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Abstract: In the past years, a number of 
implementations of temporal DBMSs has been reported. 
Most of these implementations share a common feature, 
which is that they have been built as an extension to a 
snapshot DBMS. In this paper, we present three 
alternative design approaches that can be used for 
extending a snapshot DBMS to support temporal data, 
and evaluate the suitability of each approach, with 
respect to a number of design objectives. 

1. Introduction 

Temporal DBMSs extend the capabilities of snapshot 
DBMSs by supporting at least one temporal dimension 
([16]), thus temporal DBMSs can be considered to be a 
superset of snapshot DBMSs. Bearing this in mind, a 
typical approach to implement a temporal DBMS, is to 
start with an existing snapshot DBMS and enhance it 
with data types for time representation (e.g. intervals and 
temporal elements) and temporal operations (e.g. 
coalescing). This approach has the advantages of 
reducing to a certain extent the amount of code which 
must be written, and allowing the implementor to focus 
only on the problems concerning the temporal aspects of 
data. These facts have been adopted by researchers: in 
[3], nine temporal database system implementations are 
reported1, out of which only two (HDBMS and TDBMS) 
have not been based on a snapshot DBMS (notably, 
however, HDBMS uses BTrieve/Objectrieve for data 
storage and retrieval). The remaining seven 
implementations (GCH-OSQL [5], Calanda [15], 
Chronolog [2], TempCase [19], TempIS [1], TimeDB [4], 
and VT-SQL [14]) have been based on snapshot DBMSs. 

However, diverse design approaches have been 
followed in these implementations. In some of them, 
temporal features are integrated within the DBMS kernel, 
delivering a new, enhanced system, whereas in other 
implementations, temporal functionality is offered by 

                                                        
1 TimeIt and TimeMultiCal are also included in this report but are not 
considered to be DBMSs since they do not provide persistence. 

pieces of software which act as client applications to the 
snapshot DBMS. In this paper we discuss three 
approaches for adding temporal functionality to a 
snapshot DBMS, and assess each approach with respect 
to the extent that it meets a number of criteria. This 
survey intends to aid designers of future temporal 
database systems to make the most appropriate selection 
of their DBMS architecture, considering the goals of their 
implementation. 

The remnant of this paper is organised as follows: 
section 2 presents the design objectives, i.e. the criteria 
which will be used to evaluate each design approach. 
Section 3 presents alternative solutions of designing a 
temporal DBMS, and section 4 evaluates the design 
approaches, with respect to the criteria stated in section 2. 
Finally, in section 5, conclusions are drawn. 

2. Design Objectives 

The suitability of each design approach, for extending 
snapshot DBMSs to include temporal functionality, will 
be measured against certain criteria, the design 
objectives. The design objectives which will be 
considered in this paper are defined in the following 
paragraphs. 
1. Complete temporal functionality . Temporal data types 

(e.g. intervals) and operations (e.g. coalescing, 
temporal union etc.) should be first class citizens 
within the extended DBMS, i.e. the temporal DBMS 
should allow their usage wherever an analogous 
snapshot DBMS data type or operation can be used. 

2. Full snapshot DBMS compatibility. The extended 
DBMS must allow for the creation and manipulation 
of snapshot data stores (relations, in the context of 
relational DBMSs), in the same way that its snapshot 
version does. 

3. Implementability. The proposed solution should be 
implementable, considering the tools which are at the 
developer’s disposal. In particular, access to the 
underlying DBMSs source code should not be a 
prerequisite, since it is a hard requirement to satisfy. 



4. Exploitation of facilities offered by the snapshot 
DBMS. It is desirable that facilities offered by the 
snapshot DBMS, such as join processing algorithms, 
indexing mechanisms (for non temporal data) etc. are 
used in the temporal DBMS, without needing to be 
recoded or modified in any way. 

5. Simplicity of implementation . More complex solutions 
are weaker candidates for implementations. 
Additionally, complex solutions are prone to be less 
efficient and their code is not easily maintainable. 

6. Data integrity. Commercial DBMSs provide a data 
manipulation language (e.g. SQL) as the sole means 
for accessing the stored data, using the operating 
system-level protection mechanisms (file or raw disk 
partition access rights) to prevent users from 
modifying directly the disk files (or partitions) on 
which data are stored. Similarly, the proposed 
solution should provide a mechanism to prohibit users 
from using the snapshot data manipulation language 
to modify temporal persistent objects, since such 
modifications might result to illegal data store states. 
Figure 1 presents an example in which modifying a 
valid time relation through SQL, leads it to an illegal 
state (assuming that an employee has only one salary 
at any time point). 

7. Performance. The proposed solution should deliver 
high performance, using optimisation techniques, 
wherever possible, and limiting disk input/output and 
interprocess communication to the minimum 
necessary degree. No overheads should be imposed to 
accesses to snapshot data stores. Finally, operation 
repetition across different system components should 
be avoided (e.g. each statement should be parsed only 
once). 

8. Resource consumption. The proposed system should 
consume as little system resources as possible. In this 
paper, memory and interprocess communication 
resources will be accounted for. 

9. Portability across hardware/software platforms. The 
proposed solution should not be tightly bound to 
specific features offered by the hardware platform or 
the underlying DBMS. 

10. Additional features. It is desirable for the proposed 
system to support a number of non-temporal features 
offered by the underlying snapshot DBMS, such as 
transaction management, concurrency control, crash 
recovery and language extensions. 

3. The Design Approaches 

Three design approaches are identified in this paper for 
extending existing DBMSs to include support for 
temporal data and operations. The design approaches are 
described in sections 3.1 through 3.3. Section 4 provides 
a critical evaluation of these approaches. 

3.1 Integration of Temporal Functionality in the 
Snapshot DBMS 

The first design approach is to integrate temporal support 
into the underlying snapshot DBMS, as illustrated in 
figure 2. This means that the following extensions/ 
modifications should be built into the snapshot DBMS: 
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Figure 2 - Temporal functionality is built into the 

DBMS kernel 
1. the appropriate data types (time points, time intervals, 

temporal elements) must be defined, and their storage 
structure determined. The kernel should provide 
conversions between the textual representations, used 
by applications and users to represent these data types 
and the internal format, used by the DBMS to store 
the data to the disks. 

2. the semantical analysis module must be extended to 
determine whether each operation applies to a 
snapshot data store or a data store with temporal 
semantics, and schedule the appropriate actions (e.g. 
coalescing, during data insertion or update, applies 

UPDATE Salary Set EmpId = 'e0001' WHERE EmpId = 'e0002'
EmpId Salary Period EmpId Salary Period
e0001 2000 91-93 à e0001 2000 91-93
e0001 2400 94-95 e0001 2400 94-95
e0002 2600 92-94 e0001 2600 92-94
Figure 1 - Execution of a statement by a snapshot
DBMS leads a valid time table to an illegal state  



only to valid time data stores -when a coalesced 
storage schema is used; primary key violation checks 
are different for temporal and snapshot data stores). 
For object-oriented DBMSs (OO-DBMSs), this is 
equivalent to defining temporal persistence classes 
and providing the appropriate methods for object 
insertion, deletion and modification. 

3. the query execution module must be extended to 
include additional operations for application of 
temporal operations which may be applied during 
query evaluation (e.g. coalescing, temporal 
aggregation). 

4. the snapshot DBMS's DDL and DML parser must be 
modified to recognise the extended syntax used for 
temporal operations. For DBMSs, providing temporal 
functionality without extending the DDL or DML 
language (e.g. OODAPLEX [22]), this modification is 
not necessary. 
Temporal and snapshot applications use a common 

interface library to interact with the temporal DBMS. The 
DBMS interface library provides a collection of host 
language data types, which are used when data are 
transferred from the application to the temporal DBMS, 
or vice versa, together with a set of procedures (or 
methods) which are callable from the host language and 
trigger actions on behalf of the DBMS. It is possible that 
the actual procedure calls are inserted into the code by a 
preprocessor, while the programmer describes the actions 
using a declarative query language (e.g. embedded SQL). 

This design approach has been followed in the 
implementation of TempIS. 

3.2 The Temporal Server approach 

The temporal server approach is an elegant solution, 
which does not modify the snapshot DBMS, but 
introduces an additional entity,  the temporal server. The 
temporal server is logically located between the temporal 
applications and the snapshot DBMS, as depicted in 
figure 3. Applications that access temporal data stores use 
a temporal DBMS interface library, which directs 
requests for data retrieval or modification to the temporal 
server, who is responsible for the following actions: 
1. analyse the requests issued by the applications, 

determining whether they are conferment either to the 
temporal query language or to the snapshot query 
language rules. 

2. intercept references to temporal data types (time 
points, time intervals and temporal elements) which 
are not supported by the snapshot DBMS kernel, and 
provide the appropriate conversions between the 
representations used by the applications and a raw 

data format (e.g. string) which must be used to store 
the data into the snapshot DBMS. 

3. map the temporal operations to series of snapshot 
operations, and arrange for the execution of these 
operations. This involves retrieval, processing and 
storage of data to the snapshot DBMS, and 
forwarding of the final results to the application. The 
temporal server interacts with the snapshot DBMS, 
using the interface library provided by the snapshot 
DBMS. 
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Figure 3 - The temporal server approach 

Applications which require data from snapshot data 
stores only, may connect directly to the snapshot DBMS, 
using the interface library provided by the snapshot 
DBMS. If such a connection is established, the 
application may not use any extensions provided by the 
temporal server (e.g. query language syntactical or 
semantical enhancements), since they are not supported 
by the snapshot DBMS. 

Insofar, no implementations using this design 
approach have been reported. 

3.3 Building temporal support into the client 
application 

The third approach is to build directly the support for 
temporal operations into the client application, as 
illustrated in figure 4. Temporal applications direct their 
requests for temporal data store access to a temporal 



functionality interface library , which is linked into the 
application's executable code. The temporal functionality 
interface library is responsible for provision of 
appropriate conversions for data types not directly 
supported by the snapshot DBMS, request analysis, 
mapping of temporal operations to series of snapshot 
operations and execution of the appropriate actions, in 
order to complete the request. The temporal functionality 
interface library interacts with the interface library 
provided by the snapshot DBMS, in order to fetch data 
from the snapshot DBMS, or store data in it. Since the 
snapshot DBMS interface library is built into the 
application code, the application may forward requests to 
it directly, bypassing the temporal functionality interface 
library. 

Applications accessing snapshot data stores only, do 
not need the temporal functionality interface library: only 
the interface library provided by the snapshot DBMS 
needs to be linked into the final executable file. In this 
case, the extensions offered by the temporal functionality 
interface library are not available to the application. 
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Figure 4 - Temporal functionality built into the 

client application 
This design approach has been followed in the 

implementation of Arcadia GCH-OSQL, Calanda, 
ChronoLog, TempCase, TimeDB and VT-SQL2. 

                                                        
2 Note that a monitor application, which accepts temporal queries, 
evaluates them and prints out the results, may be used as a temporal server 
by some other application (e.g. TempCase operates on top of VT-SQL), 
thus the distinction between a temporal server and a client application is not 
clear-cut. We classify under client application all pieces of software that 
can be used interactively by the end user. 

4. Evaluation of the Design Approaches 

In this section we evaluate the degree to which each 
design approach fulfils the objectives defined in section 2. 

4.1 Complete temporal functionality 

It may be argued that the level of temporal functionality 
offered by the extended DBMS is independent of the 
design approach that will be taken. However, 
implementation considerations may lead designers to 
limit the amount of temporal functionality offered by the 
extended DBMS. For example, consider the following 
TSQL2 query, which retrieves the names of employees 
who have worked for two years under the management of 
either e1 or e2. 

SELECT EmpId, EmpName FROM EmployeeData 
WHERE EmpId IN (SELECT SNAPSHOT E.EmpId 

FROM EmpMgr(EmpId) AS E, E(MgrId) AS F 
WHERE F.MgrId = 'e1' OR F.MgrId = 'e2' AND 

CAST (E) AS INTERVAL YEAR > 
INTERVAL '2' YEAR) 

In order to evaluate this query, a temporal DBMS will 
formulate a query execution plan (QEP), similar to the 
one illustrated in figure 5. 
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Figure 5 - Query execution plan 

The ability to follow the QEP may depend on the 
design approach used for the temporal DBMS, as follows: 
if temporal support is built directly into the snapshot 
DBMS kernel, then all operations (filtering, 
grouping/filtering and semi-join) are available to the 
execution module, so the query may be evaluated. 
However, if temporal support is implemented outside the 
snapshot DBMS kernel, then, it is clear that data must be 
moved to the module implementing the temporal 
extensions (either the temporal server or the temporal 
functionality interface library in the client application), in 
order to execute the grouping/filtering operation. The key 
question is how the semi-join will be evaluated, with two 
possible alternatives: 



1. the module implementing the temporal extensions is 
able to execute the semi-join, so the two final 
operations are performed within that module, as 
illustrated in figure 6. However, other queries may 
require sorting, aggregation, anti-join, or any other 
snapshot operation to be performed after some 
temporal operation; but if we build algorithms for 
every snapshot operation within the module 
implementing the temporal extensions, we have 
effectively implemented a complete temporal DBMS, 
apart from the physical storage module. This is clearly 
undesirable, since the reason for extending an existing 
DBMS rather than building one anew, was to avoid 
this piece of work. 
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 Figure 6 - QEP execution, when the temporal 

module implements snapshot operations 
2. the module implementing the temporal extensions is 

not able to evaluate the semi-join or any other 
snapshot operation; rather, after performing the 
grouping/filtering operation, data are stored back in 
some temporary data store within the snapshot 
DBMS, and the snapshot DBMS's kernel evaluates the 
semi-join, in order to produce the final result, as 
illustrated in figure 7. This alternative is more easily 
implementable than the previous one, but presents 
serious performance problems, since data transfers 
between the snapshot DBMS kernel and the module 
implementing the temporal extensions are necessary, 
and a holding point is introduced: the evaluation of 
the semi-join may not start before all the results of the 
grouping/filtering operation have been stored into the 
temporal data store, whereas in “normal” execution 
conditions, the evaluation may start as soon as the 
first tuple (or block of tuples) of the grouping/filtering 
operation's output is available. Additional storage 
space is also needed, to accommodate the temporary 
data store. 
Considering the problems in both alternatives, the 

designers of the temporal extension may opt for some 
limitation to the set of temporal queries that can be 
answered by the temporal DBMS; a likely choice may be 
that the temporal DBMS will be able to evaluate only 
queries which satisfy the following two conditions: 

Client

Temporal module Snapshot DBMS kernel

Read Tmp

Write Tmp

Read
EmpMgr

Read
EmpData

Semi-join
EmpMgr.EmpId

= Tmp.EmpId

Grouping on EmpId
Filtering with
'duration' > 2

Filtering
MgrId = 'e1' OR

MgrId = 'e2'
D

i

s

k

 
Figure 7 - QEP execution, when the temporal module 

does not implement snapshot operations 
1. the QEP can be partitioned in two sets, the first one 

including the snapshot operations and the second one 
comprising of the temporal operations. 

2. there exists a valid rearrangement of the QEP, 
equivalent to the initial one, such that no operation in 
the second set is followed by an operation belonging 
to the first set. 

4.2 Full snapshot DBMS compatibility 

Full snapshot DBMS compatibility is an easy requirement 
to satisfy, since all the algorithms needed to provide the 
snapshot operations already exist within the snapshot 
DBMS. Full snapshot DBMS compatibility is guaranteed 
if the following conditions are met: 
1. all extensions to the query language come either as 

new statements or as optional clauses within existing 
statements. This guarantees that every statement that 
is syntactically valid in the snapshot query language 
remains valid in the temporal query language. 
Effectively, the temporal query language parser must 
accept all the snapshot query language statements. 

2. the temporal DBMS interface library (or temporal 
functionality interface library, in the 3rd design 
approach) supports all the calls which are provided by 
the snapshot DBMS interface library. This ensures 
that applications can interact with the temporal 
DBMS in the same way they interacted with the 
snapshot DBMS. 

3. if a snapshot data store is accessed through a snapshot 
DBMS interface library procedure call, or via 
execution of a non-extended statement, then the 
results of the access (data store modifications and/or 
returned data) are the same with the results that the 
snapshot DBMS would produce, if it processed the 
same request. This guarantees that the semantics of 
snapshot operations applied on snapshot data stores 
are not modified. 

 Practically, this means that the temporal DBMS 
checks both the query syntax and whether the 
accessed data store is a snapshot or a temporal one, 



before determining the operation semantics and 
formulating the query execution plan. In order to 
distinguish between snapshot and temporal data 
stores, it is required that adequate information is 
stored within a data dictionary, which is either the 
standard data dictionary maintained by the snapshot 
DBMS (extended with the appropriate columns), or a 
new data store. 

4.3 Implementability. 

In general, when extending a DBMS to include temporal 
functionality, the following actions are required: 
1. implement the appropriate data types to represent 

time (time points, time intervals and, possibly, 
temporal elements). 

2. define functions that will operate on the data types 
which are used to represent time (e.g. a function 
accepting an argument of type interval and returning 
its starting point). 

3. implement operations on temporal data stores (e.g. a 
special version of delete for transaction time data 
stores, coalescing, temporal union, etc.). 

4. define syntactical and extensions to the snapshot data 
definition and manipulation language, which invoke 
the temporal operations. 
When extensions are built outside the DBMS kernel, it 

is possible to support all the features listed above, by 
adding suitable code either to the client application or to 
the temporal server. In the following paragraphs, we will 
elaborate on the ability to incorporate support for these 
features directly into the DBMS kernel. Our review will 
cover two classes of database systems, namely relational 
and object-oriented. 

Data types for time representation. All OO-DBMSs 
provide means of extending the built-in object lattice, and 
support lists, facilitating the implementation of the 
temporal element data type. The new data types are first 
class objects, i.e. they have the same functionality with 
the built-in data types. Moreover, object-oriented DBMSs 
allow the programmer to differentiate the internal 
representation (i.e. the actual bytes that are stored on the 
disk) from the external representation of the data type 
(i.e. the form in which the user inputs and sees data), 
permitting thus the usage of a space- and operation-
efficient internal representation, and a customisable, user-
friendly external representation. 

Relational DBMSs are less flexible with supporting 
new data types. Since lists do not fit in the first normal 
form model, temporal elements cannot be stored as an 
atomic data type: normalisation rules ([6]) suggest that an 
additional relation must be used for storing each column 

of type temporal element. For incorporating atomic data 
types, such as interval, various DBMSs3 provide different 
levels of extensibility (in the following we assume that 
the programmer has no access to the DBMS’s source 
code): 
• Ingres offers the Object Manager tool ([8]), which 

allows for the definition of new data types. The user-
defined data types are first level objects and may have 
different external and internal representations. 

• Sybase provides the sp_addatatype stored procedure 
to define a new data type, but only as an alias of a 
built-in data type ([17]). However, it allows a 
validation rule to be bound to the new data type, so it 
can be verified that the data stored to columns of the 
user-defined data type conform to some rules. For 
example, we could define the data type interval with 
granularity of date, represented as (date1, date2) 
using the following command batch: 

 sp_addatatype interval, char(24) 
 sp_createrule interval_rule as 

 substr(@value, 1, 1) = '(' AND 
 substr(@value, 24, 1) = ')' AND 
 substr(@value, 12, 2) = ', ' AND 
 convert(substr(@value, 2, 10), date) < 

 convert(substr(@value, 14, 10), date) 
 sp_bindrule interval_rule, interval 

 Notice that, using this technique, the external 
representation is the same as the internal 
representation and quite inflexible, since it requires 
the user to start the string with a left parenthesis, end 
it with a right one, and separate dates using a comma 
and a space. Additionally, each date must be entered 
using a 10-character string. 

• Oracle does not provide a tool for defining a new data 
type, but allows for a CHECK clause to be included in 
a column definition ([12]). This can be exploited by 
translating the interval data type, when found in a 
CREATE TABLE statement to a CHAR(N) data type, 
with the appropriate validation check. Although this 
approach works, it is as inflexible as the previous one 
and, additionally, system catalogues will report that 
the column’s type is CHAR(N), instead of INTERVAL. 

Functions on the data types representing time. In 
OO-DBMSs, each data type is coupled with its behaviour, 
i.e. a set of procedures and functions (methods, in 
object-oriented terminology), thus the programmer can 

                                                        
3 The list of DBMSs is not exhaustive; it is only intended to outline the 
extensibility capabilities of the relational DBMSs, with respect to adding 
new data types. 
 



define all the functions operating on data types 
representing time. 

Different relational DBMSs, provide different levels of 
ability to define new functions: 
• Ingres offers the Object Manager tool ([8]), which 

allows for the definition of new functions. These 
functions may include type checking and can be used 
in any place that a built-in function is allowed. 

• Oracle supports the package concept ([12]) for 
defining new functions and procedures. Once a 
package is created, the functions and procedures 
defined within it are accessible to all users and 
applications. 

• Sybase does not support any kind of user-defined 
functions. 

Operations on temporal data stores. Temporal data 
stores require special handling, since data insertion and 
update may need to be followed by coalescing (depending 
on whether the data storage model is coalesced or not), 
special forms of statements must be supported (eg. a 
DELETE command containing a VALID PERIOD 
clause, in TSQL2 [20]) and temporal flavours of primary 
keys may need to be considered (e.g. the time point keys 
described in [13]). Additionally, when temporal data are 
retrieved, temporal operations (e.g. coalescing, temporal 
union etc.) may be applied on them. 

None of the relational DBMSs allows for definition or 
customisation of the code which handles data 
modifications. However, most relational DBMSs provide 
triggers that are fired when data stores are modified, and 
some relational DBMSs provide facilities for storing code 
within the database (e.g. Oracle and Sybase allow for 
definitions of procedures within packages ([12]) and 
stored procedures ([17]), respectively). Triggers may be 
used for supporting temporal keys (by attaching them to 
the INSERT and UPDATE events and associating 
appropriate pieces of code) and ensuring a coalesced 
storage schema (although the latter may prove to be very 
tricky, due to chained trigger firing). Procedures may be 
used to implement the special forms of statements, as 
long as the language in which they are coded is flexible 
enough to allow a dynamic WHERE clause. Figure 8 
illustrates examples of using triggers to support primary 
keys and coalesced storage schema (the scheme of table 
Employee is considered to contain columns EmpId and 
Period; no two rows of Employee are allowed to have 
identical values for EmpId and overlapping values for 
Period). 

CREATE TRIGGER Insert_Guard_Employee
BEFORE INSERT ON Employee FOR EACH ROW
WHEN (EXISTS (SELECT * FROM Employee

WHERE new.EmpId =
Employee.EmpId

AND overlap(new.Period,
Employee.Period))

BEGIN
raise_application_error(-5000, "Primary key

violation on table Employee");
END;

CREATE TRIGGER Coalesce_Employee
AFTER INSERT OR UPDATE ON Employee
BEGIN
/* Avoid recursive firing */
ALTER TRIGGER Coalesce_Employee DISABLE;
/* Code for coalescing table Employee */
/* Reenable trigger. */
ALTER TRIGGER Coalesce_Employee ENABLE;
END;  
Figure 8 - Using triggers to support temporal 

operations 
Whenever a temporal table is created, these triggers 

and procedures must be automatically generated; this can 
be handled either by an external temporal module (the 
temporal server or the temporal functionality interface 
library) or by a special procedure, which is specifically 
used for creating temporal tables. Unfortunately, this 
approach presents the following problems: 
1. triggers have been designed to tackle a different set of 

problems, such as enforcing referential integrity or 
appending a record to a log, when some condition is 
met. Using triggers to support a coalesced storage 
scheme is not a normal choice and may introduce 
conflicts with other user-defined triggers. 
Additionally, the temporal module must provide 
security mechanisms, to ensure that the triggers 
enforcing the temporal semantics are not modified by 
the user. 

2. both triggers and procedures are of static nature (i.e. 
they operate on tables with a specific schema), thus 
different pieces of code must be assigned to 
triggers/procedures operating on different tables. 
Consequently, the temporal module must be able to 
generate automatically the pieces of code which will 
be associated with the triggers/procedures of each 
table. 

3. as each temporal table requires its own set of 
procedures and triggers, the amount of code stored in 
the database increases significantly. This is 
undesirable both in terms of space and administrative 
overhead, on behalf of the DBMS, which may lead to 
degraded performance. 

4. since the code is static, it is difficult to use 
optimisation techniques. 

5. if no external temporal module is used, then users 
should be aware of the special procedures which are 



used for temporal table creation and invocation of 
special forms of statements. This is undesirable since 
it leads to loss of uniformity (some operations are 
performed via statements, while others are initiated 
through procedure calls). 
Retrieval queries involving temporal operations, such 

as coalescing, cannot be supported using these 
mechanisms. Temporal operations are applied on 
arbitrary relation schemata and thus cannot be handled by 
static code. Additionally, procedures are not generally 
allowed to return set-type results (i.e. relations), while 
triggers do not return data and may not be associated with 
data retrievals. 

For these reasons, when building temporal extensions 
to a relational DBMS (having no access to the kernel 
source code) it is preferable to implement the operations 
on temporal data stores outside the DBMS kernel. 

If an OO-DBMS is used, temporal operations in 
retrieval queries can be mapped to calls to methods which 
accept set-type arguments and yield set-type results. The 
code handling data store modifications can be also be 
stored within the DBMS kernel, in the form of general-
purpose procedures ([7]) or methods of specific classes. 
The Multimedia Information Manager (MIM) used in 
ORION ([9]) is a good example of the capabilities of 
OO-DBMSs in handling data with specific data storage 
requirements. Admittedly, not all OO-DBMSs are as 
flexible as ORION: there is no obvious way to implement 
an analogous mechanism in IRIS, while in O2 the 
O2Engine layer ([11]) has to be extended (or replaced), 
which is a more difficult task than adding a few classes. 

Extending the data definition and manipulation 
language. This feature is not supported by any DBMS; in 
order to extend the DDL or the DML, the programmer 
must either have access to the DBMS source or the 
extensions must be built outside the DBMS kernel. 
However, with OO-DBMSs, a significant part of the 
temporal language functionality may be supported by 
methods, thus reducing the need to extend the language 
itself. 

4.4 Exploitation of facilities offered by the 
snapshot DBMS. 

If the temporal extensions are built into the snapshot 
DBMS kernel, then the temporal features will coexist 
with the snapshot mechanisms that are provided by the 
snapshot DBMS, and the execution procedure may select 
the most appropriate algorithm for each operation. If, 
however, temporal support is implemented outside of the 
DBMS kernel, some operations may need to be recoded, 

in order to provide complete functionality as shown in 
section 4.1. 

4.5 Simplicity of implementation. 

Simplicity of implementation is a very important factor, 
not only because less coding effort is required, but 
additionally the final product will be more stable, error-
free and maintainable. Simplicity of implementation is 
affected by a number of factors: 
1. level of programming: writing low-level, kernel-

specific code is generally a more complex task than 
programming in a high-level language, say C, using 
embedded SQL to interact with the DBMS. 

2. availability of debugging tools . If the extensions are 
built outside the snapshot DBMS kernel (either using 
the temporal server approach or building temporal 
support into the client application), standard 
debugging tools may be used in order to trace the 
erroneous spots, while the snapshot DBMS can be 
used to monitor changes to the database state. If, 
however, the extensions are integrated into the DBMS 
kernel, debugging is more cumbersome, and coding 
errors may be more disastrous, since they may result 
to corruption of data stores and/or “hanging” of the 
DBMS. 

3. amount of code that must be written. As already stated 
in section 4.4, implementing the extensions outside of 
the DBMS kernel may require recoding of a number 
of snapshot operations, increasing the bulk of code 
that must be written. 

4. special techniques that must be employed.  The 
temporal server approach introduces another level of 
complexity, because fairness and minimisation of the 
average and weighted request turnaround time ([10]) 
must be pursued. For example, consider that two 
temporal applications TA1 and TA2 are 
simultaneously connected to the temporal server 
depicted in figure 3, issuing the following queries, 
respectively: 

 Q1: SELECT * 
 FROM BigDataStore(Period), BigDataStore2(Period) 

 Q2: SELECT * FROM SmallDataStore 

 Assuming that Q1 is issued right before Q2, if the 
temporal server evaluates queries sequentially, then 
the request issued by TA2 (Q2) cannot be processed 
before Q1 is evaluated. This will lead to an 
unacceptable delay for TA2, indicating that sequential 
processing is not an appropriate approach for the 
temporal server. A more suitable approach is to 
interleave the execution of the queries, by using some 
preemptive scheduling technique with time quotas 



(e.g. round robin) or by using lightweight processes 
(or threads-[18]) within the temporal server, and 
assigning each incoming connection to a different 
thread. Both of these approaches increase the 
complexity of the temporal server. An alternative 
solution, would be to use one temporal server per 
application connection, and leave the process 
switching and fairness aspects to the operating 
system.  

 Note that these techniques need not be employed if 
temporal support is integrated either in the snapshot 
DBMS kernel or in the client application: in the 
former case, the mechanisms for query execution 
interleaving which are built in the snapshot DBMS 
can be exploited, while in the latter case we can 
identify two phases in query execution, the snapshot 
phase (executed within the snapshot DBMS kernel) 
and the temporal phase (executed within the temporal 
application). The snapshot DBMS will arrange for 
execution interleaving for the first phase of the 
queries, while the operating system is responsible for 
allocating the CPU to the temporal applications, 
during the execution of the second phase of the 
queries. 

4.6 Data integrity. 

Data integrity is jeopardised if the pieces of code which 
handle modifications to temporal data stores can be 
bypassed, and data stores are modified using the snapshot 
DBMS data manipulation language. When this code has 
been stored within the DBMS, three cases can be 
identified: 
• the source code is available, thus the extensions are 

hard-coded within the kernel and cannot be bypassed; 
in this case, data integrity is guaranteed. 

• modifications are monitored by triggers that cannot be 
disabled or performed through class methods which 
cannot be overridden; no illegal modifications are 
possible in this case. 

• modifications are performed through general-purpose 
procedures; in this case it cannot be guaranteed that 
the user will invoke the appropriate procedure, instead 
of directly modifying the data store using the snapshot 
DBMS’s DML, and additional security measures are 
called for. 
If the code handling modifications to temporal data 

stores is stored outside of the DBMS kernel (within the 
temporal server or the temporal functionality library), 
then users must be prevented from connecting directly to 
the snapshot DBMS and using it to modify data stores 
with temporal semantics, as such modifications may lead 

the data stores to inconsistent states (see figure 1). The 
temporal server approach can incorporate a protection 
scheme, outlined below: 
1. for each user of the temporal DBMS, two user ids are 

created at the snapshot DBMS level: an external user 
id and a shadow user id. The mappings between the 
external user ids and the shadow user ids are 
maintained either in a table within the snapshot DBMS 
or in an operating system file; in both cases, the 
repository is only accessible to the snapshot DBMS 
administrator. Only the external user id, along with the 
password, is disclosed to the user. 

2. if a user must access a snapshot database (i.e. a 
database consisting only of snapshot data stores), then 
access to that database is granted to the external user 
id; if, however, access to a temporal database is 
required (i.e. a database containing at least one 
temporal table), the database administrator grants 
access to the shadow user id. 

3. when the temporal server receives a request for 
connection to a temporal database, it maps the external 
user id that the user provided to the shadow user id, 
using the repository (the temporal server must run 
under the database administrator’s user id, in order to 
be able to perform this mapping), and opens a 
connection to the database using the shadow user id. 
Under this scheme, the user can use a direct 

connection to the snapshot DBMS, in order to access 
snapshot databases. However, the user cannot access 
directly temporal databases, since the external user id, is 
not authorised to use any of these databases. Temporal 
databases may be accessed through the temporal server 
only. 

Note that this approach cannot be used when temporal 
support has been built into the client application for two 
reasons: 
1. the temporal server runs under the database 

administrator’s user id, in order to be able to access 
the repository in which shadow-to-external user id 
mappings are maintained. Allowing any client 
application to run under this user id is extremely 
dangerous for the security and integrity of the 
databases. 

2. since a connection between the client application and 
the snapshot DBMS will be open, the user can bypass 
the temporal functionality interface library and 
forward directly DML statements to the snapshot 
DBMS, through the snapshot DBMS interface library. 

4.7 Performance. 

Building the temporal extensions directly into the 
snapshot DBMS kernel is expected to deliver the highest 



performance among the three approaches. Statements are 
parsed only once, by the DBMS parser, and all operations 
are performed within the DBMS kernel, so no extraneous 
process switching between the DBMS kernel and the 
application is introduced. No additional operations are 
performed when a snapshot database is accessed, whereas 
for temporal databases, the system dictionary must be 
queried to determine whether the accessed tables 
incorporate temporal semantics or not. Data are moved to 
the client application only when the application has 
requested for them, minimising the time spent for 
interprocess communication. 

When temporal support is moved outside the DBMS 
kernel, performance is anticipated to degrade. Statements 
must be parsed twice, since the temporal server (or the 
temporal functionality interface library) must analyse the 
statement, and map it to a series of snapshot query 
language statements. Each snapshot query language 
statement will be subsequently processed by the snapshot 
DBMS parser. During query execution it is possible that 
intermediate results are moved between the temporal 
server (or the temporal functionality interface library) and 
the snapshot DBMS, so process switching and 
interprocess communication overheads are introduced. In 
these cases, the query execution time is also penalised 
with the cost of creating and dropping temporary tables. 
If creation of intermediate tables is required, holding 
points are introduced (i.e. no operation may proceed until 
the temporary table has been created and data insertion 
into it has been completed), thus advantages of pipeline 
execution are lost. 

When snapshot databases are accessed, direct 
connections to the snapshot DBMS may be established, 
thus performance is not penalised. If, however, a 
temporal database is accessed, system dictionary must be 
queried to determine whether the tables involved in some 
operations have temporal semantics or not. 

Finally, if the temporal server approach is followed, 
then data must be moved from the snapshot DBMS kernel 
to the temporal server and subsequently forwarded to the 
client application, increasing the time needed for 
interprocess communication and introducing an 
additional process switch. 

4.8 Resource consumption. 

If temporal support is integrated within the snapshot 
DBMS kernel, then resource consumption increment is 
minimal: only the size of the DBMS kernel changes, to 
accommodate the extra code implementing the temporal 
operations, and the size of the DBMS interface library 
will increase, if extra calls are provided. Only one 
connection needs to be established per application, and 

only final results need to be communicated between the 
extended DBMS kernel and the client application. 

If the temporal server approach is used, then the size 
of the DBMS kernel is not increased, but an additional 
process is introduced, which includes the code 
implementing the temporal operations plus the snapshot 
DBMS interface library. At the side of the client 
application, the snapshot DBMS interface library is 
replaced by the TDBMS interface library. If it is chosen 
to limit the complexity of the temporal server by starting 
one new temporal server process per application 
connection (see section 4.5), then more system memory is 
used up and more administrative overhead will be 
imposed to the operating system, in order to manage the 
new set of processes. In all cases, however, two 
connections must be established per application, the first 
one between the application and the temporal server and 
the second one linking the temporal server to the 
snapshot DBMS. Multiplexing connections between the 
client applications and the temporal server to a smaller 
number of connections between the temporal server and 
the snapshot DBMS is not a good idea, since this would 
render useless the transaction support and locking 
features of the snapshot DBMS. Consider the case that 
two applications A1 and A2 connect to the temporal 
server, and the temporal server chooses to multiplex 
incoming requests through a single connection C. If both 
applications issue the same request, e.g. 

UPDATE Employee SET Salary = Salary * 2 
WHERE EmpId = ‘e1’ 

it is clear that one of them should wait until the other 
commits or aborts. However, since the connections are 
multiplexed, as far as the snapshot DBMS is concerned 
both requests originate from the same source (i.e. the 
connection C), so the first update will not block the 
second. Furthermore, if at a later stage one of the 
applications commits or aborts its transactions, then both 
statements will be committed or aborted, respectively. 
Thus, multiplexing will lead to the need for 
implementing locking and transaction support features 
into the temporal server, increasing its complexity even 
further. Additionally, multiplexing different connections 
between the client applications and the temporal server to 
one connection to the snapshot DBMS makes the fairness 
goal hard to achieve (if some request is pending on a 
connection to the snapshot DBMS then it must be 
completed before another request can be issued through 
the same connection). 

Finally, if temporal support is incorporated within the 
client application, then the size of each client application 
is increased, since the executable will include both the 
temporal functionality interface library and the snapshot 



DBMS interface library, leading thus to increased 
memory consumption. Only one connection needs to be 
established between the client application and the 
snapshot DBMS, and the number of processes within the 
system is not affected. 

4.9 Portability across hardware/software 
platforms. 

Portability of the extensions across hardware and software 
platforms is hard to achieve if the extensions are built 
within the DBMS kernel, since kernel-specific (and 
possibly hardware-specific) features will be used (e.g. 
data formats, inter-module communication mechanisms). 
If the extensions are implemented outside the DBMS 
kernel using industry standards (e.g. embedded SQL for 
communicating with the snapshot DBMS), then porting 
to other hardware/software platforms will require 
minimal changes to the source code, thus the temporal 
server and client integration approaches appear to be 
more portable. 

4.10 Additional features. 

If the temporal extensions are implemented within the 
snapshot DBMS kernel, then the extended DBMS will 
support all the language extensions offered by the 
snapshot DBMS, since both the parser and the execution 
module are already capable of handling them. The 
locking, concurrency control and recovery mechanisms 
offered by the snapshot DBMS will be available to the 
extended DBMS as well. 

In the case that extensions are implemented outside 
the DBMS kernel, the temporal module parser must 
recognise the DBMS’s syntactical extensions and take the 
appropriate actions. The locking, concurrency control and 

recovery mechanisms offered by the snapshot DBMS may 
be also used, although special techniques may need to be 
employed; in [21] such techniques are described. 
According to these techniques, two connections to the 
snapshot DBMS are required per client application, thus 
the overall resource consumption increases even more. 

5. Conclusions 

In this paper we presented three design approaches to the 
implementation of temporal systems on top of existing 
snapshot DBMSs. The degree to which each design 
approach fulfils a number of design objectives was 
examined. Figure 9 summarises the results of our survey. 

The main advantages of the first approach (integrating 
temporal support into the DBMS kernel) are high 
performance, complete temporal functionality and 
exploitation of all the features offered by the snapshot 
DBMS. However, it is not easily implementable without 
access to the source code, and cannot be ported to 
different platforms without major changes. The temporal 
server approach, although elegant, presents some major 
problems, concerning implementation simplicity, 
performance and resource consumption. Finally, 
providing temporal support within the client application 
may deliver acceptable performance, but it is possible that 
some parts of the snapshot DBMS will need to be recoded 
(or complete temporal functionality sacrificed) and data 
integrity is jeopardised. 
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