
Controlled Caching of Dynamic WWW Pages

Costas Vassilakis1, Giorgos Lepouras1

1University of Athens, Department of Informatics and Telecommunications
Panepistimiopolis, TYPA Buildings, Athens 157 71 Greece

{C.Vassilakis, G.Lepouras}@di.uoa.gr

Abstract. In order to increase flexibility and provide up-to-date information,
more and more web sites use dynamic content. This practice, however,
increases server load dramatically, since each request results to code execution,
which may involve processing and/or access to information repositories. In this
paper we present a scheme for maintaining a server-side cache of dynamically
generated pages, allowing for cache consistency maintenance, without placing
heavy burdens on application programmers. We also present insights to
architecture scalability and some results obtained from conducted experiments .

Introduction

Content offered by WWW servers can be classified in two categories, static and
dynamic. Static content comprises of HTML pages and images stored in files;
dynamic content is created by the WWW servers upon receipt of a relevant request,
through the execution of server-side program/script (CGI, ASP, JSP etc). Usually,
these programs accept some parameters, included in the request and extract data from
an information repository (e.g. a database) to formulate the HTML page that will be
sent back to the requestor. While in the early days of WWW dynamical content was
rare, its share is constantly increasing due to the need for increased flexibility in
HTML page formulation and the desire to provide up-to-date information.

Dynamic content, however, increases server workload, since it necessitates the
execution of a (possibly costly) code fragment, while additional overheads
(environment setup, housekeeping etc.) are inherent in such an approach. This
workload may prove overwhelming for heavily accessed servers, and techniques used
for static HTML pages (e.g. client-side caching, proxy servers) may not be employed
for reducing it. This is due to the fact that such techniques do not take into account the
particularities of dynamic content, such as the existence of parameters and the
possibility that either data, or even the program that were used to formulate the page
may have changed in the meantime. This paper presents a scheme for maintaining a
server-side cache for dynamic content, which may reduce drastically server workload,
without compromising the advantages offered by the usage of dynamic content.

In the rest of this paper, section 2 covers related work and outlines open issues.
System architecture is presented in section 3, and cache consistency maintenance is
discussed in section 4. Section 5 focuses on scalability and resource utilization and
section 6 presents experimental results. Section 7 concludes and outlines future work.

mailto:@di.uoa.gr

Related Work

In [11] a cost model for the materialization of web views, i.e. subsets of a server’s
dynamically computed information content, is presented. In [12] pre-generation of
Web pages is discussed and changes in the information repository are addressed, but
no algorithm for selecting the most appropriate pages for caching is presented.
Caching of dynamic content is also discussed in [3], [13] and [6] and [9] presents
techniques for reducing a web server’s workload, regarding dynamic content creation.

In [15], two categories of dynamic content caching are described, active cache and
server accelerators. In active cache [4] servers supply cache applets that are attached
to documents and are executed when a user “hits” a cached object. Although this
scheme reduces network load, it has a significant CPU cost. On the other hand, web
server accelerators reside in front of web servers. Such techniques were used to
improve performance at the Web Site for the 1996 Olympics [10] and for the 1998
Winter Games [6]. In the 1998 Games the Data Update Algorithm was used to
maintain data dependence information between cached objects and the underlying
data, enabling cache hit rates close to 100% compared to 80% of an earlier version.
However, this approach suffers when it comes to web sites that offer a large number
of dynamic pages [19], because it depends on keeping up to date a fine-grain graph
that describes dependencies among each web page and the underlying data. In [19] a
different approach is proposed, where the caching mechanism resides behind the web
server and the fine grain method described in [6, 10] is supplemented with coarse
grain dependencies between data and groups of dynamic pages. The caching
algorithm uses a URL class based invalidation method and selective precomputing.

Commercial products implementing caching of dynamic content exist as well. Cold
Fusion [1] offers the capability to designate programs that produce non-changing
dynamic pages, and Cold Fusion engine arranges so that outputs from this program
are cached and reused, while XCache [18] can be integrated into the IIS Web server
to maintain a cache of dynamically generated Pages, providing an additional API for
update applications so as to inform the cache engine for outdated pages.

All techniques presented insofar, however, require from application programmers
an amount of additional development and maintenance for adapting programs to the
caching scheme, for reasons of update propagations and consistency management.
Moreover, invalidated pages are designated using proprietary specifications or APIs,
increasing thus overall system complexity. Finally, most implementations are coupled
to specific web servers, reducing interoperability and portability.

Maintaining a Cache of Dynamically Generated Pages

A server-side cache of dynamic content may be maintained in a controlled fashion
using the architecture depicted in Figure 1. The proposed scheme complements the
existing web site installation with two additional software modules, the cache
manager and the update manager, which are responsible for maintaining the cache
and ensuring that the cache is consistently updated or invalidated, when data is
modified. The proposed scheme places the new modules as a front end to the existing

installation, without any need to affect the latter; some additions may only be needed
for update programs, as explained later. This characteristic was one of the design
goals, since site administrators would be reluctant to employ a scheme that would
require major changes to their site.

Existing web site

Static
pages

Client

Web server

Data
repository

Cache manager

Cache

Update
manager

CGI
PHP
ASP

Cache
hit?

Yes, fetch
from cache

No, fetch from server
and update cache

Log
access

LogHTTP
request

HTTP
reply

Cache invalidation
notifications

Invalidations
repository

Update
applicationsNew modules

Configuration

Fig. 1. Architecture for maintaining a cache of dynamic content

Upon start-up, the Cache Manager reads its configuration, which is derived from
the class-based cache management for dynamic web content, described in [23]. Under
this scheme, web pages are grouped into classes, based on page URLs and client
information. The URL information used for classifying pages includes network paths,
program names and parameters. Client information may complement the specification
of a class and include cookies, client domain names or IPs, browser information (e.g.
HTTP_ACCEPT_ENCODING, HTTP_USER_AGENT), or any other piece of information
designated in the HTTP protocol for the server-side program environment. Figure 2
presents example cache specifications for three classes. We note that our approach
does not use the Dependence specification described in [23], since a different
mechanism (see section 4) is used for change tracking and page invalidations.

URL-Class:
http://www.example.org/php/comments.php?op=submit
Cachable: No
Server: local-www-srv:80

URL-Class: http://www.example.org/php/search.php
Cachable: no
Server: local-www-srv:80

URL-Class: http://www.example.org/php
Cachable: yes
Page-ID:_cookie:LANGUAGE
Server: local-www-srv:80

Fig. 2. Cache specification for two document classes

The first class designates that pages generated by server-side program (SSP)
comments.php with the parameter op set to the value submit are not eligible for
caching (due to side effects of execution); the second class denotes that search results
are not cacheable either (due to the small probability that two users will use the same

http://www.example.org/php/comments.php?op=submit
http://www.example.org/php/search.php
http://www.example.org/php

search text). The third class defines that pages generated by SSPs within the php
catalogue are cacheable, but additionally states that the page contents depend on the
value of the LANGUAGE cookie. In all three cases, the Server lines (an addition to the
specifications presented in [23]) designate that the web server producing these pages
is named local-www-srv and may be contacted at port 80. The name local-www-srv
need not be known to the clients, since only the Cache Manager uses it.

After initialisation, the Cache Manager awaits for web requests. For each request,
it checks whether the requested page has been cached or not. A page, in the context of
dynamic content, is identified by the URL, the parameters passed to the SSP and any
cookies and HTTP variables pertaining to the class in which the request falls. If the
page is found in the cache, it is returned to the client immediately. If not, the Cache
Manager requests the page from the web server and forwards the results to the client.
In order to rapidly determine if the target page exists in the cache, the Cache Manager
employs the algorithm described in [16], which computes an MD5 checksum of the
requested URL and matches it against the checksums of the cached pages.

Subsequently, the Cache Manager inspects its configuration to determine whether
the page just served is eligible for caching. In this case, the page is placed in the
cache, so that it becomes available for later requests. If the page is not eligible for
caching, the results returned to the client are simply dropped. In the case that the
cache is full and a page needs to be inserted to it, the Cache Manager removes some
previously cached pages from the cache to make space available for the new page.
The page(s) that will be removed are determined using the Greedy Dual-Size [5]
algorithm, and more specifically the variation aiming to maximize the hit ratio, since
it has been found to achieve superior performance, compared to other algorithms
within the context of web caching [2].

The Cache Manager cooperates with the Update Manager module, described in
section 4, to guarantee that the pages sent to the clients are not outdated, due to
changes in the data or the server-side programs that generate the pages.

Handling Data and Program Changes

Pages generated by SSPs and stored within the cache may become obsolete, since the
underlying data, or even the server-side programs themselves may be modified. In
these cases, the affected pages in the cache must be located and either be removed, or
re-generated. The responsibility for update tracking is assigned to the Update
Manager, which is a distinct software module that may be run on the same machine
as the cache manager or on a different one. The Update Manager monitors the
invalidations repository, to locate patterns describing the pages that have become
obsolete. Each such pattern contains the following information:
1. A designation of the program(s) that have generated the affected pages.
2. The parameters and the respective values that must match the server-side

program’s invocation data, so as to consider the page invalid.
Figure 3 presents some examples of invalidation patterns.

Each invalidation pattern is complemented with a criticality designation, which
draws values from the domain {hard, soft}. A value of soft indicates that the outdated

version of the page may be used as a reply to the requesting client, in the event of high
server load, whereas a hard criticality designation states that sending outdated pages
is unacceptable, and the respective cached pages should be invalidated immediately.
Updates having a soft criticality designation are assigned to a low-priority thread of
the Cache Manager, which uses idle CPU cycles to refresh outdated pages.
(Path, Parameters) Remarks
(“http://www.example.org/categories.php”,

“catid=2”)
All pages generated by categories.php with
the parameter catid equal to 2, regardless of
the values of other parameters or cookies.

 (“http://www.example.org/admin/*”, “”) All pages generated by any program in the
admin directory, regardless of parameters.

 (“http://www.example.org/index.php”,
“__cookie:LANGUAGE=en”)

All pages generated by index.php with the
cookie LANGUAGE set to the value en.

Fig. 3. Examples of patterns within the invalidations repository

Once the Update Manager detects a new invalidation entry within the invalidations
repository, it reads the respective data and propagates them to the Cache Manager, so
that the respective page invalidations or regenerations may be performed. The Cache
Manager communicates with the Update Manager using a private protocol, which is
not needed to be known to the applications that modify the data repository, contrary to
the practice employed in [23] and [10]. These applications need only insert the
corresponding invalidation entries to the invalidations repository (which may be a
database table, an operating system file etc.), using familiar programming techniques.

Using an additional repository for registration of invalidation patterns and the
introduction of the update manager were design decisions, aiming to relieve the
update application programmers from using proprietary APIs, the need to know
details about the number of Cache Managers and their addresses, or handling
communication errors. Furthermore, using a standard information repository for
invalidations, such as a database, facilitates interventions from the Web
administrators that could not be foreseen at the time of update application
development. For instance, in order to force the invalidation of all pages generated by
the /categories.php script (e.g. due to changes in the script), the Web administrator
may append the respective entry to the invalidations repository by using e.g. SQL:

insert into cache_invalidations(script_path, params, criticality)
values('http://www.example.org/categories.php', '', 'hard');

If invalidation information were communicated to the cache manager through an
API, it would be necessary to write compile and execute a –simple– program that
would arrange for sending the respective information. Moreover, invalidation records
use a format very familiar to web programmers and administrators; therefore it is
expected that web site maintenance will run more smoothly, compared to cases that
employ proprietary protocols or specifications.

Finally, if the data repository supports active features, application programmers
may be totally relieved from the burden of registering the invalidation patterns within
the invalidations repository. This approach is outlined in section 4.2.

http://www.example.org/categories.php
http://www.example.org/admin/
http://www.example.org/index.php
http://www.example.org/categories.php

Locating affected pages within the cache

When the Cache Manager receives an invalidation notification, it must locate all
pages matching the patterns for the script path and the parameters and either remove
them from the cache or refresh them (in immediate or deferred mode, as specified by
the criticality designation). Since the model presented in this paper allows for
specifying parameter subsets or wildcards within the script paths, the MD5 checksum
of the URL, stored for the purpose of serving client requests, cannot be used to locate
the affected pages, since hash functions can only be used for full key search [8]. To
avoid scanning the full table of cached pages, which would be expensive, the
following techniques are used, together with the primary MD5 checksum hashing:
1. An additional MD5 checksum is computed on the program path portion of the

URL for each page within the cache, and a hash structure is maintained based on
this checksum. This hash structure is used to locate the pages generated by a
specific server-side program, when the script path field of an invalidation entry
does not contain wildcards. For each of these pages, standard substring searching is
used to further filter pages matching the specified parameters, if necessary.

2. A secondary B-tree index is built on the script path field of the cached pages. This
index is used to locate the affected pages when the invalidation entry’s script path
field does contain wildcards. Since the maintenance of this index is more costly
than the maintenance of MD5 hash tables, an administrative option is provided to
disable it; in this case, however, wildcard matching in script paths is not supported.

3. An optimisation hint may be attached to an invalidation entry, specifying that the
page designation is complete, i.e. it includes all parameters to the SSP. In this case,
the primary MD5-checksum hashing algorithm may be used to locate the single
page that has become obsolete, minimizing thus housekeeping overheads.

Separating invalidations from update applications

In the approaches presented in the literature insofar, application programs that
modify the data repository need to notify in some way the Cache Managers regarding
the pages that have become obsolete. This is a burden for programmers and
introduces another source of application maintenance activities, when the mapping
between data items and dependent web pages changes. In these cases, all programs
modifying the respective data need to be tracked and updated.

The approach presented in this paper allows for exploitation of active features
offered by the data repository to relieve programmers from the extra coding and
maintenance. Such active features may be found in many DBMSs, e.g. triggers in
Oracle, rules in INGRES etc. These active features may be used to implement
automatic entry addition to the invalidation repository when the underlying data
changes. For instance, the PL/SQL code

create trigger category_invalidations
after insert or delete on stories for each row begin
insert into cache_invalidations (script_path, params, criticality)
values('http://www.example.org/categories.php', 'catid=' || catid,

'hard');
end;

http://www.example.org/categories.php

arranges for automatically inserting into the cache invalidations repository the
appropriate record for invalidating the pages generated by the script categories.php,
when its catid (category id) parameter matches the category id of an inserted or
deleted item in the stories table.

Similar results may be obtained by using stored procedures within the information
repository, in order to modify the data, instead of direct SQL (or other information
repository-dependent) statements. For instance, the addition of a story may be
performed using the statement

exec procedure insert_story(800, 3, 'New story', 'Very interesting');

where insert_story may be defined as
create procedure insert_story(sid number, cid number, title varchar2,
body varchar2) as begin
insert into stories values(sid, cid, title, body);
insert into cache_invalidations(script_path, params, criticality)
values(' http://www.example.org/categories.php', 'catid=' || cid,

'hard');
end;

Both the trigger-based and the stored procedure-based techniques are feasible
because invalidations are stored within a data repository, instead of being
communicated to the Cache Manager via a custom interface, which –in general-
cannot be directly used from within a database. Moreover, both cases present the
additional advantage of centralising the mapping between updated data and affected
pages; thus when this mapping changes, only a single modification is required (within
the database schema), rather than one update for each affected application.

Architecture Scalability and Resource Utilisation

When the number of requests to the web site increases, the cache manager may
become the performance bottleneck of the installation. This may be tackled by using
an array of cache managers rather than a single one, as depicted in Figure 4. Client
requests may be distributed amongst the servers within the array using any
appropriate technique (e.g. clustering, round-robin DNS, or specialised hardware [7]).

In this configuration, cache managers maintain independent caches, serving client
requests using the algorithm described in section 3. Although in some cases it would
be preferable for a Cache Manager to fetch a pre-generated page from a sibling cache,
rather than from the web server, the current implementation does not support ICP
[19], cache digests [14], or any protocol for communication between cache servers.

When updates to underlying data take place, the invalidations repository is
populated with the appropriate entries, as presented in section 4. The Update Manager
monitors new additions and arranges for communicating the relevant data to the
Cache Managers, whose addresses are registered within the Update Manager’s
configuration file. Each Cache Manager proceeds then to the invalidation of the
affected pages, following the algorithm described in section 4.1. The Update Manager
is the sole responsible for handling communication errors, retransmissions to failed
nodes etc.

http://www.example.org/categories.php

Invalidations
repository

Update
manager

Cache Manager 1 Cache Manager 2 ...

Data repository/
update applications

Cache Manager n

Invalidation
notifications

Fig. 4. Load balancing through introduction of multiple caching servers

We would like to note that although the web server, the Cache Manager and the
Update Manager appear as distinct modules in Figure 4, it is possible that two of these
modules (or even all of them) run on the same machine, in order to save resources. In
medium configurations it is expected that only one Cache Manager will be used and
the Update Manager will be hosted in the same machine as the cache manager. In
large installations, the Cache Manager might be placed in a separate machine. Finally,
a single Cache Manager may be used to cache multiple web sites, if this is desirable.

Experiment Results

In order to assess the various aspects of our approach, a number of experiments were
conducted. The experiments were selected so as to vary in different aspects, such as
update frequency, average page size, update propagation criticality and the existence
of personalised pages. For each experiment, stress tests were performed under
different loads, so as to quantify the benefits derived from using the caching scheme.

The first experiment was conducted on a web portal implemented using the PHP-
Nuke system. In this experiment, a number of stories were added daily; when a story
was added, the main page (/index.php) should be refreshed instantly, whereas pages
hosting news falling in specific categories (/categories.php) were updated with softer
time constraints. Personalised pages (implemented via cookies) were not cached, as
log analysis showed that each such page was used only 1.2 times in average.

The second experiment was conducted for a sports site, offering “live” information
about the scores of soccer and basketball games. Pages served from this site were
classified in three categories: (a) a summary page for all soccer games (b) a summary
page for all basketball games (c) one detail page for each match (basketball or
soccer). In this experiment, the soccer summary page was updated once every two
minutes, in average, whereas the basketball summary page was updated constantly as
game scores evolved. Out of these two summary pages, only the first one was cached.
Regarding detail pages, the average update rate for soccer pages was once every
3’:30”, while the corresponding rate for basketball match pages was once every 28”.
Refresh information sent to clients dictated page refreshing every 30” for both soccer
and basketball pages. “Impatient” users, however, often requested page refreshes
every 3”-5”, especially during the last few minutes of games.

Both experiments were conducted using two site configurations. In the first
configuration, a single machine hosted all software modules, i.e. the web server, the
Cache Manager and the Update Manager. In the second configuration, two machines
were used, with the first one running the Cache Manager, and the second one hosting
the Update Manager and the web server. The results from these experiments are
summarised in Figure 5.

Single-server Cache hit ratio Avg. response time reduction
clients 50 250 500 50 250 500
Web portal 62% 73% 78% 61% 72% 67%
Sports site 43% 60% 65% 51% 62% 59%
Dual-server Cache hit ratio Avg. response time reduction
clients 50 250 500 50 250 500
Web portal 62% 73% 78% 59% 70% 76%
Sports site 43% 60% 65% 49% 59% 66%

Fig. 5. Experiment results using a dual-machine configuration

In these results, it is worth noting that in the single-machine configuration,
although the cache hit rate increases when the number of users grows from 250 to
500, the average response time reduction drops. This is due to server saturation, since
the server cannot handle all three tasks under this heavy load. The situation is
remedied when the cache manager is separated from the web server, in the second
configuration, where the load is balanced between the two servers.

Conclusions – Future Work

This paper proposes a caching scheme for dynamic web pages, which isolates the
caching mechanism from the web server. Although this separation duplicates the
parsing of URLs and headers, it presents a number of advantages:
• the caching server can interoperate with any web server, thus no web-server

specific implementations are required
• the two servers (web and caching) may reside on different systems
• any upgrade/modification to any of the servers does not affect the others.

The architecture presented minimises the additional workload for dynamic page
developers, by allowing separation of the rules describing the dependencies between
underlying data and derived pages from the application programs that perform the
data updates. These dependencies can be stored within the database schema, in a
centralised fashion, leaving update applications intact. This requirement can be easily
met when the database offers triggering mechanisms, or stored procedures.

The caching scheme was tested in several cases, proving quite efficient and well
behaved in cases of information repository or server-side program updates. The
results showed that the proposed caching mechanism offers improved network
performance with minimum CPU overhead. It should, however, be noted that the
results are dependent on the nature of the dynamic pages. If the underlying data
change too often (e.g. stock exchange), the caching scheme will probably not improve

the web site performance. Further research is underway to form a set of guidelines
and tools to aid developers in assessing the suitability of dynamic content for caching.

Future work will focus on supporting cache population using anticipatory rules, to
cater for expected access patterns over time periods, and extending cache techniques
to the client side, so as to limit the required network traffic. Cooperation between
sibling caches, and its effect on performance is another area that will be investigated.

References

1. Allaire Corporation: Cold Fusion White Paper. Version 4.0. (1999).
http://www.allaire.com

2. Arlitt M., Friedrich R., Jin T.: Performance Evaluation of Web Proxy Cache Replacement
Policies. Proceedings of the 10th International Conference, Tools ’98, Palma de Mallorca,
Spain, (1998) 193-206

3. Atzeni P., Mecca G., Merialdo P.: Design and Maintenance of Data Intensive Web Sites.
Proceedings of the Conference of Extending Database Technology, Valencia, Spain (1998)

4. Cao P., Zhang J., Beach K. Active Cache: Caching Dynamic Contents on the Web.
Proceedings of IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware '98). (1998) 373-388.

5. Cao P., Irani S.: Cost-Aware WWW Proxy Caching Algorithms. Proceedings of USENIX
Symposium on Internet Technologies and Systems. Monterey, California (1997) 193-206

6. Challenger J., Iyengar A., Dantzig P. A Scalable System for Consistently Caching Dynamic
Web Data. Proceedings of the IEEE Infocom 99 Conference. New York, (1999)

7. Coyote Point Systems Inc. The Equalizer Network Appliance. Available through
http://www.coyotepoint.com/equalizer.shtml

8. Elmarsi R., Navathe S. Fundamentals of Database Systems. Benjamin/Cummings
Publishing Company Inc. (1994)

9. D. Florescu et al. Run-Time Management of Data Intensive Web-sites. Proceedings of the
Workshop of Web and Databases (WebDB 99), Philadelphia, Pensylvania. (1999)

10. Iyengar A., Challenger J. Improving Web Server Performance by Caching Dynamic Data.
Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey,
California (1997).

11. Labrinidis A., Roussopoulos N. On the Materialization of Web Views. Proceedings of the
Workshop of Web and Databases (WebDB 99), Philadelphia, Pensylvania (1999)

12. Pröll B. et al. Ready for Prime-Time – Pre-Generation of WEB Pages in TIScover.
Proceedings of the Workshop of Web and Databases, Philadelphia, Pensylvania (1999)

13. Sindoni G. Incremental Maintenance of Hypertext Views. Proceedings of the Workshop of
Web and Databases (1998)

14. Hamilton M., Rousskov A., Wessels D. Cache Digest specification - version 5. Available
through http://www.squid-cache.org/CacheDigest/cache-digest-v5.txt

15. Wang J. A Survey of Web Caching Schemes for the Internet. ACM Computer
Communication Review, (29) (1999) 36--46

16. Wessels D. Squid Internet Object Cache. http://www.squid-cache.org
17. Wessels D., Claffy K. Internet Cache Protocol (ICP), version 2 – RFC 2186. Available

through http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2186.html
18. XCache Technologies, XCache Product Information. http://www.xbuilder.net/home/
19. Zhu H., Yang T. Class-based Cache Management for Dynamic Web Content. IEEE

INFOCOM, 2001.

http://www.allaire.com
http://www.coyotepoint.com/equalizer.shtml
http://www.squid-cache.org/CacheDigest/cache-digest-v5.txt
http://www.squid-cache.org
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2186.html
http://www.xbuilder.net/home/

