CE) model, which learns the evolution of user’s profiles through the sparse historical 

data in recommender systems and outputs the prospective user profile of the future. 

Kangasrääsiö et al. [38] formulate a Bayesian regression model for predicting the accuracy of 

each individual user feedback and thus find outliers in the feedback data set. Additionally, they 

introduce a timeline interface that visualizes the feedback history to the user and provides her 

with suggestions on which past feedback is likely in need of adjustment. This interface also 

allows the user to adjust the feedback accuracy inferences made by the model. The proposed 

modeling technique, combined with the timeline interface, makes it easier for the users to notice 

and correct mistakes in their feedback, and to discover new items. 

However, none of the above mentioned works considers the issue of shifts in the users’ rating 

practices. This issue has only recently received some attention: Margaris and Vassilakis [7] 



26 

 

introduce and exploit the concept of dynamic user rating averages which follow the users’ 

marking practices shifts. Furthermore, they present two alternative algorithms, namely the 

DAvicinity and the DAprevious, for computing a user’s dynamic averages and perform a comparative 

evaluation in the context of a user-user CF implementation. The results of this evaluation show 

that the dynamic average-based algorithms exhibit better performance than the plain CF 

algorithm in terms of rating prediction accuracy, at the expense of a small to tolerable drop in 

coverage. 

This article extends the work presented in [7] by (1) introducing a more successful dynamic 

average computation algorithm, based on user-level rating clusters, which is able to better follow 

the variations of user rating practices and (2) validating its performance against widely used 

datasets with diverse characteristics. The newly introduced algorithm has been found to provide 

more accurate rating predictions by better capturing the shifts in users’ rating practices. It is 

worth noting that the proposed algorithm is agnostic to the reasons that have led to the shifts in 

users’ rating practices, such as adoption of different standards or changes in mood: the proposed 

algorithm focuses on identifying periods with distinct rating practices, and not on analyzing the 

reasons behind these shifts. 

3 Exploiting Ratings’ Timestamps in Users Dynamic Average Configuration 

Ιn CF, predictions for a user X are computed based on a set of users which have rated items 

similarly with X; this set of users is termed “near neighbors of X” (X’s NNs). The similarity 

metric for ratings is typically based on the Pearson correlation metric, which is expressed as: 
 

                 
                                   

               
 

                       
 

       

 
(1) 

 

where i ranges over items that have been rated by both X and Y. The algorithms presented in this 

section target the computation of   
       (resp.   

     ), aiming to substitute the global average, which is 

insensitive to shifts in rating practices, by an average that is tailored to the time period that      

(resp.     ) was entered. When a dynamic average computation algorithm DAAlg is employed, the 

above formula is modified as: 
 

                 
                                             

                    
 

                            
 

       

 
(2) 

3.1 Existing Dynamic Average Algorithms 

In [7], two algorithms for computing dynamic user averages were proposed: 

 The dynamic average based on the temporal vicinity of the ratings, which will be denoted as 

DAvicinity, which follows a weighted average approach: for a rating r, each user rating r’ 

posted by the same user is assigned a weight on the basis of its temporal vicinity to r (ratings 

that have been entered temporally close to r are assigned higher weights, and as temporal 

distance increases, the weights decrease), and finally the weighted average involving all 

ratings entered by the particular user is computed. The dynamic average for a rating ru,i on 

item i entered by user u is denoted as DAvicinity(ru,i) and formally is computed as 

                  
                      

                    
 (3) 

where wu,i(r) is the weight of rating r with respect to its temporal vicinity to rating ru,i and is 

calculated using formula (4): 



27 

 

           
               

           
             

             
             

 (4) 

In formula (4), t(x) denotes the timestamp of rating x, whereas            
             

 and            
             

 

denote the maximum timestamp and minimum timestamp, respectively, among the ratings 

entered by user u; this weight computation formula follows the standard normalization 

function presented in [39]. 

 The dynamic average based only on previous ratings, which will be denoted as DAprevious, 

where again each user rating ru,i is coupled with its own average DAprevious(ru,i), however 

when computing this average, only ratings entered by the same user (u) prior to ru,i are taken 

into account. Formally, this is computed as 

                  
                               

                                 
 (5) 

 

Results of [7] assert that both these approaches improve the CF predictions, however they both 

suffer from the problem of exhibiting increased storage requirements, since for each rating the 

dynamic average associated to the particular rating must be available, in order to compute 

predictions. 

3.2 The Proposed Algorithm 

Under the proposed approach for computing dynamic averages, instead of computing and storing 

a separate average for each particular rating, the ratings of each user u are partitioned into 

clusters with respect to their timestamps, and a single dynamic average is computed and stored 

for each time cluster. This approach drastically reduces the space requirements for storing the 

dynamic averages. 

In order to group a user’s u ratings into clusters, the proposed algorithm iterates over the 

ratings entered by u in ascending time order, following a greedy approach, so as to reduce the 

computational complexity of cluster formulation. More specifically, the algorithm initially 

considers a cluster including the two first ratings of the user and computes the average rating 

abstention interval between the elements of the cluster (which is initially equal to the difference 

of the timestamps of the two cluster elements). Subsequently, it examines if the next rating can 

be incorporated into the current cluster: if the abstention interval between the timestamp of the 

next rating and the timestamp of the latest rating within the cluster is less than the average 

abstention interval between consecutive ratings within the cluster, then the new rating is 

appended to the current cluster; in the opposite case, the current cluster is finalized and the 

clustering procedure is executed anew from the next rating onwards. 

Effectively, this technique locates, for each user, a point in time when she has abstained from 

submitting ratings for a period of time which is longer than she had usually done recently (i.e. at 

that particular time period) and assumes that this abstention may signify a change of user’s rating 

strictness. It is worth noting that while a number of clustering algorithms exist (e.g. k-means, k-

medoids, CLARA [40]), all these algorithms require that the number of clusters is known a 

priori, a condition that is not met by the user rating datasets. Various techniques are presented in 

the literature for computing the number of clusters that will deliver the optimal clustering (e.g. 

[41]); the investigation of these techniques and the use of different clustering algorithms will be 

part of our future work. 

  



28 

 

The proposed algorithm is illustrated below in pseudocode; besides formulating clusters, the 

pseudocode also computes the dynamic average for each cluster.  

 
// INPUT: rating database 
// Output: clusters array, containing for each user the computed set of clusters 
//         each cluster contains the ratings and the respective dynamic average 
clusters =  
FOREACH user u   RatingsDB 

clusters[u] =  
ru = retrieveAllUserRatings(u, RatingsDB)  
sort ru on timestamp with ascending order  
cluster_id = 1 
cluster_id_set = {ru[1], ru[2]}  
// must include the first two ratings, in order to have an interval to compare with 
cluster_ratings_counter = 2 
cluster_ratings_sum = rating(ru[1]) + rating(ru[2]) 
cluster_abstention_avg = timestamp(ru[2]) – timestamp(ru[1])  
FOR i = 3 TO count(ru)-1  
// we cannot have a single rating in a cluster; hence the last rating belongs by  
// default in the user’s last cluster 

current_interval = timestamp(ru[i]) – timestamp(ru[i-1]) 
IF (current_interval > (FACTOR * cluster_abstention_avg) ) 

// start a new cluster 
clusters[u][cluster_id].ratings = cluster_id_set 
clusters[u][cluster_id].dynamic_average = cluster_ratings_sum / 

cluster_ratings_counter 
 
cluster_id++ 
cluster_id_set = {ru[i], ru[i+1]} 
cluster_ratings_counter = 2 
cluster_id_dynamic_average = rating(ru[i]) + rating(ru[i+1]) 
cluster_abstention_avg = timestamp(ru[i+1]) – timestamp(ru[i]) 
 
i++ // in the next loop we consider the first unallocated rating 

ELSE  
// add rating to current cluster 
cluster_id_set = cluster_id_set ∪ {ru[i]}  
cluster_abstention_avg = (cluster_abstention_avg * 

(cluster_ratings_counter–1) + current_interval) / cluster_ratings_counter 
cluster_ratings_counter++ 
cluster_ratings_sum = cluster_ratings_sum + rating(ru[i]) 

END IF  
NEXT i 
// add last rating to the last computed cluster and update its dynamic average 
clusters[u][cluster_id].ratings= clusters[u][cluster_id].ratings ∪ {ru[count(ru)]} 
clusters[u][cluster_id].ratings.dynamic_average = (cluster_ratings_counter * 

clusters[u][cluster_id].ratings.dynamic_average + rating(ru[count(ru)])) / 
(cluster_ratings_counter + 1) 

NEXT u 
 

Due to the fact that the algorithm operates in a greedy fashion, it is prone to the formulation of 

an excessive number of clusters: if the first elements that are added to the cluster have small 

differences in their timestamps, then trivial clusters containing only two (or very few) ratings 

will be created. To ameliorate this effect, the constant FACTOR is used in the pseudocode, which 

adjusts the new ratings cluster detection threshold: setting FACTOR to values higher than 1 

relaxes the criterion for incorporating each next rating into the current cluster, decreasing thus 

the probability that trivial clusters will be created. In our experiments, reported in Section 4, we 

explored different candidate values for the FACTOR parameter. More specifically, we used the 



29 

 

following candidate FACTOR values: 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 7.5 and 10. 

While, theoretically, FACTOR can be set to values lower than 1, this worsens the problem of 

trivial cluster creation, and therefore it is not considered in our evaluation. 

4 Performance Evaluation 

In this section, we report on our experiments through which we compared the proposed 

algorithm, DAclusters, against the dynamic average-based algorithms introduced in [7], as well as 

the plain CF algorithm (which is used as a yardstick).  

In this comparison we consider the following aspects: 

1. Prediction accuracy; for this comparison, we used two well-established error metrics, 

namely the mean absolute error (MAE) metric, as well as the Root Mean Squared Error 

(RMSE) that ‘punishes’ big mistakes more severely. RMSE was used in the Netflix 

competition [12]. 

2. The coverage of the algorithm, i.e. the percentage of the cases for which a prediction can 

be computed [42]. 

3. The probability that an algorithm computes the correct user rating. Since user ratings are 

typically integer numbers, while predictions are calculated as real numbers, for comparing 

the prediction to the actual user rating we round the prediction to the nearest integer. This 

is analogous to the practice used in the Netflix Competition [12]. 

4. The number of dynamic averages the algorithm stores, in order to perform prediction 

computation [7].  

To compute the MAE, the RMSE and the probability to compute the correct prediction, we 

employed the standard “hide one” technique [4]: each time, we hid a random rating in the 

database and then predicted its value based on the ratings of other non-hidden items. For each 

user, this procedure was executed for 10 randomly selected ratings entered by the particular user; 

therefore the computation of the MAE, the RMSE and the correct prediction probability was 

performed considering all users in the database. 

The algorithms employing dynamic averages may exhibit different coverage, since the 

introduction of dynamic averages modifies the similarity metrics, and henceforth users that are 

deemed “similar” when using the plain CF algorithm (i.e. their standard Pearson o similarity 

surpasses a threshold) may be deemed “not similar” when using the dynamic average-aware 

Pearson similarity, or vice versa. Under this condition, some users that are characterized as “grey 

sheep” [42] when using the plain CF algorithm (i.e. did not have enough near neighbours for a 

recommendation to be computed) may gain enough neighbours when using a dynamic average-

based algorithm, thus increasing coverage; conversely some users for which a recommendation 

was computed using the plain CF algorithm may become “grey sheep” when using a dynamic 

average-based algorithm because they lost some near neighbors, in which case coverage 

decreases. 

For our experiments we used a machine equipped with six Intel Xeon E7 - 4830 @ 2.13GHz 

CPUs, 256GB of RAM and one 900GB HDD with a transfer rate of 200MBps, which hosted the 

datasets and ran the rating prediction algorithms. 

In the following paragraphs, we report on our experiments regarding eight datasets. Four of 

these datasets are obtained from Amazon [8], [9], three from MovieLens [10], [11], and one from 

Netflix [12]. These eight datasets used in our experiments (a) contain reliable timestamps (most 

of the ratings within each dataset have been entered in real rating time and not in a batch mode), 

(b) are up to date (published between 1998 and 2016), (c) are widely used as benchmarking 

datasets in CF research and (d) vary with respect to type of dataset (movies, music, videogames 

and books) and size (from 2MB, up to 4.7GB). The basic properties of these datasets are 

summarized in Table 1. 

In each dataset, users initially having less than 10 ratings were dropped, since users with few 

ratings are known to exhibit low accuracy in predictions computed for them [3]. This procedure 



30 

 

did not affect the three MovieLens and the one NetFlix datasets, because these four datasets 

contain only users that have rated 20 items or more. Furthermore, we detected cases where for a 

particular user, all her ratings’ timestamps were almost identical (i.e. the difference between the 

minimum and maximum timestamps was less than 30 seconds). These users were dropped as 

well, since this timestamp distribution indicated that the ratings were entered in a batch mode, 

hence the assigned timestamps are not representative of the actual time that these ratings were 

given by the users. 

Table 1. Datasets Summary 

Dataset name #users #ratings #items Avg. #ratings 

/ user 

DB Size (in 

text format) 

Amazon “Videogames” [8], [9] 8.1Κ 157K 50Κ 19.6 3.8ΜΒ 

Amazon “CDs and Vinyl” [8], [9] 41Κ 1.3M 486Κ 31.5 32ΜΒ 

Amazon “Movies and TV” [8], [9] 46Κ 1.3M 134Κ 29.0 31ΜΒ 

Amazon “Books” [8], [9] 295Κ 8.7M 2.33Μ 29.4 227ΜΒ 

MovieLens “Old 100K” dataset [10], [11] 943 100Κ 1.7K 106.0 2.04ΜΒ 

MovieLens “Latest-20M, recommended for 

new research”[10], [11] 

138Κ 20Μ 27K 145 486MB 

MovieLens “Latest 100K, Recommended 

for education and development” (small) 

[10], [11] 

700 100Κ 9K 143 2.19MB 

NetFlix Competition [12] 480K 96M 17.7K 200 4.7GB 
 

In the following paragraphs, we report on our findings regarding the performance of the 

algorithm proposed in this work, versus the DAprevious and the DAvicinity algorithms reported in [7], 

and the plain CF algorithm, which uses the standard Pearson correlation coefficient. 

4.1 The Amazon “Videogames” Dataset 

For the Amazon Videogames dataset, when using the plain CF algorithm, predictions could be 

formulated for 72.15 % of the cases; in the rest of them, the respective users had no neighbors 

with a positive Pearson coefficient, i.e. no candidate recommenders, and therefore no prediction 

could be computed for them. 

We can observe that in the DAprevious algorithm, which was the winner in the respective 

experiment presented in [7], this percentage drops by 4.29 %, while, on the other hand, the 

DAprevious algorithm improves the percentage of correct predictions by 0.76 %, while it also 

reduces the MAE by 7.9 % and the RMSE by 5.9 %. 

As far as the proposed algorithm is concerned, all tested variants (a variant corresponds to a 

particular setting of the FACTOR parameter) reduce the MAE from 3.39 % (FACTOR = 10) to 

11.9 % (FACTOR = 1) in comparison to the plain CF algorithm, at the expense of a coverage 

reduction, which ranges from 1.15 % (FACTOR = 10) to 5.87 % (FACTOR = 1.0), again in 

comparison to the plain CF algorithm. Works such as [18], [19] and [43] also assert that a 

tradeoff between coverage and accuracy exists, and in order to obtain a single measure for rating 

the suitability of each algorithm, the harmonic mean (HM) of these measures can be adopted; 

this is analogous to the goal of maximizing the HM of precision and recall – termed the F1 

measure – in information retrieval [44]). Towards this direction, we adopt the following formula 

introduced in [43]: 
 

         
                     

                     
  (6) 

 



31 

 

where aAlg is a rating prediction algorithm and Alg is the set of all algorithms participating in 

the evaluation. For the DAclusters algorithm, different settings for the FACTOR parameter are 

considered as different algorithms in the context of the evaluation. normCov(a) and normAcc(a) 

denote the normalized coverage and normalized accuracy, respectively, of algorithm a. These are 

computed according to the following formulas: 
 

           
               

      
              

   
      

                   
      

              
 (7) 

           
   
      

                 

   
      

              
      

         
 (8) 

 

The results obtained from the Amazon “Videogames” dataset, are depicted in Table 2. For 

conciseness purposes, only the four best performing variants of the DAclusters algorithm are 

reported, i.e. the four variants achieving the highest HM value. This practice is followed in the 

presentation of the results for all datasets. 

Column % coverage corresponds to the percentage of cases for which the algorithm could 

compute predictions, or – equivalently – when the number of near neighbors computed using the 

algorithm’s similarity metric was adequate [1], [2], to formulate a rating prediction. Columns 

MAE and RMSE illustrate the mean absolute error and the root mean square error, respectively, 

while column HM (coverage, accuracy) depicts the harmonic mean measure. Column Correct 

predictions % illustrates the percentage of the cases for which the algorithm achieved to compute 

the exact rating given by the user. Finally, column avgs reduction % shows the reduction in 

storage space requirements against the dynamic average-based algorithms presented in [7], 

which is achieved by the DAclusters algorithm, due to the fact that only one dynamic average is 

computed and stored per cluster, instead of computing one dynamic average per rating; this 

metric is computed only for the variants of DAclusters. 

In Table 2 we can observe that the highest harmonic mean is achieved by DAclusters@2.0, i.e. 

the variant of DAclusters where the FACTOR parameter has been set to 2.0. This variant achieves 

an overall reduction in the MAE equal to 9.2 % against the plain CF algorithm, surpassing the 

respective reduction atained by the DAprevious algorithm by 1.3 %. The DAclusters algorithm also 

reduces the RMSE metric by an additional 2.01 % in comparison to the performance of the 

DAprevious algorithm, and at the same time increases both the coverage by 1.52 % and the 

percentage of correct predictions by 0.36 %. 

Furthermore, when applying the proposed technique in this dataset, the dynamic averages 

stored are reduced by 78 % in comparison to the dynamic averages stored by the algorithms 

presented in [7], thus introducing significant space gains (recall that in both dynamic average-

based algorithms, presented in [7], every rating is coupled with its own particular average). 

4.2 The Amazon “CDs and Vinyl” Dataset 

The results obtained from the Amazon “CDs and Vinyl” dataset, are depicted in Table 3. Again, 

when using the plain CF algorithm, predictions could be formulated for 59.3 % of the cases; in 

the rest of the cases, the respective users had no neighbor with a positive Pearson coefficient, i.e. 

no candidate recommenders, and therefore no prediction could be computed for them.  

In comparison to the plain CF algorithm, the DAprevious ratings algorithm, which was the 

winner in the respective test presented in [7], reduces the MAE by 6.35 %, the RMSE by 5.28 % 

and increases the percentage of correct predictions by 0.33 %, at the expense of reducing 

coverage by 4.22 %. 

 

mailto:DAclusters@2.0


32 

 

Table 2. Amazon “Videogames” dataset results 

Method MAE (out 

of 4) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 0.826 1.142 72.15 0.000 30.38 – 

DAprevious [7] 0.761 1.074 67.86 0.381 31.14 – 

DAvicinity [7] 0.799 1.106 69.96 0.380 30.54 – 

DAclusters@2.0 0.750 1.051 69.38 0.626 31.50 78 

DAclusters@2.5 0.760 1.062 69.42 0.594 31.21 80 

DAclusters@3.5 0.766 1.069 69.64 0.589 31.23 81 

DAclusters@3.5 0.770 1.074 69.79 0.581 31.43 83 

Experiment 

statistics: 

min(MAE) = 0.727 (DAclusters@1.0); max(MAE) = 0.826 (plain CF) 

min(coverage) = 66.28 (DAclusters@1.0); max(coverage) = 72.15 (plain CF) 

 

However, DAclusters@3.5, which achieves the best HM across all tested algorithms, further 

reduces the MAE by 0.68 % and the RMSE by 0.28 %, while at the same time increases the 

coverage by 1.87 % and the percentage of correct predictions by 0.44 % (all differences are 

reported in comparison with DAprevious). Space-wise, DAclusters@3.5 necessitates the storage of 

86 % less dynamic averages than the dynamic average techniques presented in [7]. 

Table 3. Amazon “CDs and Vinyl” dataset results 

Method MAE (out 

of 4) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 0.740 1.060 59.30 0.000 28.07 – 

DAprevious [7] 0.693 1.004 55.08 0.437 28.40 – 

DAvicinity [7] 0.718 1.032 58.66 0.410 28.32 – 

DAclusters@3.0 0.683 1.001 56.40 0.615 28.69 83 

DAclusters@3.5 0.688 1.001 56.95 0.634 28.84 86 

DAclusters@4.0 0.691 1.010 57.15 0.628 28.93 86 

DAclusters@4.5 0.703 1.013 57.68 0.560 28.06 87 

Experiment 

statistics: 

min(MAE) = 0.657 (DAclusters@1.0); max(MAE) = 0.74 (plain CF) 

min(coverage) = 52.75 (DAclusters@1.0); max(coverage) = 59.30 (plain CF) 

4.3 The Amazon “Movies and TV” Dataset 

The results obtained from the Amazon “Movies and TV” dataset, are depicted in Table 4. When 

using the plain CF algorithm, predictions could be formulated for 78.50 % of the cases. In the 

DAprevious ratings algorithm (which was the winner in the respective test presented in [7]) this 

percentage drops by 3.62 %, while the percentage of correct predictions increases by 0.88 %, the 

MAE decreases by 7.54 % and the RMSE drops by 5.80 %. 

The proposed technique achieves to further increase prediction quality, while at the same time 

limits the loss in coverage. More specifically, the DAclusters@2.0 variant (which achieves the 

highest HM), exhibits smaller MAE and RMSE in relation to DAprevious by 1.38 % and 2.02 %, 

respectively, while it also increases the percentage of correct predictions by 0.42 % and coverage 

by 1.35 %. It additionally reduces the number of dynamic averages that must be stored by 80 %. 

 

mailto:DAclusters@1.0
mailto:DAclusters@1.0
mailto:DAclusters@3.5
mailto:DAclusters@4.0
mailto:DAclusters@1.0
mailto:DAclusters@1.0
mailto:DAclusters@2.0


33 

 

Table 4. Amazon “Movies and TV” dataset results 

Method MAE (out 

of 4) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 0.782 1.103 78.50 0.000 35.45 – 

DAprevious [7] 0.723 1.039 74.88 0.309 36.33 – 

DAvicinity [7] 0.755 1.068 77.26 0.406 35.88 – 

DAclusters@1.75 0.707 1.011 76.09 0.588 36.72 79 

DAclusters@2.0 0.713 1.018 76.23 0.591 36.75 80 

DAclusters@2.5 0.721 1.028 76.40 0.584 36.76 83 

DAclusters@3.0 0.727 1.036 76.72 0.590 36.79 85 

Experiment 

statistics: 

min(MAE) = 0.686 (DAclusters@1.0); max(MAE) = 0.782 (plain CF) 

min(coverage) = 73.94 (DAclusters@1.0); max(coverage) = 78.50 (plain CF) 

4.4 The Amazon “Books” Dataset 

The results obtained from the Amazon “Books” dataset, which is the largest Amazon dataset, are 

depicted in Table 5. When using the plain CF algorithm, predictions could be formulated for 

53.76 % of the cases. In the DAprevious ratings algorithm (which was the winner of the respective 

experiment reported in [7]), this percentage drops by 1.51 %, while the percentage of correct 

predictions increases by 0.36 %, the MAE reduces by 2.2 % and the RMSE drops by 1.9 %. 

Table 5. Amazon “Books” dataset results 

Method MAE (out 

of 4) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 0.631 0.891 53.76 0.000 43.38 – 

DAprevious [7] 0.617 0.874 52.25 0.273 43.74 – 

DAvicinity [7] 0.625 0.884 52.75 0.136 43.68 – 

DAclusters@1.5 0.567 0.810 51.34 0.522 43.89 80 

DAclusters@1.75 0.574 0.819 51.87 0.602 43.88 82 

DAclusters@2.0 0.581 0.828 52.24 0.620 44.02 84 

DAclusters@2.5 0.59 0.84 52.35 0.570 43.9 87 

Experiment 

statistics: 

min(MAE) = 0.551 (DAclusters@1.0); max(MAE) = 0.631 (plain CF) 

min(coverage) = 49.81 (DAclusters@1.0); max(coverage) = 53.76 (plain CF) 

In Table 5 we can observe that the variant DAclusters@2.0 is the one achieving the highest HM. 

In comparison to the DAprevious ratings algorithm, the DAclusters@2.0 variant reduces the MAE and 

the RMSE by 5.71 % and 5.16 %, respectively and increases the percentage of correct 

predictions by 0.28 %, while practically leaving coverage unaffected. Finally, it necessitates the 

storage of 84 % less dynamic averages in comparison to both algorithms introduced in [7] 

(DAprevious and DAvicinity). 

4.5 The MovieLens “Old 100K” Dataset 

The results obtained from the MovieLens “Old 100K” dataset are depicted in Table 6. When 

using the plain CF algorithm, predictions could be formulated for 99.82 % of the cases (due to 

the dataset’s high density). In the DAprevious ratings algorithm (which was ranked first in the 

respective experiment presented in [7]), the coverage is practically not affected, while the 

percentage of correct predictions increases by 1.19 %, the MAE and the RMSE fall by 3.47 % 

and 3.03 %, respectively. 

mailto:DAclusters@2.5
mailto:DAclusters@1.0
mailto:DAclusters@1.0
mailto:DAclusters@1.5
mailto:DAclusters@2.0
mailto:DAclusters@1.0
mailto:DAclusters@1.0
mailto:DAclusters@2.0
mailto:DAclusters@2.0


34 

 

In table 6 we can observe that the variant DAclusters@1.75 is the one achieving the highest HM. 

In comparison to DAprevious, the DAclusters@1.75 variant exhibits lower MAE and RMSE by 

14.40 % and 13.36 %, respectively, while it increases the percentage of correct predictions by 

7.44 % and maintains the same high coverage. Space-wise, DAclusters@1.75 variant necessitates 

the storage of 76 % less dynamic averages than the dynamic average techniques presented in [7]. 

Table 6. MovieLens “Old 100K” dataset results 

Method MAE (out 

of 4) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 0.750 0.958 99.82 0.000 41.43 – 

DAprevious [7] 0.724 0.929 99.83 0.285 42.62 – 

DAvicinity [7] 0.729 0.934 99.83 0.238 42.64 – 

DAclusters@1.5 0.612 0.807 99.83 0.872 50.45 75 

DAclusters@1.75 0.616 0.809 99.84 0.940 50.06 76 

DAclusters@2.0 0.623 0.818 99.84 0.914 49.22 78 

DAclusters@2.5 0.641 0.839 99.83 0.774 48.53 81 

Experiment 

statistics: 

min(MAE) = 0.599 (DAclusters@1.0); max(MAE) = 0.750 (plain CF) 

min(coverage) = 99.78 (DAclusters@5.0); max(coverage) = 99.84 (DAclusters@1.75) 

4.6 The MovieLens “Latest-20M, Recommended for New Research” Dataset 

The results obtained from the MovieLens “Latest-20M, recommended for new research” dataset, 

are depicted in Table 7. Under the plain CF algorithm, predictions could be formulated for 

99.96 % of the cases (again, due to the dataset’s high density). In the DAprevious ratings algorithm 

this percentage remains practically unaffected, dropping by 0.04 %, while the percentage of 

correct predictions increases by 1.48 %, the MAE reduces by 3.26 % and the RMSE declines by 

3.05 %. 

In Table 7 we can observe that the variant DAclusters@1.75 is the one scoring the highest HM. 

In comparison to the DAprevious variant, the DAclusters@1.75 variant reduces the MAE and the 

RMSE by 11.31 % and 9.71 % respectively, and increases the percentage of correct predictions 

by 4.92 % with no change in coverage. Additionally, the DAclusters@1.75 reduces the 

requirements for storage of dynamic averages by 79 %. 

Table 7. MovieLens “Latest-20M, recommended for new research” dataset results 

Method MAE (out 

of 9) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 1.379 1.802 99.96 0.000 23.68 – 

DAprevious [7] 1.334 1.747 99.92 0.245 25.16 – 

DAvicinity [7] 1.352 1.763 99.90 0.000 24.42 – 

DAclusters@1.75 1.178 1.576 99.92 0.481 30.08 79 

DAclusters@2.0 1.197 1.596 99.92 0.467 29.68 82 

DAclusters@2.5 1.212 1.614 99.92 0.455 29.38 84 

DAclusters@3.0 1.230 1.633 99.92 0.438 28.50 86 

Experiment 

statistics: 

min(MAE) = 1.146 (DAclusters@1.0); max(MAE) = 1.379 (plain CF) 

min(coverage) = 99.9 (DAvicinity); max(coverage) = 99.96 (plain CF) 

mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@1.5
mailto:DAclusters@2.0
mailto:DAclusters@1.0
mailto:DAclusters@5.0
mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@2.0
mailto:DAclusters@2.5
mailto:DAclusters@1.0
mailto:DAvicinity
mailto:DAclusters@1.75


35 

 

4.7 The MovieLens “Latest 100K, Recommended for Education and Development (small)” 

Dataset 

The results obtained from the MovieLens “Latest 100K, Recommended for education and 

development (small)” dataset, are depicted in Table 8. When using the plain CF algorithm, 

predictions could be formulated for 99.57 % of the cases (again, due to the dataset’s high 

density). In the DAprevious ratings algorithm (which was the winner in the respective experiment 

reported in [7]) this percentage drops by 0.21 %, while the percentage of correct predictions 

increases by 0.12 %, the MAE reduces by 3.36 % and the RMSE drops by 3.75 %. 

Table 8. MovieLens “Latest 100K, Recommended for education and development (small)” dataset results 

Method MAE (out 

of 9) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 1.430 1.893 99.57 0.000 23.90 – 

DAprevious [7] 1.382 1.822 99.36 0.256 24.02 – 

DAvicinity [7] 1.402 1.848 99.60 0.187 23.99 – 

DAclusters@1.25 1.179 1.573 99.32 0.536 29.39 76 

DAclusters@1.5 1.194 1.599 99.34 0.568 29.40 78 

DAclusters@1.75 1.203 1.61 99.31 0.499 29.36 79 

DAclusters@2.0 1.222 1.631 99.31 0.485 28.57 81 

Experiment 

statistics: 

min(MAE) = 1.158 (DAclusters@1.0); max(MAE) = 1.43 (plain CF) 

min(coverage) = 99.15 (DAclusters@2.5); max(coverage) = 99.6 (DAvicinity) 

As shown in Table 8, the DAclusters@1.5 variant is the one exhibiting the highest HM. As 

compared to the DAprevious algorithm, the DAclusters@1.5 variant reduces the MAE and the RMSE 

by 13.15 % and 11.78 %, respectively, while it increases the correct prediction percentage by 

5.38 % and achieves practically the same coverage. In terms of dynamic averages storage, the 

DAclusters@1.5 variant reduces the respective requirements by 78 %, in comparison to the 

dynamic average-based algorithms presented in [7]. 

4.8 The “NetFlix Competition” Dataset 

The results obtained from the “NetFlix Competition” dataset, are depicted in Table 9. Again, 

using the plain CF algorithm, predictions could be formulated for 99.12 % of the cases. In the 

respective experiments reported in [7], the DAvicinity algorithm was the winner, and our 

measurements verify that it surpasses the DAprevious algorithm in this dataset. In comparison to the 

plain CF algorithm, the DAvicinity algorithm reduces the MAE and the RMSE by 4.87 % and 

5.77 %, respectively, and achieves an increase of the correct predictions percentage by 4.18 %, at 

the expense of reducing coverage by 0.29 %. 

Table 9 indicates that the variant DAclusters@1.75 exhibits the highest HM. In comparison to 

the DAvicinity algorithm, the DAclusters@1.75 variant decreases the MAE and the RMSE by 5.0 % 

and 2.43 % respectively, while it also increases the percentage of correct predictions by 1.38 % 

and coverage by 0.14 %. Furthermore, the DAclusters@1.75 variant reduces the number of 

dynamic averages that must be stored by 90 %, in comparison to the dynamic average-based 

algorithms presented in [7]. 

 

mailto:DAclusters@1.25
mailto:DAclusters@1.5
mailto:DAclusters@1.75
mailto:DAclusters@1.0
mailto:DAclusters@2.5
mailto:DAclusters@1.5
mailto:DAclusters@1.5
mailto:DAclusters@1.5
mailto:DAclusters@1.75
mailto:DAclusters@1.75
mailto:DAclusters@1.75


36 

 

Table 9. “NetFlix Competition” dataset results 

Method MAE (out 

of 4) 

RMSE Coverage, 

% 

HM (coverage, 

accuracy) 

Correct 

predictions, % 

avgs reduction, 

% 

Plain CF 0.780 0.988 99.12 0.000 40.18 – 

DAprevious [7] 0.750 0.966 98.81 0.291 45.21 – 

DAvicinity [7] 0.742 0.931 98.83 0.357 44.36 – 

DAclusters@1.5 0.701 0.905 98.91 0.645 45.82 90 

DAclusters@1.75 0.703 0.907 98.97 0.753 45.74 90 

DAclusters@2.0 0.709 0.909 98.95 0.695 44.22 91 

DAclusters@2.5 0.713 0.918 98.94 0.662 43.91 91 

Experiment 

statistics: 

min(MAE) = 0.697 (DAclusters@1.0); max(MAE) = 0.780 (plain CF) 

min(coverage) = 98.71 (DAclusters@2.5); max(coverage) = 99.6 (DAvicinity) 

4.9 Algorithm Comparison 

Figure 1 depicts the improvement in MAE achieved by the dynamic average-based algorithms; 

for each dataset, the performance of the DAprevious and DAvicinity algorithms is presented, together 

with the performance of the DAclusters variant that achieved the highest HM in the particular 

dataset. In all cases, the performance of the plain CF algorithm is used as a baseline. 

The graph shows that the DAclusters algorithm introduced in this article achieves a mean 

improvement of 11.5 % against the plain CF algorithm across all datasets, ranging from 7.0 % to 

17.9 %. This surpasses the performance of the DAprevious and DAvicinity algorithms, for which the 

improvements in the average MAE reduction across all datasets are 4.7 % and 2.8 %, 

respectively. It is worth noting that the DAclusters algorithm is consistently ranked first in all eight 

datasets. 

 

Figure 1. MAE improvement achieved by the DAclusters and the algorithms proposed in [7] 

Figure 2 presents the respective improvements regarding the RMSE metric. In all cases, the 

DAclusters algorithm, presented in this article, is ranked first, scoring an improvement of 10.0 % on 

average, while the DAprevious and DAvicinity algorithms proposed in [7] achieve corresponding 

improvements of 3.9 % and 2.8 %, respectively. Moreover, the improvements are very similar to 

those of the MAE metric shown in Figure 1, indicating that prediction improvements are spread 

uniformly among predictions with high and low errors (recall that the RMSE metric strongly 

penalizes predictions with high errors). 
 

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%
18.0%
20.0%

%
 M

A
E

 r
ed

u
ct

io
n

DAprevious DAvicinity DAclusters

mailto:DAclusters@1.5
mailto:DAclusters@1.75
mailto:DAclusters@2.0
mailto:DAclusters@1.0
mailto:DAclusters@2.5


37 

 

 

Figure 2. RMSE improvement achieved by the DAclusters and the algorithms proposed in [7] 

Figure 3 illustrates the improvements regarding the correct prediction percentage. The 

DAclusters algorithm is ranked first across all datasets, achieving improvements ranging from 

0.6 % to 8.6 % against the baseline algorithm (which is the plain CF algorithm), scoring an 

average improvement of 3.7 %. We can observe that in the denser datasets (all MovieLens and 

the Netflix dataset), the improvements in correct prediction percentage achieved by the DAclusters 

algorithm are more substantial. In comparison to the algorithms proposed in [7], the DAclusters 

algorithm outperforms both the DAprevious and the DAvicinity algorithms, which achieve an average 

improvement equal to 1.3 % and 0.9 %, respectively. 

 

Figure 3. Correct predictions percentage improvement achieved by the DAclusters and the algorithms 

proposed in [7] 

Figure 4 illustrates the reduction in coverage sustained when using the dynamic average-based 

algorithms, against the baseline algorithm (plain CF). In this case, the DAclusters algorithm is 

ranked second regarding its average performance, losing 1.2 % of coverage on average, with its 

coverage loss varying from -0.02 % (i.e. it achieves a marginal coverage increase in one dataset, 

namely the “MovieLens Old-100K” dataset) to 2.77 %. The winner algorithm regarding this 

metric is DAvicinity, for which the average coverage drop is 0.7 %, while the DAprevious algorithm is 

ranked third, with an average coverage reduction of 1.8 %. In Figure 4 we can observe that 

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

%
 R

M
S

E
 r

ed
u

ct
io

n

DAprevious DAvicinity DAclusters

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

%
 c

o
rr

ec
t 

p
re

d
ic

ti
o

n
s

im
p

ro
v

em
en

t

DAprevious DAvicinity DAclusters



38 

 

coverage drop is considerably higher in the Amazon datasets, which are sparser, while in the 

denser datasets (all MovieLens datasets and the Netflix dataset), coverage loss is negligible (less 

than 0.29 % in all cases). 

 

Figure 4. Predictions (cases) lost when applying the DAclusters algorithm and the algorithms proposed in 

[7] (less is better) 

Finally, Figure 5 illustrates the reduction in storage needs for dynamic averages that is 

achieved by the DAclusters algorithm, as compared to the dynamic average-based algorithms 

proposed in [7]; since both of these algorithms require the same number of dynamic averages, 

only one set of measurements is presented in Figure 5. For each dataset, we consider the variant 

of DAclusters that achieves the highest HM. We can observe that the DAclusters algorithm 

substantially reduces the need for storing dynamic averages, with the respective gains ranging 

from 76 % to 90 %, having an average of 81 % across all datasets. 

 

Figure 5. Storage needs reductions achieved by the DAclusters algorithm against the algorithms proposed in [7] 

Summarizing, we can see that in all datasets the DAclusters algorithm is ranked first regarding 

the MAE reduction, the RMSE reduction and the correct predictions’ percentage improvement. 

The only metric for which the DAclusters algorithm is ranked second is coverage, where it lags 

behind the DAvicinity algorithm; however, the DAclusters algorithm performs substantially better 

-0.50%
0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%
4.00%
4.50%
5.00%

%
 c

o
v

er
a

g
e 

lo
ss

(l
es

s 
is

 b
et

te
r)

DAprevious DAvicinity DAclusters

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

%
 r

ed
u

ct
io

n
 o

f 

d
y

n
a
m

ic
 a

v
er

a
g

es



39 

 

than DAvicinity regarding the MAE reduction, therefore the DAclusters algorithm is clearly ranked 

first when jointly examining the coverage and accuracy metric, as shown in the discussions 

presented in Sections 4.1-4.8. Finally, the DAclusters algorithm introduces significant savings in 

space requirements for storing the dynamic averages, necessitating the storage of 81 % less 

dynamic averages than the algorithms presented in [7]. 

4.10 Discussion 

From the experiments above, it is clear that the DAclusters algorithm leads to more accurate 

predictions than the algorithms presented in [7], namely DAvicinity and DAprevious. This is owing to 

the fact that the DAclusters algorithm computes local averages taking into account only ratings that 

are temporally “close” together, taking into account the expected user rating frequency through 

the examination of rating abstention periods. On the contrary, when computing the dynamic 

average for some rating r, the DAprevious algorithm takes into account all previous ratings, 

regardless of whether these are temporally close or distant to r. Consequently, the value of the 

dynamic average for r is affected by ratings that are temporally distant (where “distant” should 

be interpreted in relation to the nominal user rating frequency) and are thus highly likely to 

belong to periods during which the user used to follow different rating practices. Conversely, 

ratings that have been entered shortly after r (where “shortly” should be again interpreted in 

relation to the nominal user rating frequency), which should be grouped in the same rating 

practice period with r and be taken into account in the computation of the dynamic average of r, 

are disregarded. Notably, in dense datasets, where user rating frequencies are higher, and more 

clusters are formulated per user, the gains in accuracy are considerably higher. 

Considering the DAvicinity algorithm, when the dynamic average for some rating r is computed, 

all ratings are taken into account, albeit smaller weights are used for temporally distant ones. 

However, for periods where the user’s rating frequency is low, this practice reduces the weight 

of ratings that should be grouped in the same rating practice period with r, introducing a source 

of inaccuracy in the dynamic average computation. Additionally, ratings that are temporally very 

distant from r are included in the computation of the dynamic average related to r, and these 

ratings effectively add noise to the computation of the dynamic average. 

5 Conclusion and Future Work  

In this article we have introduced the concept of rating time clusters, i.e. groups of ratings with 

temporal cohesion, and for which the user is assumed to follow the same rating practice. 

Furthermore, we have presented DAclusters, a novel algorithm which computes rating time clusters 

and one dynamic average per cluster for each cluster; the computed dynamic averages are then 

utilized in the rating prediction process. The proposed algorithm has been experimentally 

verified using 8 datasets and compared to the algorithms proposed in [7] (DAvicinity and 

DAprevious), and has been found to consistently outperform both of them, in terms of prediction 

accuracy and overall performance, i.e. their performance taking into account the accuracy and 

coverage metrics. Improvement in rating prediction accuracy indicates that the DAclusters 

algorithm is able to follow more closely shifts in rating prediction practices. In particular, the 

average MAE reduction compared to the DAprevious and the DAvicinity algorithms is 6.7 % and 

8.7 % respectively, whereas the corresponding improvements regarding the RMSE metric are 

6.1 % and 7.1 %. Considering the correct prediction metric, the proposed algorithm outperforms 

the DAprevious and DAvicinity algorithms by 2.5 % and 2.8 %, respectively. Finally, the percentage 

of the dynamic averages stored is reduced by 81 %, compared to the dynamic average-based 

algorithms presented in [7]. 

Our future work will focus on adapting the proposed approach for use with matrix 

factorization techniques (an alternative method to CF, used in recommender systems, based on 

matrix decomposition) [45], as well as comparing it with time-aware matrix factorization models 



40 

 

[46], [47]. We also plan to explore methods for further decreasing the space overhead for the 

implementation of dynamic averages and, finally, using more elaborate clustering techniques, 

such as those described in [40] and [41], for identifying periods in which each user’s rating 

practices remain stable. 

References 

[1] J.B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative Filtering Recommender Systems,” The 

Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 291–324, 2007. 

Available: https://doi.org/10.1007/978-3-540-72079-9_9 

[2] M. Balabanovic and Y. Shoham, “Fab: content-based, collaborative recommendation,” Communications of the 

ACM, vol. 40, no. 3, pp. 66–72, 1997. Available: https://doi.org/10.1145/245108.245124 

[3] M.D. Ekstrand, J.T. Riedl, and J.A. Konstan, “Collaborative Filtering Recommender Systems,” Foundations 

and Trends in Human-Computer Interaction, vol. 4, no. 2, pp. 81–173, 2011. 

Available: https://doi.org/10.1561/1100000009 

[4] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.P. Kriegel, “Probabilistic Memory-Based Collaborative 

Filtering,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 1, pp. 56–69, 2004. 

Available: https://doi.org/10.1109/TKDE.2004.1264822 

[5] P. Winoto and T.Y. Tang, “The role of user mood in movie recommendations,” Expert Systems with 

Applications, vol. 37, pp. 6086–6092, 2010, Available: https://doi.org/10.1016/j.eswa.2010.02.117 

[6] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A Survey on Concept Drift Adaptation,” 

ACM Computing Surveys, vol. 1, no. 1, Article 1, 37 pages, 2013. Available: https://doi.org/10.1145/2523813 

[7] D. Margaris and C. Vassilakis, “Improving Collaborative Filtering’s Rating Prediction Quality by Considering 

Shifts in Rating Practices,” in Proc. the 19th IEEE International Conference on Business Informatics, CBI ’17 

Thessaloniki, Greece, July 24–27, vol. 01, pp. 158–166, 2017. Available: https://doi.org/10.1109/CBI.2017.24 

[8] J.J. McAuley, R. Pandey, and J. Leskovec, “Inferring Networks of Substitutable and Complementary 

Products,” in Proc. the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining, KDD ’15, Sydney, Australia, August 10–13, pp. 785–794, 2015. 

Available: https://doi.org/10.1145/2783258.2783381 

[9] J. McAuley, C. Targett, J. Shi, and A. van den Hengel, “Image-based recommendations on styles and 

substitutes,” in Proc. the 38th international ACM SIGIR conference, SIGIR 2015, Santiago, Chile, August 09–

13, pp. 43–52, 2015. Available: https://doi.org/ 10.1145/2766462.2767755 

[10] MovieLens, ”MovieLens datasets”, 2017. Available: https://grouplens.org/datasets/movielens/ 

(accessed 18.09.2017) 

[11] F. Maxwell Harper and J.A. Konstan, “The MovieLens Datasets: History and Context,” ACM Transactions on 

Interactive Intelligent Systems (TiiS), vol. 5, no. 4, Article No. 19, 19 pages, 2016. 

Available: https://doi.org/10.1145/2827872 

[12] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-Scale Parallel Collaborative Filtering for the Netflix 

Prize,” in Proc. the 4th international conference on Algorithmic Aspects in Information and Management 

AAIM '08, Shanghai, China, June 23–25, pp. 337–348, 2008.  

Available: https://doi.org/10.1007/978-3-540-68880-8_32 

[13] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social networks in information diffusion,” in 

Proc. the 21st international conference on World Wide Web, WWW ’12, Lyon, France, April 16–20, pp. 519–

528, 2012. Available: https://doi.org/10.1145/2187836.2187907 

[14] D. Margaris, C. Vassilakis, and P. Georgiadis, “Recommendation Information Diffusion in Social Networks 

Considering User Influence and Semantics,” Social Network Analysis and Mining, vol. 6, no. 1, pp. 1–22, 

2016. Available: https://doi.org/10.1007/s13278-016-0416-z 

[15] D. Margaris, C. Vassilakis, and P. Georgiadis, “Knowledge-Based Leisure Time Recommendations in Social 

Networks,” Current Trends on Knowledge-Based Systems: Theory and Applications, Alor-Hernández G., 

Valencia-García R. (Eds), pp. 23–48, 2017. Available: https://doi.org/10.1007/978-3-319-51905-0_2 

[16] J. Bao, Y. Zheng, and M. Mokbel, “Location-based and Preference-Aware Recommendation Using Sparse 

Geo-Social Networking Data,” in Proc. the 20th International Conferences on Advances in Geographic 

https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1145/245108.245124
https://doi.org/10.1561/1100000009
https://doi.org/10.1109/TKDE.2004.1264822
https://doi.org/10.1016/j.eswa.2010.02.117
https://doi.org/10.1145/2523813
https://doi.org/10.1109/CBI.2017.24
https://doi.org/10.1145/2783258.2783381
https://doi.org/%2010.1145/2766462.2767755
http://grouplens.org/datasets/movielens/
https://doi.org/10.1145/2827872
https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.1145/2187836.2187907
https://doi.org/10.1007/s13278-016-0416-z
https://doi.org/10.1007/978-3-319-51905-0_2


41 

 

Information Systems, SIGSPATIAL ’12, Redondo Beach, California, November 06–09, pp. 199–208, 2012. 

Available: https://doi.org/10.1145/2424321.2424348 

[17] Y. Zheng and X. Xing, “Learning travel recommendations from user-generated GPS traces,” ACM 

Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 1, 2011. 

Available: https://doi.org/10.1145/1889681.1889683 

[18] D. Margaris and C. Vassilakis, “Pruning and aging for user histories in collaborative filtering,” in Proc. the 

2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, Athens, Greece, Dec. 6–9, pp 1–8, 

2016. Available: https://doi.org/10.1109/SSCI.2016.7849920 

[19] D. Margaris and C. Vassilakis, “Enhancing User Rating Database Consistency through Pruning,” Special issue 

on Consistency and Inconsistency in Data-centric Applications, Transactions on Large-Scale Data and 

Knowledge-Centered Systems, Springer, vol. XXXIV, pp. 33–64, 2017. 

 Available: https://doi.org/10.1007/978-3-662-55947-5_3 

[20] S. Gong, “A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item 

Clustering,” Journal of Software, vol. 5, no. 7, pp. 745–752, 2010. 

Available: https://doi.org/10.4304/jsw.5.7.745-752 

[21] A. Das, M. Datar, A. Garg, and S. Rajaram, “Google News Personalization: Scalable Online Collaborative 

Filtering,” in Proc. the 16th international conference on World Wide Web, WWW ‘2007, Banff, Alberta, 

Canada, May 08–12, pp. 271–280, 2007. Available: https://doi.org/10.1145/1242572.1242610 

[22] M.K. Najafabadi, M.N. Mahrin, S. Chuprat, and H.M. Sarkan, “Improving the accuracy of collaborative 

filtering recommendations using clustering and association rules mining on implicit data,” Computers in 

Human Behavior, vol. 67, no. C, pp. 113–128, 2017. Available: https://doi.org/10.1016/j.chb.2016.11.010 

[23] Y. Koren, “Factor in the neighbors: Scalable and accurate collaborative filtering,” ACM Transactions on 

Knowledge Discovery from Data (TKDD), vol. 4, no. 1, Article 1, 24 pages, 2010. 

Available: https://doi.org/10.1145/1644873.1644874 

[24] H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, “A new user similarity model to improve the accuracy of 

collaborative filtering,” Knowledge-Based Systems, vol. 56, pp. 156–166, 2014,  

Available: https://doi.org/ 10.1016/j.knosys.2013.11.006 

[25] M. Ramezani, P. Moradi, and F. Akhlaghian, “A pattern mining approach to enhance the accuracy of 

collaborative filtering in sparse data domains,” Physica A: Statistical Mechanics and its Applications, vol. 408, 

pp. 72–84, 2014. Available: https://doi.org/10.1016/j.physa.2014.04.002 

[26] L. Li, L. Zheng, F. Yang, and T. Li, “Modeling and broadening temporal user interest in personalized news 

recommendation,” Expert Systems with Applications, vol. 41, no. 7, pp. 3168–3177, 2014. 

Available: https://doi.org/10.1016/j.eswa.2013.11.020 

[27] I. Zliobaite, J.Bakker, and M. Pechenizkiy, “Beating the baseline prediction in food sales: How intelligent an 

intelligent predictor is?” Expert Systems with Applications, vol. 39, no. 1, pp. 806–815, 2012. 

Available: https://doi.org/10.1016/j.eswa.2011.07.078 

[28] H.H. Ang, V. Gopalkrishnan, I. Zliobaite, M. Pechenizkiy, and S. C. H. Hoi, “Predictive Handling of 

Asynchronous Concept Drifts in Distributed Environments,” IEEE Transactions on Knowledge and Data 

Engineering, vol. 25, no. 10, pp. 2343–2355, 2013. Available: https://doi.org/10.1109/TKDE.2012.172 

[29] R. Elwell and R. Polikar, “Incremental Learning of Concept Drift in Nonstationary Environments,” IEEE 

Transactions on Neural Networks, vol. 22, no. 10, pp. 1517–1531, 2011. 

Available: https://doi.org/10.1109/TNN.2011.2160459 

[30] L.L. Minku, A.P. White, and X. Yao, “The Impact of Diversity on Online Ensemble Learning in the Presence 

of Concept Drift,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 5, pp. 730–742, 2010. 

Available: https://doi.org/ 10.1109/TKDE.2009.156 

[31] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical testing,” in Proc. the 10th international 

conference on Discovery science, DS '07, Sendai, Japan, October 01–04, pp. 264–269, 2007. 

Available: https://doi.org/10.1007/978-3-540-75488-6_27 

[32] P.C. Vaz, R. Ribeiro, and D.M. de Matos, “Understanding temporal dynamics of ratings in the book 

recommendation scenario,” in Proc. the 2013 ACM International Conference on Information Systems and 

Design of Communication, ISDOC ‘13, Lisboa, Portugal, July 11–12, pp. 11–15, 2013. 

Available: https://doi.org/10.1145/2503859.2503862 

https://doi.org/10.1145/2424321.2424348
https://doi.org/10.1145/1889681.1889683
https://doi.org/10.1109/SSCI.2016.7849920
https://doi.org/10.1007/978-3-662-55947-5_3
https://doi.org/10.4304/jsw.5.7.745-752
https://doi.org/10.1145/1242572.1242610
https://doi.org/10.1016/j.chb.2016.11.010
https://doi.org/10.1145/1644873.1644874
https://doi.org/%2010.1016/j.knosys.2013.11.006
https://doi.org/10.1016/j.physa.2014.04.002
https://doi.org/10.1016/j.eswa.2013.11.020
https://doi.org/10.1016/j.eswa.2011.07.078
https://doi.org/10.1109/TKDE.2012.172
https://doi.org/10.1109/TNN.2011.2160459
https://doi.org/%2010.1109/TKDE.2009.156
https://doi.org/10.1007/978-3-540-75488-6_27
https://doi.org/10.1145/2503859.2503862


42 

 

[33] N. Koenigstein, G. Dror, and Y. Koren, “Yahoo! Music recommendations: modeling music ratings with 

temporal dynamics and item taxonomy,” in Proc. the 5th ACM conference on Recommender systems, RecSys 

'11, New York, NY, USA, pp. 165–172, 2011. Available: https://doi.org/10.1145/2043932.2043964 

[34] N.N. Liu, L. He, and M. Zhao, “Social temporal collaborative ranking for context aware movie 

recommendation,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 4, no. 1, Article No. 

15, 26 pages, 2013. Available: https://doi.org/10.1145/2414425.2414440 

[35] R. Dias and M. J. Fonseca, “Improving Music Recommendation in Session-Based Collaborative Filtering by 

Using Temporal Context,” in Proc. IEEE 25th International Conference on Tools with Artificial Intelligence, 

Herndon, Virginia, USA, Nov 4–6, pp. 783–788, 2013. Available: https://doi.org/10.1109/ICTAI.2013.120 

[36] C.T. Li, M.K. Shan, S.H. Jheng, and K.C. Chou, “Exploiting concept drift to predict popularity of social 

multimedia in microblogs,” Information Sciences, vol. 339, pp. 310–331, 2016, 

Available: https://doi.org/10.1016/j.ins.2016.01.009 

[37] Z. Lu, S.J. Pan, Y. Li, J. Jiang, and Q. Yang, “Collaborative evolution for user profiling in recommender 

systems,” in Proc. the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI '16, New 

York, USA, July 09–15, pp. 3804–3810, 2016. Available: https://doi.org/1073-0516/01/0300-0034 

[38] A. Kangasrääsiö, Y. Chen, D. Głowacka, and S. Kaski, “Interactive Modeling of Concept Drift and Errors in 

Relevance Feedback,” in Proc. the 2016 ACM Conference on User Modeling Adaptation and Personalization, 

UMAP '16, Halifax, Nova Scotia, Canada, July 13–17, pp. 185–193, 2016. 

Available: https://doi.org/10.1145/2930238.2930243 

[39] D. He and D. Wu, “Toward a robust data fusion for document retrieval,” in Proc. of the IEEE 4th International 

Conference on Natural Language Processing and Knowledge Engineering, NLP-KE 2008, Beijing, China, 

October 19–22, 2008. Available: https://doi.org/10.1109/NLPKE.2008.4906754 

[40] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis, John Wiley & 

Sons, 2008, ISBN: 0471735787. Available: https://doi.org/10.1002/9780470316801 

[41] D. Margaris, P. Georgiadis, and C. Vassilakis, “A Collaborative Filtering Algorithm with Clustering for 

Personalized Web Service Selection in Business Processes,” in Proc. The 9th IEEE international conference 

on Research Challenges in Information Science, RCIS 2015, Athens, Greece, May 13–15, pp. 169–180, 2015. 

Available: https://doi.org/10.1109/RCIS.2015.7128877 

[42] R. Burke, “Hybrid recommender systems: Survey and experiments,” User Modeling and User-Adapted 

Interaction, vol. 12, no. 4, pp. 331–370, 2002. Available: https://doi.org/10.1023/A:1021240730564 

[43] D. Margaris and C. Vassilakis, “Improving Collaborative Filtering’s Rating Prediction Quality in Dense 

Datasets, by Pruning Old Ratings,” in Proc. the 2017 IEEE Symposium on Computers and Communications, 

ISCC 2017, pp. 1168–1174, Heraklion, Greece, July 3–6, pp. 158–166, 2017. 

Available: https://doi.org/10.1109/ISCC.2017.8024683 

[44] Z.C. Lipton, C.Elkan, and B. Naryanaswamy, “Optimal Thresholding of Classifiers to Maximize F1 

Measure,”. in Proc. the the 2014th European Conference on Machine Learning and Knowledge Discovery in 

Databases, ECMLPKDD'14, Nancy, France, September 15–19, vol. 2, pp. 225–239, 2014. 

Available: https://doi.org/10.1007/978-3-662-44851-9_15 

[45] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” IEEE 

Computer, vol. 42, no. 8, pp. 30–37, 2009. Available: https://doi.org/10.1109/MC.2009.263 

[46] Z. Gantner, S. Rendle, and L. Schmidt-Thieme, “Factorization models for context-/time-aware movie 

recommendations,” in Proc. the ACM Workshop on Context-Aware Movie Recommendation, CAMRa '10, 

Barcelona, Spain, September 30, pp. 14–19, 2010. Available: https://doi.org/10.1145/1869652.1869654 

[47] J.D. Zhang and C.Y. Chow, “TICRec: A probabilistic framework to utilize temporal influence correlations for 

time-aware location recommendations,” IEEE Transactions on Services Computing, vol. 9, no. 4, pp. 633–646, 

2016. Available: https://doi.org/10.1109/TSC.2015.2413783 

https://doi.org/10.1145/2043932.2043964
https://doi.org/10.1145/2414425.2414440
https://doi.org/10.1109/ICTAI.2013.120
https://doi.org/10.1016/j.ins.2016.01.009
https://doi.org/1073-0516/01/0300-0034
https://doi.org/10.1145/2930238.2930243
https://doi.org/10.1109/NLPKE.2008.4906754
https://doi.org/10.1002/9780470316801
https://doi.org/10.1109/RCIS.2015.7128877
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1109/ISCC.2017.8024683
https://doi.org/10.1007/978-3-662-44851-9_15
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/1869652.1869654
https://doi.org/10.1109/TSC.2015.2413783

