

A Software Architecture for Provision of Context-Aware Web-based m-Commerce
Applications

Benou Poulcheria
Department of Computer Science and Technology

University of Peloponnese
Tripoli, Greece

pbenou@ethnodata.gr

Vassilakis Costas
Department of Computer Science and Technology

University of Peloponnese
Tripoli, Greece
costas@uop.gr

Abstract—Mobile commerce is gaining significant importance
in the recent years as an alternative option of e-commerce for
the moving user. The mobile applications through which m-
commerce takes place operate in highly dynamic environments
with diverse characteristics and under varying conditions. The
characteristics and conditions of these environments –called
context– should be exploited in order to provide adaptive
services; services that offer a suitable user experience and
deliver innovative and enhanced capabilities that will facilitate
user interaction, attract new customers and maintain existing
ones. The goal of adaptivity is realized through the adaptation
of user interface, functionality and content of applications
using the context information. Therefore, context-awareness
constitutes an essential aspect – almost a requirement – of
mobile services. In order to realize context-aware services,
there is a necessity to capture the context information from its
sources, process and distribute it to the software components
that will use it. In this paper, we propose a software
architecture for context information management suitable for
m-commerce applications. We describe the functionality and
characteristics of its components, as well as the interaction
among these different components.

Keywords-mobile commerce; context; context-awareness;
context management; adaptivity

I. INTRODUCTION

With the wide use of mobile computing, e-commerce has
broadened the spectrum of its application and users to a new
form of commerce known as mobile electronic commerce or
m-commerce [1]. M-commerce takes place in highly
dynamic environments with greatly varying characteristics
and conditions. These characteristics are related to (a) the
properties of the individual devices (memory capacity,
battery life, processing power, input/output and
communication capabilities), (b) the properties of the
networking infrastructure (latency, bandwidth,
disconnections, cost), (c) the properties of the natural
surroundings (noise level, brightness, temperature), and (d)
the personal characteristics, preferences, computer literacy
and skills, needs and desires of the target audience.

Moreover, user mobility leads to the need for extending
the use of these applications both temporally and spatially, at
the same time, allowing users to interact with mobile
commerce applications while concurrently engaging in other
activities (e.g. driving). Hence, the full attention of the user
cannot be assumed and alternative communication modes
may need to be explored (e.g. auditory instead of visual) [6]

[12]. Lastly, the merchandise (tangible or intangible) traded
within an m-commerce transaction is of focal interest, since
the added value of an m-commerce transaction lies in the
ability to promote and trade the merchandise within the
“anytime/anywhere” framework.

All the aforementioned particularities are known under
the general term context [4], [14], [18]. Benou and Vassilakis
[2] give a more formal definition for the context information
tailored to m-commerce applications, according to which:

“Context information of an m-commerce application is
every piece of information which may be used to
characterize a state of an entity, which may be considered to
be relevant to the interaction of the user with the particular
application. The entity state may be either static or
dynamically changing, while the relevance of the entity to the
user-application interaction can be derived from the
potential to exploit the information describing the entity state
to optimize this interaction so as to maximize the commercial
value of the application.”

Context information should be necessarily modeled [2]
and consequently exploited in order to offer adaptive m-
commerce applications in terms of user interface,
functionality and content. In order to achieve the goal of
adaptability [17] of m-commerce applications, we should be
equipped with the proper software system that will collect,
process and distribute the context information [15]. The
design of the subsystem that will manage the context
information can be standardized, since it constitutes a
standard and repetitive process for each mobile commerce
application. Therefore, in this paper, we propose a scheme
for middleware-level support for building context-aware
services and applications, describing an architecture for
context management suitable for the special characteristics of
mobile commerce applications. The encapsulation of the
content management logic and procedures into a distinct
subsystem, separate from the application logic, results in a
number of advantages regarding its manageability,
maintainability and speed of application development

The remainder of this paper is organized as follows: In
section 2, we propose an architecture for context
management suitable for m-commerce applications. In
section 3 we present related work that has been performed in
the field of pervasive and mobile computing. In section 4 we
discuss the advantages of the proposed architecture and its
suitability for m-commerce applications. Finally, section 5
concludes the paper.

II. THE ARCHITECTURE FOR CONTEXT MANAGEMENT OF

M-COMMERCE APPLICATIONS

A. The context information manager

The process of designing the system that will manage
context information is common to all context-aware mobile
commerce applications (CAMCA). Despite the fact that the
context that different CAMCAs manage can be quite diverse,
a well-defined context management architecture with
standardized interfaces between its components and towards
its clients, may practically be used to support the context
management requirements of any CAMCA. Such a
standardized architecture will constitute a useful tool for
speeding up the development of context-aware applications
[10] and minimizing the probability for errors or omissions.
Furthermore, it will increase the potential for reusability,
since context components developed for some application
will be able to be incorporated in other applications with few
or no changes.

m-commerce
application

 Context Wrapper

Context Gatherer

Context Interpreter

Explicit Context Sensed Context

Context
Storage

Context Distributor

Context Discovery
Agency

Adaptation
Manager

Context Manager
Figure 1. The Context Manager

In this paper, we will present below the design of the
Context Manager module (Fig. 1), which is further
decomposed into the following components: i) the Context
Gatherer, ii) the Context Interpreter, iii) the Context Storage,
iv) the Context Distributor, and iv) the Context Discovery
Agency. The Context Gatherer is responsible for gathering
the context information from the various sources of the
application environment. The Context Interpreter is
responsible for interpreting the context information to a
higher level of abstraction. The Context Storage is
responsible for storing the context information for
subsequent use. The Context Distributor is responsible for
distributing the context information to the applications that
need it. The Context Discovery Agency is responsible for
discovering the context information that can be made
available to the interested parties. The interested parties are
essentially the components responsible for performing
adaptation within various information systems (frequently
termed as adaptation managers). These components will use
the information provided by the Context Manager to perform
the adaptation of the application they provide.

B. Context Wrappers: Gathering and Distributing Context

The Context Gatherer is the subsystem which is
responsible for collecting the context information from its
sources. Context information may be gathered from physical
sensors (e.g. location sensors such as GPS, identification
sensors such as smartcard or fingerprint readers, motion

sensors, etc) [8] or from logical sensors (e.g. APIs provided
by the operating systems which allow the retrieval of
information regarding the processing power, the available
software and hardware components, the current time and so
forth). An additional source of context information is the
user, who is the source of explicitly provided context
information (i.e. information directly entered by the user,
such as gender, date of birth and so on). Some of this
information may, of course, be stored into the main
application database and from then on extracted from there.
Depending on the source of the context information (physical
sensors, logical sensors or users), the mechanisms that will
capture it will be designed.

In order to decouple the applications from the details of
the sensing process, we introduce a software module that
undertakes the responsibility of reading context information
from its source, encapsulating the peculiarities and
idiosyncrasies of the particular context source and making
the context information available for exploitation through a
standardized interface, common for all kinds of context
information. This module is named context wrapper. Fig. 2
illustrates the concept of the context wrapper through a UML
diagram. Naturally, context wrappers will include source-
dependent software, therefore a distinct context wrapper is
required for each different context source. Τhe presence of
the context wrapper, however, enables us to handle
introductions of new context sources or modifications of
existing ones. This can be performed by correspondingly
creating a new context wrapper or modifying the existing
one, leaving the rest of the CAMCA and the context manager
system intact.

Context
Source

Context source-specific
interface/API for context
retrieval

Context
Wrapper

Context source-independent
interface/API for context
management

ContextSourceAPI ContextWrapperAPI

Figure 2. A Context Wrapper

Regarding their cooperation with other components,
context wrappers provide the following functionalities:

1. they allow external entities, (e.g. adaptation
managers of CAMCAs), to retrieve the values
produced by the context source they manage.

2. they allow external entities to subscribe to
notifications provided by the wrapper. These
notifications allow interested applications to be
informed about changes on the values of the context
information sensed by some particular wrapper.

3. they store the values obtained in the context store for
later usage.

4. they offer reflection capabilities, through which a
context wrapper may be queried regarding the
context properties it “measures” (e.g. user identity or
user location),

5. they register themselves with the Context
Information Discovery Agency. This registration
allows the wrapper to be discovered by other
software components. They also unregister
themselves from the Context Information Discovery
Agency when they cease their operation.

6. they enable their detection from the Discovery
Agency, thus allowing the Context Information
Discovery Agency to populate its context provider
repository.

According to the above list of offered functionalities, the
context wrapper interface depicted in Fig. 2 can be refined as
shown in Fig. 3.

Essentially, context wrappers implement the context
gatherer and the context distributor of the architecture
depicted in Fig. 1, with the code liaising with the context
source interface (cf. Fig. 2, Fig. 3) implementing the context
gatherer and the code realizing the context source-
independent interface/API being the context distributor.
More specifically, the ContextQuery and ContextNotification
interfaces of Fig. 3 implement the distribution of context
information to interested parties, while interfaces
ContextReflection, ContextDiscoverable and
ContextDataStoreCom facilitate aspects of the context
distributor’s operation in the overall architecture.

ContextSource Context
Wrapper

ContextSourceAPI

ContextQuery

ContextNotification

ContextReflection

ContextDiscoverable

ContextDataStoreCom

Figure 3. Refined Context Wrapper Interface

We must note here that the design presented above
directly supports configurations where the context wrapper is
not located on the same machine as the context source it
manages. This is important for cases where some sensor is an
embedded device with limited CPU power, communication
capabilities or increased needs for energy preservation. In
such cases, the sensor only needs to make available the data
using a prominent mode (e.g. through an RS-232 connection
or via Bluetooth), while the context wrapper will run on
suitable hardware and undertake the tasks of context
information gathering and distribution.

C. The context information distributor: Interface details
and messages exchanged

The context distributor undertakes the task of making the
context information available to the interested parties
(notably the adaptation managers of CACMs) in a
standardized and uniform manner. The context information
distributor is implemented through the query and notification
mechanisms built in the context information wrappers and
realized by the ContextQuery and ContextNotification
interfaces, respectively. These interfaces are complemented
with interfaces ContextReflection, ContextDiscoverable and
ContextDataStoreCom, where facilitate aspects of the
context distributor’s operation in the overall architecture.

The query mechanism serves the need for on-demand
provision of context information, with the initiative being on
the side of the interested application. The notification
mechanism (also referred to as publish/subscribe) [16] is
suitable for repeating requests for context information where
the interested application merely states the conditions under
which it wishes to be notified of changes regarding the
context information values.

1) The ContextQuery Interface
The interface to the query mechanism has the form:

queryContext(timeSpecificaion, attributeList)
attributeList designates which attributes provided by the
sensor are requested. This is required since context
wrappers may be attached to context sources (physical
sensors, logical sensors or users), that provide numerous
attributes but only few of which are needed. For
instance, a meteorological data sensor may provide
information about temperature, humidity, etc., and we
need only to obtain information regarding temperature.
Since timeliness is an important aspect of context
information [2], the query mechanism allows the
querying party to specify how “fresh” the context
information is required to be through the
timeSpecification designation.
The client defines to the wrapper the attributes it
requires and the wrapper returns an appropriate reply,
such as the one depicted in Fig. 4. This scheme
decouples the querying mechanism from the context
value obtainment implementation details, (e.g.
interfacing to an RFID scanner, a floor sensor or a video
image processor to detect the presence of an individual)
and thus allows the application to be designed
independently of the actual implementation of the
sensing devices.

<ContextItem>
 <ContextAttributeName>Temperature</ContextAttributeName>
 <value>24.8</value>
 <metadata>
 <units>CelciusDegrees</units>
 <lastSensedTime>2010-04-08 12:32:11 EET</lastSensedTime>
 </metadata>
</ContextItem>

Figure 4. Reply to a queryContext request

2) The ContextNotification Interface
The notification mechanism of context information

wrappers is activated when the software component, which is
interested in receiving notifications regarding a particular
piece of context information, places a subscription for a
notification produced by a context wrapper (flow 1 in Fig. 5).
Each such subscription is complemented with a notification
condition which specifies the circumstances under which the
particular subscriber wishes to receive notifications.

Every time the wrapper detects that a notification
condition is satisfied, it will send a notification to the
consumer that has placed the relevant subscription (flows 2
to n-1 in Fig. 5). Finally, the context consumer may cancel

its subscription through an unsubscribe request (flow n in
Fig. 5).

Context
Wrapper

Context
consumer

1. Subscribe to notification

2, 3, 4…n-1. Event notifications

n. Unsubscribe from notification
Figure 5. Publish/subscribe paradigm

A notification service is therefore fully defined through
the following elements: (i) the notification service name, (ii)
the attributes it monitors and their types and (iii) the
elements that can be used to form notification conditions, as
well as the types of these attributes. According to this
description, a notification service which relates to the user
location may be as shown in Fig. 6.

<Notification>
 <name>LocationUpdateNotification</name>
 <attributes>
 <attribute name=”location” type=”String”/>
 < attribute name=”identity” type=”integer”/>
 </attributes >
 <conditionElements>
 <conditionElement name=”location” type=”String”/>
 <conditionElement name=”previousNotificationLocation”
type=”String”/>
 <conditionElement name=”identity” type=”integer”/>
 <conditionElement name=”currentTimestamp” type=”datetime”/>
 <conditionElement name=”previousNotificationTimestamp”
”type=”datetime”/>
 </conditionElements>
</Notification>

Figure 6. Example of location update notification

When an interested party wants to register as a subscriber
to a context information wrapper, it must specify (i) its
identity, (ii) its location, i.e. the address at which
notifications should be sent, (iii) the notification to which it
subscribes, (iv) the attributes and the respective metadata
which it wants to receive with each notification, and (v) the
condition under which a notification should be sent to it.

3) The ContextReflection Interface
The ContextReflection interface allows context wrappers

to be queried for the attributes and notifications they provide
through the queryContextAttributes and queryNotifications,
methods of the ContextReflection interface, respectively.

4) The ContextDataStoreCom Interface

The ContextDataStoreCom interface includes all
provisions for communicating with the data store for storing
values obtained by the context source for further perusal or
for querying already stored values. These operations are
accomplished through the storeContextItemValue and
retrieveContextItemValue methods of the
ContextDataStoreCom interface.

5) The ContextDiscoverable Interface
The ContextDiscoverable interface allows the context

wrapper to be dynamically discovered by the respective
modules within the context management architecture, and
thus be subsequently used by interested context consumers.

The ContextDiscoverable interface encompasses the methods
registerToDiscoveryAgency and
unregisterFromDiscoveryAgency to register and unregister
the context wrapper to and from the discovery agency, as
well as the respondToContextConsumer method in order to
allow the context wrapper to be discovered from the
discovery agent.

D. The context interpreter

The context interpreter is the module that produces
context information of higher level of abstraction, as opposed
to context wrappers which only produce low-level context
data. More specifically, it collects “primitive” information
elements from the context distributor and the data store and
applies to them inference procedures according to rules that
have been defined. For instance, it may retrieve the GPS
coordinates corresponding to the user’s location to map it to
a position on a specific road (e.g. “Motorway 5, 3rd
kilometer”) or determine if the user’s location is “home,”
“office” or “on the move.” The inference procedure may be
performed using simple if/then rules or through more
elaborate algorithms and techniques

The full definition of a context interpreter includes (i) the
information that will be interpreted (e.g. specific attributes),
(ii) the context attributes that will be produced as output of
the interpretation procedure, (iii) the procedure that will
perform the interpretation, and (iv) the notifications
provided, if any.

Context interpreters adhere to the context wrapper
specifications and implement the ContextQuery,
ContextNotification, ContextReflection,
ContextDataStoreCom and ContextDiscoverable interfaces,
thus being ContextDistributor themselves and providing the
services described in section C.

E. The context information discovery agency

The context information discovery agency implements
facilities for storing information about the context providers
(context information wrappers, context information
interpreters), for locating them and for informing interested
parties of how they can be contacted. Additionally, it offers
information about itself in order to be detectable from
context providers.

The AddDiscoveredContextObject and
RemoveDiscoveredContextObject methods allow to add and
remove entries of context providers to and from the
discovery agency registry. The
QueryForDiscoveredContextObjects offers information
regarding registered context providers, while the
RespondToContextProvider method allows context
information providers to locate the context information
discovery agency (and subsequently register to it).

F. The context information store

The context information store allows for long-term
storage of context information. The context information may
be produced by any context information provider and once
stored in the context information store, may be later retrieved
by context consumers. In this sense, the context information

store plays the role of a buffer between context producers
and context consumers, decoupling the context production
from the context consumption time, while it also offers the
potential to store large amounts of context data, which would
be infeasible to do in other components.

III. RELATED WORK

Insofar, numerous researchers have proposed software
systems that aim at managing context information. The most
widespread architecture is the one involving one or more
centralized components for context information
management and some distributed components for context
information collection. This approach has been proposed by
Korpipää et al [13] and the related system comprises of
three functional entities namely the context manager, the
resource servers and the context recognition services. The
resource servers and context recognition services are
distributed components responsible for gathering context
information, while context manager is a centralized server
storing context information and delivering it to the client
applications. The SOCAM architecture (Service-oriented
Context-Aware Middleware) [9] also employs a centralized
server termed context interpreter, which collects data from
distributed context providers and offers it, in processed
format, to client applications.

Another centralized middleware-based approach that has
been designed for context aware mobile applications is the
one proposed by Fahy and Clarke [7] in the CASS project
(Context-Awareness Sub-Structure). The middleware
contains an Interpreter, a ContextRetriever, a Rule Engine
and a SensorListener. The SensorListener listens for updates
from sensors which are located on distributed computers,
called sensor nodes. Then the gathered information is stored
in the database by the SensorListener. The ContextRetriever
is responsible for retrieving stored context. Both of these
classes may use the services of an interpreter. CoBrA
(Context Broker Architecture) [3] is another centralized
agent-based architecture that may support context-aware
applications. The key component of the CoBrA architecture
is the intelligent context broker, which maintains and
manages a shared contextual model on behalf of a
community of agents (applications hosted by mobile devices,
services provided by a room, web services). The context
broker consists of four main sub-components, namely the
Context Knowledge Base, the Context Inference Engine, the
Context Acquisition Module and the Privacy Management
Module.

The Context Toolkit [5] is a context-aware framework
that adopts a peer-to-peer architecture, introducing however
a “super-peer” node which acts as a centralized discoverer.
Distributed sensor units (called widgets), interpreters and
aggregators register themselves to the centralized
discoverer to ascertain that they are discoverable by the
client applications.

The architecture proposed in the Hydrogen project [11]
attempts to avoid the use of a centralized component,
distinguishing initially the context information to local

(context of the device itself) and remote (context from
another device). The architecture has then three layers: The
Adaptor layer is responsible for the gathering of context
information by querying sensors; the Management layer is
responsible for delivering context information; and the
Adaptation layer which performs the adaptation of the
application.

The context management systems overviewed in this
section differ among themselves in the following respects:
(a) the comprehensiveness of the context information
elements they can manage efficiently, (b) the location of the
different components that will perform the different context
management operations within the network, (c) the spectrum
of operations they offer for context management, and (d) the
degree of suitability for web-based m-commerce
applications. Moreover, taking into account that the notion of
context is extensively used in the areas of pervasive and
ubiquitous computing, most of these systems aim to include
provisions for context management in smart spaces (e.g.
smart vehicles, intelligent rooms, smart conferences places,
etc). Within smart spaces, context information is transferred
from its capture points (e.g. sensors) to the context
information management server using WiFi, Bluetooth and
Ethernet networks (which are high-bandwidth and with small
or no usage costs), as opposed to GPRS/UMTS networks
which are widely used in m-commerce settings.

IV. EVALUATION

Our proposed architecture has similarities and
differences with the aforementioned works. It covers the
management of all kinds of context concerning the m-
commerce applications (computational, environmental, user,
application specific context) regardless of the way of
acquisition (sensors, user, derived). It implements all the
necessary functions that a context management system
should offer (capture, store, interpret, discover, transit
context), in contrast with some of the previous work. It also
adopts the use of middleware for context management,
using both centralized components (mainly for management,
storage and dissemination of context information) and some
distributed components for capturing the context
information. This arrangement is suitable for mobile
commerce applications for the following reasons:

i) A single software component (context manager) will
manage issues stemming from concurrent access to
sensors.

ii) Centralized management of context relieves the
mobile devices from the burden of managing context
themselves. This is particularly important since
resources in mobile devices are scarce. Additionally,
centralized management and storage allows us to
store large amounts of context information and
perform complex and advanced interpretation as
needed.

iii) The user interface (data, presentation properties,
functionality) of web-based m-commerce
applications is performed on a centralized application

server. Taking into account that the context storage
components is also centralized, the two components
can communicate efficiently through high bandwidth
networks, relieving mobile devices from the need to
continuously transfer context information through
slow and costly channels. The use of these channels
is limited to the absolute minimum number of
messages required to transfer context information
from capture sources directly to the centralized
server or other interpreters.

iv) The use of distributed context wrapper components
allow for capturing of context from remote locations
(mobile devices, weather and traffic sensors, etc).

v) The component-based architecture allows the
implementation using web services technology,
which promotes independence from programming
language, underlying operating system or
middleware, while it also guarantees interoperability,
which is a requirement for web-based m-commerce
applications.

The adopted approach for context management allows for
hiding the low-level sensing details from all context
consumers (interpreters, adaptation manager, applications).
Additionally, the main code of the mobile commerce
application doesn’t need to receive notifications (these are
forwarded to the context manager). This kind of
implementation removes the need for using advanced
programming techniques, such as a separate thread to
receive notifications or signal handlers to be invoked upon
arrival of an incoming notification, simplifying thus the
mobile e-commerce application development and reducing
the possibility of bugs.

V. CONCLUSION

The design of the subsystem that will manage the context
information can be standardized, since it constitutes a
standard and repetitive process for each mobile commerce
application. Additionally, the encapsulation of the content
management logic and procedures into a separate subsystem
results in a number of advantages regarding its
manageability, maintainability and speed of application
development.

In this paper, we have presented a high-level software
architecture for context information management, suitable
for m-commerce applications. Additionally, we have
described the functionality and characteristics of its
components, as well as the interaction among these different
components. The presented architecture is modular, hides the
complexity associated with different sensing methods,
diverse context sources and various access technologies.
Additionally, it leads toward a user-transparent infrastructure
that provides application developers with services that
facilitate and quicken context aware mobile commerce
applications development.

VI. REFERENCES
[1] Benou, P., Bitos, V. (2008) Developing Mobile Commerce

Applications. Journal of Electronic Commerce in Organizations, Vol.
6, No.1, pp. 63-78.

[2] Benou P., Vassilakis C. (2010) The Conceptual Model of Context for
Mobile Commerce Applications. Journal of Electronic Commerce
Research, Vol. 10, Vo. 2, pp. 130-165, Springer-Verlag.

[3] Chen, H. (2004) An Intelligent Broker Architecture for Pervasive
Context-Aware systems. PhD Thesis, University of Maryland,
Baltimore County.

[4] Dey, A., Abowd, G. (1999) Towards a Better Understanding of
Context and Context-Awareness. Technical Report 99-22, Georgia
Institute of Technology.

[5] Dey, A., Abowd, G. (2001) A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications.
Human- Computer Interaction, 16 (2-4), pp. 97–166.

[6] Dunlop, M., Brewster, S. (2002) The Challenge of Mobile Devices
for Human Computer Interaction. Personal and Ubiquitous
Computing, Vol. 6, No. 4, pp. 235-236.

[7] Fahy, P., Clarke, S. (2004) CASS – a middleware for mobile context-
aware applications. Proceedings of the Workshop on
ContextAwareness, MobiSys.

[8] Gellersen, H., Schmidt, A., Beigl, M. (2002) Multi-Sensor Context-
Awareness in Mobile Devices and Smart Artifacts. ACM Journal of
Mobile Networks and Applications, Vol. 7, No. 5, pp. 341 –351.

[9] Gu, T., Pung, H. K., Zhang, D. Q. (2005) A Service-Oriented
Middleware for Building Context-Aware Services. Journal of
Network and Computer Applications (JNCA), Elsevier, Vol. 28, Issue
1, pp. 1-18.

[10] Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.
(2005) Middleware for Distributed Context-Aware Systems. On the
Move to Meaningful Internet Systems, Springer, LNCS 3760, pp.
846-863.

[11] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann,
J. (2002) Context-awareness on mobile devices – the hydrogen
approach. Proceedings of the 36th Annual Hawaii International
Conference on System Sciences, pp.292–302.

[12] Kaikkonen, A., Kallio, T., Kekäläinen, A., Kankainen, A., Cankar, E.
(2005) Usability Testing of Mobile Applications: A Comparison
between Laboratory and Field Testing. Journal of Usability Studies,
Issue 1, Vol. 1, pp. 4-16.

[13] Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H., Malm, E. J. (2003)
Managing Context Information in Mobile Devices. IEEE Pervasive
Computing, Vol. 2, No. 3, pp. 42-51.

[14] Koukia, S., Rigou, M., Sirmakessis, S. (2006) The Role of Context in
m-Commerce and the Personalization Dimension. Proceedings of the
2006 IEEE/WIC/ACM international conference on Web Intelligence
and Intelligent Agent Technology, pp. 267-276.

[15] Kranenburg, H., Bargh, M.S., Iacob, S., Peddemors, A. (2006) A
context management framework for supporting context-aware
distributed applications. Communications Magazine IEEE, Vol. 44,
Issue 8, pp. 67-74.

[16] Mühl, G., Fiege, L., Pietzuch, P. (2006) Distributed Event-Based
Systems. Springer, 1st edition.

[17] Noble, B., Satyanarayanan, M., Narayanan, D., Tilton, J., Flinn, J.,
Walker, K. (1997) Agile application-aware adaptation for mobility. In
Proceedings of thw sixteen ACM Symposium on Operating Systems
Principles, pp. 276-287.

[18] Rakotonirainy, A., Loke, S., Fitzpatrick, G. (2000) Context-
Awareness for the Mobile Environment, Proceedings of the
Conference on Human Factors in Computing Systems.

