
A Comparative Study of Temporal DBMS Architectures

Costas Vassilakis, Panagiotis Georgiadis, Anna Sotiropoulou
Department of Informatics, University of Athens

Abstract: In the past years, a number of
implementations of temporal DBMSs has been reported.
Most of these implementations share a common feature,
which is that they have been built as an extension to a
snapshot DBMS. In this paper, we present three
alternative design approaches that can be used for
extending a snapshot DBMS to support temporal data,
and evaluate the suitability of each approach, with
respect to a number of design objectives.

1. Introduction

Temporal DBMSs extend the capabilities of snapshot
DBMSs by supporting at least one temporal dimension
([16]), thus temporal DBMSs can be considered to be a
superset of snapshot DBMSs. Bearing this in mind, a
typical approach to implement a temporal DBMS, is to
start with an existing snapshot DBMS and enhance it
with data types for time representation (e.g. intervals and
temporal elements) and temporal operations (e.g.
coalescing). This approach has the advantages of
reducing to a certain extent the amount of code which
must be written, and allowing the implementor to focus
only on the problems concerning the temporal aspects of
data. These facts have been adopted by researchers: in
[3], nine temporal database system implementations are
reported1, out of which only two (HDBMS and TDBMS)
have not been based on a snapshot DBMS (notably,
however, HDBMS uses BTrieve/Objectrieve for data
storage and retrieval). The remaining seven
implementations (GCH-OSQL [5], Calanda [15],
Chronolog [2], TempCase [19], TempIS [1], TimeDB [4],
and VT-SQL [14]) have been based on snapshot DBMSs.

However, diverse design approaches have been
followed in these implementations. In some of them,
temporal features are integrated within the DBMS kernel,
delivering a new, enhanced system, whereas in other
implementations, temporal functionality is offered by

1 TimeIt and TimeMultiCal are also included in this report but are not
considered to be DBMSs since they do not provide persistence.

pieces of software which act as client applications to the
snapshot DBMS. In this paper we discuss three
approaches for adding temporal functionality to a
snapshot DBMS, and assess each approach with respect
to the extent that it meets a number of criteria. This
survey intends to aid designers of future temporal
database systems to make the most appropriate selection
of their DBMS architecture, considering the goals of their
implementation.

The remnant of this paper is organised as follows:
section 2 presents the design objectives, i.e. the criteria
which will be used to evaluate each design approach.
Section 3 presents alternative solutions of designing a
temporal DBMS, and section 4 evaluates the design
approaches, with respect to the criteria stated in section 2.
Finally, in section 5, conclusions are drawn.

2. Design Objectives

The suitability of each design approach, for extending
snapshot DBMSs to include temporal functionality, will
be measured against certain criteria, the design
objectives. The design objectives which will be
considered in this paper are defined in the following
paragraphs.
1. Complete temporal functionality . Temporal data types

(e.g. intervals) and operations (e.g. coalescing,
temporal union etc.) should be first class citizens
within the extended DBMS, i.e. the temporal DBMS
should allow their usage wherever an analogous
snapshot DBMS data type or operation can be used.

2. Full snapshot DBMS compatibility. The extended
DBMS must allow for the creation and manipulation
of snapshot data stores (relations, in the context of
relational DBMSs), in the same way that its snapshot
version does.

3. Implementability. The proposed solution should be
implementable, considering the tools which are at the
developer’s disposal. In particular, access to the
underlying DBMSs source code should not be a
prerequisite, since it is a hard requirement to satisfy.

4. Exploitation of facilities offered by the snapshot
DBMS. It is desirable that facilities offered by the
snapshot DBMS, such as join processing algorithms,
indexing mechanisms (for non temporal data) etc. are
used in the temporal DBMS, without needing to be
recoded or modified in any way.

5. Simplicity of implementation . More complex solutions
are weaker candidates for implementations.
Additionally, complex solutions are prone to be less
efficient and their code is not easily maintainable.

6. Data integrity. Commercial DBMSs provide a data
manipulation language (e.g. SQL) as the sole means
for accessing the stored data, using the operating
system-level protection mechanisms (file or raw disk
partition access rights) to prevent users from
modifying directly the disk files (or partitions) on
which data are stored. Similarly, the proposed
solution should provide a mechanism to prohibit users
from using the snapshot data manipulation language
to modify temporal persistent objects, since such
modifications might result to illegal data store states.
Figure 1 presents an example in which modifying a
valid time relation through SQL, leads it to an illegal
state (assuming that an employee has only one salary
at any time point).

7. Performance. The proposed solution should deliver
high performance, using optimisation techniques,
wherever possible, and limiting disk input/output and
interprocess communication to the minimum
necessary degree. No overheads should be imposed to
accesses to snapshot data stores. Finally, operation
repetition across different system components should
be avoided (e.g. each statement should be parsed only
once).

8. Resource consumption. The proposed system should
consume as little system resources as possible. In this
paper, memory and interprocess communication
resources will be accounted for.

9. Portability across hardware/software platforms. The
proposed solution should not be tightly bound to
specific features offered by the hardware platform or
the underlying DBMS.

10. Additional features. It is desirable for the proposed
system to support a number of non-temporal features
offered by the underlying snapshot DBMS, such as
transaction management, concurrency control, crash
recovery and language extensions.

3. The Design Approaches

Three design approaches are identified in this paper for
extending existing DBMSs to include support for
temporal data and operations. The design approaches are
described in sections 3.1 through 3.3. Section 4 provides
a critical evaluation of these approaches.

3.1 Integration of Temporal Functionality in the
Snapshot DBMS

The first design approach is to integrate temporal support
into the underlying snapshot DBMS, as illustrated in
figure 2. This means that the following extensions/
modifications should be built into the snapshot DBMS:

Snapshot &
Temporal Query

Language

Temporal Applications

User Interface

DBMS Interface
Library

Snapshot Applications

User Interface

DBMS Interface
Library

Data Storage and Retrieval System

Temporal DBMS

Syntax analysis

Semantical
analysis

Execution

Disk

Figure 2 - Temporal functionality is built into the

DBMS kernel
1. the appropriate data types (time points, time intervals,

temporal elements) must be defined, and their storage
structure determined. The kernel should provide
conversions between the textual representations, used
by applications and users to represent these data types
and the internal format, used by the DBMS to store
the data to the disks.

2. the semantical analysis module must be extended to
determine whether each operation applies to a
snapshot data store or a data store with temporal
semantics, and schedule the appropriate actions (e.g.
coalescing, during data insertion or update, applies

UPDATE Salary Set EmpId = 'e0001' WHERE EmpId = 'e0002'
EmpId Salary Period EmpId Salary Period
e0001 2000 91-93 à e0001 2000 91-93
e0001 2400 94-95 e0001 2400 94-95
e0002 2600 92-94 e0001 2600 92-94
Figure 1 - Execution of a statement by a snapshot
DBMS leads a valid time table to an illegal state

only to valid time data stores -when a coalesced
storage schema is used; primary key violation checks
are different for temporal and snapshot data stores).
For object-oriented DBMSs (OO-DBMSs), this is
equivalent to defining temporal persistence classes
and providing the appropriate methods for object
insertion, deletion and modification.

3. the query execution module must be extended to
include additional operations for application of
temporal operations which may be applied during
query evaluation (e.g. coalescing, temporal
aggregation).

4. the snapshot DBMS's DDL and DML parser must be
modified to recognise the extended syntax used for
temporal operations. For DBMSs, providing temporal
functionality without extending the DDL or DML
language (e.g. OODAPLEX [22]), this modification is
not necessary.
Temporal and snapshot applications use a common

interface library to interact with the temporal DBMS. The
DBMS interface library provides a collection of host
language data types, which are used when data are
transferred from the application to the temporal DBMS,
or vice versa, together with a set of procedures (or
methods) which are callable from the host language and
trigger actions on behalf of the DBMS. It is possible that
the actual procedure calls are inserted into the code by a
preprocessor, while the programmer describes the actions
using a declarative query language (e.g. embedded SQL).

This design approach has been followed in the
implementation of TempIS.

3.2 The Temporal Server approach

The temporal server approach is an elegant solution,
which does not modify the snapshot DBMS, but
introduces an additional entity, the temporal server. The
temporal server is logically located between the temporal
applications and the snapshot DBMS, as depicted in
figure 3. Applications that access temporal data stores use
a temporal DBMS interface library, which directs
requests for data retrieval or modification to the temporal
server, who is responsible for the following actions:
1. analyse the requests issued by the applications,

determining whether they are conferment either to the
temporal query language or to the snapshot query
language rules.

2. intercept references to temporal data types (time
points, time intervals and temporal elements) which
are not supported by the snapshot DBMS kernel, and
provide the appropriate conversions between the
representations used by the applications and a raw

data format (e.g. string) which must be used to store
the data into the snapshot DBMS.

3. map the temporal operations to series of snapshot
operations, and arrange for the execution of these
operations. This involves retrieval, processing and
storage of data to the snapshot DBMS, and
forwarding of the final results to the application. The
temporal server interacts with the snapshot DBMS,
using the interface library provided by the snapshot
DBMS.

Data Storage and Retrieval System

Snapshot DBMS

Snapshot Query
Language

Snapshot DBMS
Interface Library

Temporal Server

Temporal DBMS

Snapshot & temporal query language
syntax analysis

Semantical
analysis Execution

Temporal Applications

User Interface

Temporal DBMS
Interface Library

Snapshot Applications

User Interface

Snapshot DBMS
Interface Library

Disk

Figure 3 - The temporal server approach

Applications which require data from snapshot data
stores only, may connect directly to the snapshot DBMS,
using the interface library provided by the snapshot
DBMS. If such a connection is established, the
application may not use any extensions provided by the
temporal server (e.g. query language syntactical or
semantical enhancements), since they are not supported
by the snapshot DBMS.

Insofar, no implementations using this design
approach have been reported.

3.3 Building temporal support into the client
application

The third approach is to build directly the support for
temporal operations into the client application, as
illustrated in figure 4. Temporal applications direct their
requests for temporal data store access to a temporal

functionality interface library , which is linked into the
application's executable code. The temporal functionality
interface library is responsible for provision of
appropriate conversions for data types not directly
supported by the snapshot DBMS, request analysis,
mapping of temporal operations to series of snapshot
operations and execution of the appropriate actions, in
order to complete the request. The temporal functionality
interface library interacts with the interface library
provided by the snapshot DBMS, in order to fetch data
from the snapshot DBMS, or store data in it. Since the
snapshot DBMS interface library is built into the
application code, the application may forward requests to
it directly, bypassing the temporal functionality interface
library.

Applications accessing snapshot data stores only, do
not need the temporal functionality interface library: only
the interface library provided by the snapshot DBMS
needs to be linked into the final executable file. In this
case, the extensions offered by the temporal functionality
interface library are not available to the application.

Temporal Applications

User Interface

Temporal Functionality
Interface Library

Snapshot DBMS
Interface Library

(Syntactical and semantical
analysis + execution)

Snapshot Applications

User Interface

Snapshot DBMS
Interface Library

Data Storage and Retrieval System

Snapshot DBMS

Snapshot Query
Language

Disk

Figure 4 - Temporal functionality built into the

client application
This design approach has been followed in the

implementation of Arcadia GCH-OSQL, Calanda,
ChronoLog, TempCase, TimeDB and VT-SQL2.

2 Note that a monitor application, which accepts temporal queries,
evaluates them and prints out the results, may be used as a temporal server
by some other application (e.g. TempCase operates on top of VT-SQL),
thus the distinction between a temporal server and a client application is not
clear-cut. We classify under client application all pieces of software that
can be used interactively by the end user.

4. Evaluation of the Design Approaches

In this section we evaluate the degree to which each
design approach fulfils the objectives defined in section 2.

4.1 Complete temporal functionality

It may be argued that the level of temporal functionality
offered by the extended DBMS is independent of the
design approach that will be taken. However,
implementation considerations may lead designers to
limit the amount of temporal functionality offered by the
extended DBMS. For example, consider the following
TSQL2 query, which retrieves the names of employees
who have worked for two years under the management of
either e1 or e2.

SELECT EmpId, EmpName FROM EmployeeData
WHERE EmpId IN (SELECT SNAPSHOT E.EmpId

FROM EmpMgr(EmpId) AS E, E(MgrId) AS F
WHERE F.MgrId = 'e1' OR F.MgrId = 'e2' AND

CAST (E) AS INTERVAL YEAR >
INTERVAL '2' YEAR)

In order to evaluate this query, a temporal DBMS will
formulate a query execution plan (QEP), similar to the
one illustrated in figure 5.

Filter tuples with
MgrId = 'e1' OR

MgrId = 'e2'

Grouping on &
filtering of tuples with

EmpId

'duration' > 2 years

Read
EmpMgr

Read
EmpData

EmpMgr.*

EmpData.*

EmpId
MgrId
VALID

EmpId
EmpName

EmpId

EmpData.EmpId

Final result

EmpId
VALID

Semi-join
EmpMgr.EmpId =
EmpData.EmpId

Disk

Figure 5 - Query execution plan

The ability to follow the QEP may depend on the
design approach used for the temporal DBMS, as follows:
if temporal support is built directly into the snapshot
DBMS kernel, then all operations (filtering,
grouping/filtering and semi-join) are available to the
execution module, so the query may be evaluated.
However, if temporal support is implemented outside the
snapshot DBMS kernel, then, it is clear that data must be
moved to the module implementing the temporal
extensions (either the temporal server or the temporal
functionality interface library in the client application), in
order to execute the grouping/filtering operation. The key
question is how the semi-join will be evaluated, with two
possible alternatives:

1. the module implementing the temporal extensions is
able to execute the semi-join, so the two final
operations are performed within that module, as
illustrated in figure 6. However, other queries may
require sorting, aggregation, anti-join, or any other
snapshot operation to be performed after some
temporal operation; but if we build algorithms for
every snapshot operation within the module
implementing the temporal extensions, we have
effectively implemented a complete temporal DBMS,
apart from the physical storage module. This is clearly
undesirable, since the reason for extending an existing
DBMS rather than building one anew, was to avoid
this piece of work.

Result

Temporal module Snapshot DBMS kernel

Read
EmpMgr

Read
EmpData

Semi-join
EmpMgr.EmpId =
EmpData.EmpId

Grouping on EmpId
Filtering with
'duration' > 2

Filtering
MgrId = 'e1' OR

MgrId = 'e2'

Disk

 Figure 6 - QEP execution, when the temporal

module implements snapshot operations
2. the module implementing the temporal extensions is

not able to evaluate the semi-join or any other
snapshot operation; rather, after performing the
grouping/filtering operation, data are stored back in
some temporary data store within the snapshot
DBMS, and the snapshot DBMS's kernel evaluates the
semi-join, in order to produce the final result, as
illustrated in figure 7. This alternative is more easily
implementable than the previous one, but presents
serious performance problems, since data transfers
between the snapshot DBMS kernel and the module
implementing the temporal extensions are necessary,
and a holding point is introduced: the evaluation of
the semi-join may not start before all the results of the
grouping/filtering operation have been stored into the
temporal data store, whereas in “normal” execution
conditions, the evaluation may start as soon as the
first tuple (or block of tuples) of the grouping/filtering
operation's output is available. Additional storage
space is also needed, to accommodate the temporary
data store.
Considering the problems in both alternatives, the

designers of the temporal extension may opt for some
limitation to the set of temporal queries that can be
answered by the temporal DBMS; a likely choice may be
that the temporal DBMS will be able to evaluate only
queries which satisfy the following two conditions:

Client

Temporal module Snapshot DBMS kernel

Read Tmp

Write Tmp

Read
EmpMgr

Read
EmpData

Semi-join
EmpMgr.EmpId

= Tmp.EmpId

Grouping on EmpId
Filtering with
'duration' > 2

Filtering
MgrId = 'e1' OR

MgrId = 'e2'
D

i

s

k

Figure 7 - QEP execution, when the temporal module

does not implement snapshot operations
1. the QEP can be partitioned in two sets, the first one

including the snapshot operations and the second one
comprising of the temporal operations.

2. there exists a valid rearrangement of the QEP,
equivalent to the initial one, such that no operation in
the second set is followed by an operation belonging
to the first set.

4.2 Full snapshot DBMS compatibility

Full snapshot DBMS compatibility is an easy requirement
to satisfy, since all the algorithms needed to provide the
snapshot operations already exist within the snapshot
DBMS. Full snapshot DBMS compatibility is guaranteed
if the following conditions are met:
1. all extensions to the query language come either as

new statements or as optional clauses within existing
statements. This guarantees that every statement that
is syntactically valid in the snapshot query language
remains valid in the temporal query language.
Effectively, the temporal query language parser must
accept all the snapshot query language statements.

2. the temporal DBMS interface library (or temporal
functionality interface library, in the 3rd design
approach) supports all the calls which are provided by
the snapshot DBMS interface library. This ensures
that applications can interact with the temporal
DBMS in the same way they interacted with the
snapshot DBMS.

3. if a snapshot data store is accessed through a snapshot
DBMS interface library procedure call, or via
execution of a non-extended statement, then the
results of the access (data store modifications and/or
returned data) are the same with the results that the
snapshot DBMS would produce, if it processed the
same request. This guarantees that the semantics of
snapshot operations applied on snapshot data stores
are not modified.

 Practically, this means that the temporal DBMS
checks both the query syntax and whether the
accessed data store is a snapshot or a temporal one,

before determining the operation semantics and
formulating the query execution plan. In order to
distinguish between snapshot and temporal data
stores, it is required that adequate information is
stored within a data dictionary, which is either the
standard data dictionary maintained by the snapshot
DBMS (extended with the appropriate columns), or a
new data store.

4.3 Implementability.

In general, when extending a DBMS to include temporal
functionality, the following actions are required:
1. implement the appropriate data types to represent

time (time points, time intervals and, possibly,
temporal elements).

2. define functions that will operate on the data types
which are used to represent time (e.g. a function
accepting an argument of type interval and returning
its starting point).

3. implement operations on temporal data stores (e.g. a
special version of delete for transaction time data
stores, coalescing, temporal union, etc.).

4. define syntactical and extensions to the snapshot data
definition and manipulation language, which invoke
the temporal operations.
When extensions are built outside the DBMS kernel, it

is possible to support all the features listed above, by
adding suitable code either to the client application or to
the temporal server. In the following paragraphs, we will
elaborate on the ability to incorporate support for these
features directly into the DBMS kernel. Our review will
cover two classes of database systems, namely relational
and object-oriented.

Data types for time representation. All OO-DBMSs
provide means of extending the built-in object lattice, and
support lists, facilitating the implementation of the
temporal element data type. The new data types are first
class objects, i.e. they have the same functionality with
the built-in data types. Moreover, object-oriented DBMSs
allow the programmer to differentiate the internal
representation (i.e. the actual bytes that are stored on the
disk) from the external representation of the data type
(i.e. the form in which the user inputs and sees data),
permitting thus the usage of a space- and operation-
efficient internal representation, and a customisable, user-
friendly external representation.

Relational DBMSs are less flexible with supporting
new data types. Since lists do not fit in the first normal
form model, temporal elements cannot be stored as an
atomic data type: normalisation rules ([6]) suggest that an
additional relation must be used for storing each column

of type temporal element. For incorporating atomic data
types, such as interval, various DBMSs3 provide different
levels of extensibility (in the following we assume that
the programmer has no access to the DBMS’s source
code):
• Ingres offers the Object Manager tool ([8]), which

allows for the definition of new data types. The user-
defined data types are first level objects and may have
different external and internal representations.

• Sybase provides the sp_addatatype stored procedure
to define a new data type, but only as an alias of a
built-in data type ([17]). However, it allows a
validation rule to be bound to the new data type, so it
can be verified that the data stored to columns of the
user-defined data type conform to some rules. For
example, we could define the data type interval with
granularity of date, represented as (date1, date2)
using the following command batch:

 sp_addatatype interval, char(24)
 sp_createrule interval_rule as

 substr(@value, 1, 1) = '(' AND
 substr(@value, 24, 1) = ')' AND
 substr(@value, 12, 2) = ', ' AND
 convert(substr(@value, 2, 10), date) <

 convert(substr(@value, 14, 10), date)
 sp_bindrule interval_rule, interval

 Notice that, using this technique, the external
representation is the same as the internal
representation and quite inflexible, since it requires
the user to start the string with a left parenthesis, end
it with a right one, and separate dates using a comma
and a space. Additionally, each date must be entered
using a 10-character string.

• Oracle does not provide a tool for defining a new data
type, but allows for a CHECK clause to be included in
a column definition ([12]). This can be exploited by
translating the interval data type, when found in a
CREATE TABLE statement to a CHAR(N) data type,
with the appropriate validation check. Although this
approach works, it is as inflexible as the previous one
and, additionally, system catalogues will report that
the column’s type is CHAR(N), instead of INTERVAL.

Functions on the data types representing time. In
OO-DBMSs, each data type is coupled with its behaviour,
i.e. a set of procedures and functions (methods, in
object-oriented terminology), thus the programmer can

3 The list of DBMSs is not exhaustive; it is only intended to outline the
extensibility capabilities of the relational DBMSs, with respect to adding
new data types.

define all the functions operating on data types
representing time.

Different relational DBMSs, provide different levels of
ability to define new functions:
• Ingres offers the Object Manager tool ([8]), which

allows for the definition of new functions. These
functions may include type checking and can be used
in any place that a built-in function is allowed.

• Oracle supports the package concept ([12]) for
defining new functions and procedures. Once a
package is created, the functions and procedures
defined within it are accessible to all users and
applications.

• Sybase does not support any kind of user-defined
functions.

Operations on temporal data stores. Temporal data
stores require special handling, since data insertion and
update may need to be followed by coalescing (depending
on whether the data storage model is coalesced or not),
special forms of statements must be supported (eg. a
DELETE command containing a VALID PERIOD
clause, in TSQL2 [20]) and temporal flavours of primary
keys may need to be considered (e.g. the time point keys
described in [13]). Additionally, when temporal data are
retrieved, temporal operations (e.g. coalescing, temporal
union etc.) may be applied on them.

None of the relational DBMSs allows for definition or
customisation of the code which handles data
modifications. However, most relational DBMSs provide
triggers that are fired when data stores are modified, and
some relational DBMSs provide facilities for storing code
within the database (e.g. Oracle and Sybase allow for
definitions of procedures within packages ([12]) and
stored procedures ([17]), respectively). Triggers may be
used for supporting temporal keys (by attaching them to
the INSERT and UPDATE events and associating
appropriate pieces of code) and ensuring a coalesced
storage schema (although the latter may prove to be very
tricky, due to chained trigger firing). Procedures may be
used to implement the special forms of statements, as
long as the language in which they are coded is flexible
enough to allow a dynamic WHERE clause. Figure 8
illustrates examples of using triggers to support primary
keys and coalesced storage schema (the scheme of table
Employee is considered to contain columns EmpId and
Period; no two rows of Employee are allowed to have
identical values for EmpId and overlapping values for
Period).

CREATE TRIGGER Insert_Guard_Employee
BEFORE INSERT ON Employee FOR EACH ROW
WHEN (EXISTS (SELECT * FROM Employee

WHERE new.EmpId =
Employee.EmpId

AND overlap(new.Period,
Employee.Period))

BEGIN
raise_application_error(-5000, "Primary key

violation on table Employee");
END;

CREATE TRIGGER Coalesce_Employee
AFTER INSERT OR UPDATE ON Employee
BEGIN
/* Avoid recursive firing */
ALTER TRIGGER Coalesce_Employee DISABLE;
/* Code for coalescing table Employee */
/* Reenable trigger. */
ALTER TRIGGER Coalesce_Employee ENABLE;
END;
Figure 8 - Using triggers to support temporal

operations
Whenever a temporal table is created, these triggers

and procedures must be automatically generated; this can
be handled either by an external temporal module (the
temporal server or the temporal functionality interface
library) or by a special procedure, which is specifically
used for creating temporal tables. Unfortunately, this
approach presents the following problems:
1. triggers have been designed to tackle a different set of

problems, such as enforcing referential integrity or
appending a record to a log, when some condition is
met. Using triggers to support a coalesced storage
scheme is not a normal choice and may introduce
conflicts with other user-defined triggers.
Additionally, the temporal module must provide
security mechanisms, to ensure that the triggers
enforcing the temporal semantics are not modified by
the user.

2. both triggers and procedures are of static nature (i.e.
they operate on tables with a specific schema), thus
different pieces of code must be assigned to
triggers/procedures operating on different tables.
Consequently, the temporal module must be able to
generate automatically the pieces of code which will
be associated with the triggers/procedures of each
table.

3. as each temporal table requires its own set of
procedures and triggers, the amount of code stored in
the database increases significantly. This is
undesirable both in terms of space and administrative
overhead, on behalf of the DBMS, which may lead to
degraded performance.

4. since the code is static, it is difficult to use
optimisation techniques.

5. if no external temporal module is used, then users
should be aware of the special procedures which are

used for temporal table creation and invocation of
special forms of statements. This is undesirable since
it leads to loss of uniformity (some operations are
performed via statements, while others are initiated
through procedure calls).
Retrieval queries involving temporal operations, such

as coalescing, cannot be supported using these
mechanisms. Temporal operations are applied on
arbitrary relation schemata and thus cannot be handled by
static code. Additionally, procedures are not generally
allowed to return set-type results (i.e. relations), while
triggers do not return data and may not be associated with
data retrievals.

For these reasons, when building temporal extensions
to a relational DBMS (having no access to the kernel
source code) it is preferable to implement the operations
on temporal data stores outside the DBMS kernel.

If an OO-DBMS is used, temporal operations in
retrieval queries can be mapped to calls to methods which
accept set-type arguments and yield set-type results. The
code handling data store modifications can be also be
stored within the DBMS kernel, in the form of general-
purpose procedures ([7]) or methods of specific classes.
The Multimedia Information Manager (MIM) used in
ORION ([9]) is a good example of the capabilities of
OO-DBMSs in handling data with specific data storage
requirements. Admittedly, not all OO-DBMSs are as
flexible as ORION: there is no obvious way to implement
an analogous mechanism in IRIS, while in O2 the
O2Engine layer ([11]) has to be extended (or replaced),
which is a more difficult task than adding a few classes.

Extending the data definition and manipulation
language. This feature is not supported by any DBMS; in
order to extend the DDL or the DML, the programmer
must either have access to the DBMS source or the
extensions must be built outside the DBMS kernel.
However, with OO-DBMSs, a significant part of the
temporal language functionality may be supported by
methods, thus reducing the need to extend the language
itself.

4.4 Exploitation of facilities offered by the
snapshot DBMS.

If the temporal extensions are built into the snapshot
DBMS kernel, then the temporal features will coexist
with the snapshot mechanisms that are provided by the
snapshot DBMS, and the execution procedure may select
the most appropriate algorithm for each operation. If,
however, temporal support is implemented outside of the
DBMS kernel, some operations may need to be recoded,

in order to provide complete functionality as shown in
section 4.1.

4.5 Simplicity of implementation.

Simplicity of implementation is a very important factor,
not only because less coding effort is required, but
additionally the final product will be more stable, error-
free and maintainable. Simplicity of implementation is
affected by a number of factors:
1. level of programming: writing low-level, kernel-

specific code is generally a more complex task than
programming in a high-level language, say C, using
embedded SQL to interact with the DBMS.

2. availability of debugging tools . If the extensions are
built outside the snapshot DBMS kernel (either using
the temporal server approach or building temporal
support into the client application), standard
debugging tools may be used in order to trace the
erroneous spots, while the snapshot DBMS can be
used to monitor changes to the database state. If,
however, the extensions are integrated into the DBMS
kernel, debugging is more cumbersome, and coding
errors may be more disastrous, since they may result
to corruption of data stores and/or “hanging” of the
DBMS.

3. amount of code that must be written. As already stated
in section 4.4, implementing the extensions outside of
the DBMS kernel may require recoding of a number
of snapshot operations, increasing the bulk of code
that must be written.

4. special techniques that must be employed. The
temporal server approach introduces another level of
complexity, because fairness and minimisation of the
average and weighted request turnaround time ([10])
must be pursued. For example, consider that two
temporal applications TA1 and TA2 are
simultaneously connected to the temporal server
depicted in figure 3, issuing the following queries,
respectively:

 Q1: SELECT *
 FROM BigDataStore(Period), BigDataStore2(Period)

 Q2: SELECT * FROM SmallDataStore

 Assuming that Q1 is issued right before Q2, if the
temporal server evaluates queries sequentially, then
the request issued by TA2 (Q2) cannot be processed
before Q1 is evaluated. This will lead to an
unacceptable delay for TA2, indicating that sequential
processing is not an appropriate approach for the
temporal server. A more suitable approach is to
interleave the execution of the queries, by using some
preemptive scheduling technique with time quotas

(e.g. round robin) or by using lightweight processes
(or threads-[18]) within the temporal server, and
assigning each incoming connection to a different
thread. Both of these approaches increase the
complexity of the temporal server. An alternative
solution, would be to use one temporal server per
application connection, and leave the process
switching and fairness aspects to the operating
system.

 Note that these techniques need not be employed if
temporal support is integrated either in the snapshot
DBMS kernel or in the client application: in the
former case, the mechanisms for query execution
interleaving which are built in the snapshot DBMS
can be exploited, while in the latter case we can
identify two phases in query execution, the snapshot
phase (executed within the snapshot DBMS kernel)
and the temporal phase (executed within the temporal
application). The snapshot DBMS will arrange for
execution interleaving for the first phase of the
queries, while the operating system is responsible for
allocating the CPU to the temporal applications,
during the execution of the second phase of the
queries.

4.6 Data integrity.

Data integrity is jeopardised if the pieces of code which
handle modifications to temporal data stores can be
bypassed, and data stores are modified using the snapshot
DBMS data manipulation language. When this code has
been stored within the DBMS, three cases can be
identified:
• the source code is available, thus the extensions are

hard-coded within the kernel and cannot be bypassed;
in this case, data integrity is guaranteed.

• modifications are monitored by triggers that cannot be
disabled or performed through class methods which
cannot be overridden; no illegal modifications are
possible in this case.

• modifications are performed through general-purpose
procedures; in this case it cannot be guaranteed that
the user will invoke the appropriate procedure, instead
of directly modifying the data store using the snapshot
DBMS’s DML, and additional security measures are
called for.
If the code handling modifications to temporal data

stores is stored outside of the DBMS kernel (within the
temporal server or the temporal functionality library),
then users must be prevented from connecting directly to
the snapshot DBMS and using it to modify data stores
with temporal semantics, as such modifications may lead

the data stores to inconsistent states (see figure 1). The
temporal server approach can incorporate a protection
scheme, outlined below:
1. for each user of the temporal DBMS, two user ids are

created at the snapshot DBMS level: an external user
id and a shadow user id. The mappings between the
external user ids and the shadow user ids are
maintained either in a table within the snapshot DBMS
or in an operating system file; in both cases, the
repository is only accessible to the snapshot DBMS
administrator. Only the external user id, along with the
password, is disclosed to the user.

2. if a user must access a snapshot database (i.e. a
database consisting only of snapshot data stores), then
access to that database is granted to the external user
id; if, however, access to a temporal database is
required (i.e. a database containing at least one
temporal table), the database administrator grants
access to the shadow user id.

3. when the temporal server receives a request for
connection to a temporal database, it maps the external
user id that the user provided to the shadow user id,
using the repository (the temporal server must run
under the database administrator’s user id, in order to
be able to perform this mapping), and opens a
connection to the database using the shadow user id.
Under this scheme, the user can use a direct

connection to the snapshot DBMS, in order to access
snapshot databases. However, the user cannot access
directly temporal databases, since the external user id, is
not authorised to use any of these databases. Temporal
databases may be accessed through the temporal server
only.

Note that this approach cannot be used when temporal
support has been built into the client application for two
reasons:
1. the temporal server runs under the database

administrator’s user id, in order to be able to access
the repository in which shadow-to-external user id
mappings are maintained. Allowing any client
application to run under this user id is extremely
dangerous for the security and integrity of the
databases.

2. since a connection between the client application and
the snapshot DBMS will be open, the user can bypass
the temporal functionality interface library and
forward directly DML statements to the snapshot
DBMS, through the snapshot DBMS interface library.

4.7 Performance.

Building the temporal extensions directly into the
snapshot DBMS kernel is expected to deliver the highest

performance among the three approaches. Statements are
parsed only once, by the DBMS parser, and all operations
are performed within the DBMS kernel, so no extraneous
process switching between the DBMS kernel and the
application is introduced. No additional operations are
performed when a snapshot database is accessed, whereas
for temporal databases, the system dictionary must be
queried to determine whether the accessed tables
incorporate temporal semantics or not. Data are moved to
the client application only when the application has
requested for them, minimising the time spent for
interprocess communication.

When temporal support is moved outside the DBMS
kernel, performance is anticipated to degrade. Statements
must be parsed twice, since the temporal server (or the
temporal functionality interface library) must analyse the
statement, and map it to a series of snapshot query
language statements. Each snapshot query language
statement will be subsequently processed by the snapshot
DBMS parser. During query execution it is possible that
intermediate results are moved between the temporal
server (or the temporal functionality interface library) and
the snapshot DBMS, so process switching and
interprocess communication overheads are introduced. In
these cases, the query execution time is also penalised
with the cost of creating and dropping temporary tables.
If creation of intermediate tables is required, holding
points are introduced (i.e. no operation may proceed until
the temporary table has been created and data insertion
into it has been completed), thus advantages of pipeline
execution are lost.

When snapshot databases are accessed, direct
connections to the snapshot DBMS may be established,
thus performance is not penalised. If, however, a
temporal database is accessed, system dictionary must be
queried to determine whether the tables involved in some
operations have temporal semantics or not.

Finally, if the temporal server approach is followed,
then data must be moved from the snapshot DBMS kernel
to the temporal server and subsequently forwarded to the
client application, increasing the time needed for
interprocess communication and introducing an
additional process switch.

4.8 Resource consumption.

If temporal support is integrated within the snapshot
DBMS kernel, then resource consumption increment is
minimal: only the size of the DBMS kernel changes, to
accommodate the extra code implementing the temporal
operations, and the size of the DBMS interface library
will increase, if extra calls are provided. Only one
connection needs to be established per application, and

only final results need to be communicated between the
extended DBMS kernel and the client application.

If the temporal server approach is used, then the size
of the DBMS kernel is not increased, but an additional
process is introduced, which includes the code
implementing the temporal operations plus the snapshot
DBMS interface library. At the side of the client
application, the snapshot DBMS interface library is
replaced by the TDBMS interface library. If it is chosen
to limit the complexity of the temporal server by starting
one new temporal server process per application
connection (see section 4.5), then more system memory is
used up and more administrative overhead will be
imposed to the operating system, in order to manage the
new set of processes. In all cases, however, two
connections must be established per application, the first
one between the application and the temporal server and
the second one linking the temporal server to the
snapshot DBMS. Multiplexing connections between the
client applications and the temporal server to a smaller
number of connections between the temporal server and
the snapshot DBMS is not a good idea, since this would
render useless the transaction support and locking
features of the snapshot DBMS. Consider the case that
two applications A1 and A2 connect to the temporal
server, and the temporal server chooses to multiplex
incoming requests through a single connection C. If both
applications issue the same request, e.g.

UPDATE Employee SET Salary = Salary * 2
WHERE EmpId = ‘e1’

it is clear that one of them should wait until the other
commits or aborts. However, since the connections are
multiplexed, as far as the snapshot DBMS is concerned
both requests originate from the same source (i.e. the
connection C), so the first update will not block the
second. Furthermore, if at a later stage one of the
applications commits or aborts its transactions, then both
statements will be committed or aborted, respectively.
Thus, multiplexing will lead to the need for
implementing locking and transaction support features
into the temporal server, increasing its complexity even
further. Additionally, multiplexing different connections
between the client applications and the temporal server to
one connection to the snapshot DBMS makes the fairness
goal hard to achieve (if some request is pending on a
connection to the snapshot DBMS then it must be
completed before another request can be issued through
the same connection).

Finally, if temporal support is incorporated within the
client application, then the size of each client application
is increased, since the executable will include both the
temporal functionality interface library and the snapshot

DBMS interface library, leading thus to increased
memory consumption. Only one connection needs to be
established between the client application and the
snapshot DBMS, and the number of processes within the
system is not affected.

4.9 Portability across hardware/software
platforms.

Portability of the extensions across hardware and software
platforms is hard to achieve if the extensions are built
within the DBMS kernel, since kernel-specific (and
possibly hardware-specific) features will be used (e.g.
data formats, inter-module communication mechanisms).
If the extensions are implemented outside the DBMS
kernel using industry standards (e.g. embedded SQL for
communicating with the snapshot DBMS), then porting
to other hardware/software platforms will require
minimal changes to the source code, thus the temporal
server and client integration approaches appear to be
more portable.

4.10 Additional features.

If the temporal extensions are implemented within the
snapshot DBMS kernel, then the extended DBMS will
support all the language extensions offered by the
snapshot DBMS, since both the parser and the execution
module are already capable of handling them. The
locking, concurrency control and recovery mechanisms
offered by the snapshot DBMS will be available to the
extended DBMS as well.

In the case that extensions are implemented outside
the DBMS kernel, the temporal module parser must
recognise the DBMS’s syntactical extensions and take the
appropriate actions. The locking, concurrency control and

recovery mechanisms offered by the snapshot DBMS may
be also used, although special techniques may need to be
employed; in [21] such techniques are described.
According to these techniques, two connections to the
snapshot DBMS are required per client application, thus
the overall resource consumption increases even more.

5. Conclusions

In this paper we presented three design approaches to the
implementation of temporal systems on top of existing
snapshot DBMSs. The degree to which each design
approach fulfils a number of design objectives was
examined. Figure 9 summarises the results of our survey.

The main advantages of the first approach (integrating
temporal support into the DBMS kernel) are high
performance, complete temporal functionality and
exploitation of all the features offered by the snapshot
DBMS. However, it is not easily implementable without
access to the source code, and cannot be ported to
different platforms without major changes. The temporal
server approach, although elegant, presents some major
problems, concerning implementation simplicity,
performance and resource consumption. Finally,
providing temporal support within the client application
may deliver acceptable performance, but it is possible that
some parts of the snapshot DBMS will need to be recoded
(or complete temporal functionality sacrificed) and data
integrity is jeopardised.

6. References

[1] I. Ahn and R. Snodgrass, Performance Evaluation of a
Temporal Database Management System, Proceedings of
the International Conference on Management of Data,
1986.

Design objective

Full Integration
with the Snapshot

DBMS

Introduction of a
Temporal Server

Extensions built
into the client

application
Full temporal functionality Yes Affects performance Affects performance
Snapshot DBMS compatibility Full with no extra work Requires extra work Requires extra work
Implementability Depends on DBMS and

source code availability
High High

Snapshot DBMS facilities Available May need to be recoded May need to be recoded
Implementation simplicity Medium Low High
Data integrity Guaranteed Ensured by techniques Jeopardised
Performance High Low (many overheads) Medium
Resource consumption Low High (memory, proc-

esses and connections)
Medium (memory)

Portability Non-portable Portable Portable
Additional features Readily available Requires extra work Requires extra work

Figure 9 - Evaluation of the design approaches

Design approach

[2] M. Böhlen, ChronoLog 4.0 Reference Manual, Institute for
Electronic Systems, Aalborg University, 1995.

[3] M. Böhlen, Temporal Database System Implementations,
Department of Mathematics and Computer Science,
Aalborg University, 1995.

[4] M. Böhlen, TimeDB Software Documentation, Department
of Mathematics and Computer Science, Aalborg
University, 1995.

[5] C.Combi, Francesco Pincrioli, M. Cavallaro and G. Cucci,
Querying Temporal Clinical Databases with Different
Time Granularities: The GCH-OSQL Language, Ninteenth
Annual Symposium on Computer Applications in Medical
Care, Philadelphia, 1995.

[6] C. J. Date, An introduction to database systems, Vol. II.
Addison-Wesley Publishing Company, 1985.

[7] D.H. Fishman, J. Annevelink, D. Beech, E. Chow, T.
Connors, J.W. Davis, W, Hasan, C. G. Hoch, W. Kent, S.
Leichner, P. Lyngbeak, B. Mahbod, M. A. Neimat, T.
Risch, M. C. Shan and W. K. Wilkinson, Overview of the
IRIS DBMS, in “Object Oriented Concepts, Databases and
Applications”, W. Kim and F. Lochovsky (eds), ACM
Press, 1989.

[8] Ingres Corporation, Ingres Object Management Extension
User Guide for the UNIX and VMS Operating System
Release 0.3, November 1989.

[9] W. Kim, N. Ballou, H. T. Chou, J. F. Garza, D. Woelk,
Features of the ORION Object-Oriented Database System,
in “Object Oriented Concepts, Databases and
Applications”, W. Kim and F. Lochovsky (eds), ACM
Press, 1989.

[10] A. M. Lister and R. D. Eager, Fundamentals of Operating
Systems, McMillan Education Ltd., 1988.

[11] O2 Technology, O2C Beginner’s Guide, March 1995.
[12] ORACLE Corporation, SQL Language Reference Manual

(for version 7.0), 1993.
[13] ORES Project (ESPRIT III P7224), Deliverable D2:

Specification of Valid Time SQL, edited by 01 Pliroforiki,
Agricultural University of Athens and University of
Athens, 1993.

[14] ORES Project (ESPRIT III P7224), Deliverable D4:
Implementation of Valid Time SQL, edited by 01
Pliroforiki, University of Athens, Information Dynamics
and Agricultural University of Athens, April 1994.

[15] D. Schmidt, A. K. Dittrich, W. Dreyer and R. Marti, Time
Series, a Neglected Issue in Temporal Database
Research?, Proceedings of the International Workshop on
Temporal Databases, Zurich, September 1995.

[16] R. Snodgrass, The Temporal Query Language TQUEL in
ACM Transactions on Database Systems, vol. 12, no. 2,
July 1987, pp. 247-298.

[17] Sybase Inc., Transact SQL user’s guide (for release 10),
1994.

[18] A. S. Tanenbaum, Modern Operating Systems, Prentice
Hall Inc., 1992.

[19] B. Theodoulidis, A. Ait-Braham, G. Karvelis, The ORES
Temporal DBMS and the ERT-SQL Query Language,
Proceedings of the 5th International Conference on
Database and Expert System Applications, Athens 1994.

[20] The TSQL2 Language Design Committee (R. Snodgrass, I.
Ahn, G. Ariav, D. Batory, J. Clifford, C. Dyreson, R.
Elmasri, F. Grandi, C. Jensen, W. Kafer, N. Kline, K.
Kulkarni, T. Leung, N. Lorentzos, J.Roddick, A. Segev, M.
Soo, S. Sripada), The TSQL2 Temporal Query Language,
ed. R. Snodgrass, pub. Klower, 1995.

[21] C. Vassilakis, N. Lorentzos and P. Georgiadis, Transaction
Support in a Temporal DBMS, Proceedings of the
International Workshop on Temporal Databases, Zurich,
September 1995.

[22] G. Wuu and U. Dayal, A Uniform Model for Temporal
Object-Oriented Databases, Proceedings of the
International Conference on Data Engineering, Tempe,
Arizona.

