
Improving QoS Delivered by WS-BPEL Scenario
Adaptation through Service Execution Parallelization

Dionisis Margaris
Department of Informatics and

Telecommunications
University of Athens

Athens, Greece
+302107275220

margaris@di.uoa.gr

Costas Vassilakis
Department of Informatics and

Telecommunications
University of the Peloponnese

Tripoli, Greece
+302710372203

costas@uop.gr

Panagiotis Georgiadis
Department of Informatics and

Telecommunications
University of Athens

Athens, Greece
+302107275219

p.georgiadis@di.uoa.gr

ABSTRACT
Abstract—WS-BPEL scenario execution adaptation has been
proposed by researchers as a response to the need of users to tailor
the WS-BPEL scenario execution to their individual preferences;
these preferences are typically expressed through Quality of
Service (QoS) policies, which the adaptation mechanism considers
in order to select the services that will ultimately be invoked to
realize the desired business process. In this paper, we study the
potential to parallelize the execution of the WS-BPEL scenario in
order to minimize its response time and/or achieving higher scores
in the other qualitative dimensions, such as cost, reliability, etc., at
the same time. We also describe, develop and validate a
parallelization algorithm for realizing the proposed enhancements.

CCS Concepts
• Information systems ➝World Wide Web ➝Web Services

Keywords
WS-BPEL, adaptation, parallelization, quality of service,
performance evaluation

1. INTRODUCTION
Web Services are the dominant standard for building distributed
applications. Service providers make available functionalities that
can be invoked through well-defined XML-based protocols, and
consumer applications may locate and invoke them using standard
representations and interfaces, regardless of internal implementa-
tion or infrastructure details on the side of the service provider. WS-
BPEL (Web Services Business Process Execution Language) al-

lows for building high-level business processes through orchestrat-
ing individual services. WS-BPEL programs (scripts or scenarios)
are made available for execution through deployment on WS-BPEL
execution engines. WS-BPEL has been designed to model business
processes that are fairly stable, therefore the WS-BPEL program-
mer specifies at the exact services to be invoked for the realization
of the business process at scenario development time. This arrange-
ment however is not adequate in the current web: the functionality
offered by services invoked within the scenario (e.g. booking an air
flight ticket) are typically offered by numerous providers (different
airlines and travel agencies), and different providers may offer this
functionality with diverse quality of service (QoS) parameters.
Considering this, it would be desirable to enable consumers to adapt
the WS-BPEL scenario execution to suit their QoS requirements;
according to [2], governance for compliance with QoS and policy
requirements is an open issue for the SOA architecture.
To foster this requirement, a number of approaches have been
proposed following two main strategies [3]: (i) horizontal
adaptation, where the composition logic is not modified and the
main adaptation task is to select and invoke, on a per-service basis,
the service implementation that delivers the requested functionality
and best matches the client’s QoS requirements; the selected
services are substituted for either abstract tasks (e.g. [3]) or
concrete service invocations (e.g. [5]) and (ii) vertical adaptation,
where the composition logic may be changed.
In this paper we propose a transformation-based approach to ex-
ploit the potential parallelism in service invocations, so as to mini-
mize the overall WS-BPEL scenario execution time. Exploitation
of parallelism can serve as an aid to the adaptation process by
broadening the set of alternatives available to the adaptation mech-
anism: since parallelism reduces the overall execution time, in the
parallelized scenario it is possible to choose operations with higher
response times but better values in other QoS dimensions (e.g.
cost), with the composition respecting the overall WS-BPEL sce-
nario execution time limits, but scoring higher in the other dimen-
sions (e.g. lower costs). We present an algorithm based on data flow
analysis combined with side-effect analysis, to identify cases where
services for sequential execution in the WS-BPEL scenario can run
in parallel; the WS-BPEL scenario is then restructured to utilize the
available parallelism. Since the WS-BPEL scenario is restructured,
the presented approach does not strictly follow the horizontal adap-
tation paradigm [3], however the changes to the composition logic
are limited and performed in a fashion that enables the exploitation
of exception handlers provided by the scenario designer, which
may have been elaborately crafted to correspond to the particulari-
ties of the business process modeled by the WS-BPEL scenario.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SAC 2016, April 4-8, 2016, Pisa, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3739-7/16/04…$15.00
DOI: http://dx.doi.org/10.1145/2851613.2851805

Finally, we present a middleware-based architecture which enables
the realization of the tasks presented above and validate the applica-
bility of the proposed approach through experiments, concerning
both the overhead introduced by the adaptation mechanism and the
QoS of the formulated adaptations.
The contribution of this work is: (a) the introduction of an algorithm
to exploit the parallel execution potentials and (b) the design,
development and evaluation of an architecture to perform the QoS-
based adaptation, incorporating the parallelization algorithm.
The rest of this paper is structured as follows: Section 2 presents
fundamental concepts regarding the QoS. Section 3 presents the
parallelization algorithm, and Section 4 outlines the overall
architecture used for service execution parallelization and WS-
BPEL scenario adaptation. Section 5 evaluates the proposed
approach, both in terms of performance and adaptation quality,
while Section 6 overviews related work and Section 7 concludes
the paper and outlines future work.

2. QoS CONCEPTS
QoS is generally defined in terms of attributes corresponding to
non-functional aspects of services [13], with typical attributes be-
ing response time, availability, price, reputation, security etc [14].
In this paper, we will limit our discussion to attributes response
time (rt), availability (av) and cost (c), for brevity reasons, adopting
their definitions from [11]. This limitation does not lead to loss of
generality since the extension of the proposed algorithm to include
more QoS attributes is straightforward. Taking the above into ac-
count, each functionality implementation (realized as a service op-
eration) considered in the adaptation process has a known QoS vec-
tor QoSS=(rts, avs, cs) which is recorded in an appropriate repository
(e.g. METEOR-S [19] or WSMO [28]). The same repository should
also provide information regarding which operations are equiva-
lent. Within a WS-BPEL scenario, individual functionalities are
composed into sequential or parallel flows to implement the busi-
ness process. Considering the QoS parameters of the individual
functionalities invoked and the type of their compositions (sequen-
tial or parallel), it is possible to compute the QoS value of the over-
all composition using the formulas shown in Table I [8]. As we can
see from Table 1, the response time (rt) of a sequential composition
is equal to the sum of its components’ rt, while the rt of a parallel
composition is equal to the maximum value. This difference is im-
portant in the context of this work, since the exploitation of availa-
ble parallelization can lead to reduction of the overall rt.

Table 1: QoS of composite services

 QoS attribute

 response time cost availability

Sequential
composition ෍ ௜ݐݎ

௡

௜ୀଵ
 ෍ ܿ௜

௡

௜ୀଵ
 ෑ ௜ݒܽ

௡

௜ୀଵ

Parallel
composition

max
௜
௜ ෍ݐݎ ܿ௜

௡

௜ୀଵ
 ෑ ௜ݒܽ

௡

௜ୀଵ

In the context of adaptation, selection of the concrete service that
will realize some functionality is typically driven by parameters
specifying the upper and lower bounds for each QoS attribute. QoS
bounds may either be defined as global constraints (i.e. express the
desired values for the whole WS-BPEL scenario) or as local con-
straints (each such constraint expresses the desired values for a par-
ticular service invocation) [9]. When adaptation problems need to
address global constraints performance is poor [21], therefore ei-
ther local constraints are directly used (e.g. [8]) or methods for
mapping global constraints to local constraints are employed

(e,g, [21]). Complementary to QoS bounds, a weight is assigned to
each QoS attribute, indicating how important each QoS attribute is
considered in the context of the particular business process.
Weights always apply to the whole composition, rather than to in-
dividual services, since they reflect the perceived importance of
each QoS attribute dimension on the process as a whole [18]. In the
proposed algorithm, QoS specifications for a service within the
WS-BPEL scenario may include an upper bound and a lower bound
for each QoS attribute, i.e. for service sj included in a WS-BPEL
scenario, the designer formulates two vectors MINj(minrt,j, minav,j,
minc,j) and MAXj(maxrt,j, maxav,j, maxc,j). Additionally the designer
formulates a weight vector W = (rtw, avw, cw), indicating how im-
portant each QoS attribute is considered by the designer in the con-
text of the particular operation invocation. The values of the QoS
attributes are assumed to be expressed in a “larger values are better”
setup, e.g. a service having cost = 6 means that that it is cheaper
than a service having cost = 4 [8],[10].

3. THE PARALLELIZATION ALGORITHM
Although WS-BPEL provides the mechanisms to designate parallel
execution of operation invocations, WS-BPEL scenario designers
may not fully exploit the potential for arranging operations into
parallel execution structures, similarly to the case that programmers
typically write programs in a single-threaded fashion [22][23]. This
is due to the fact that parallelization is a laborious task and WS-
BPEL designers mostly focus on accurately realizing the business
logic behind WS-BPEL scenarios, rather than pursue execution
time optimizations. To this end, a tool that would detect and exploit
the parallelization opportunities available in WS-BPEL scenarios,
would deliver the benefits of parallel execution without placing the
parallelization burden on WS-BPEL scenario designers.
In our approach, WS-BPEL scenario parallelization is undertaken
by a preprocessor, which preprocesses the scenario before it is de-
ployed to the WS-BPEL execution engine. Parallelization is be
driven by data flow and dependence analysis used in instruction-
level parallelism [24], supplemented with techniques addressing
the particularities of WS-BPEL execution (exceptions, compensa-
tions and side-effects) and aspects related to the QoS of the invoked
services. The criteria for identifying invocations that can be exe-
cuted in parallel are detailed in the following paragraphs. In these
paragraphs, we will consider that operation invocation op1 appears
in the WS-BPEL scenario before invocation op2. At the current de-
velopment stage, only invocations belonging either to (i) the same
sequence structured activity or (ii) nested sequence and flow activ-
ities, with no intervening conditional (if) or loop structured activi-
ties (while, repeatUntil, foreach) [1] are considered. The develop-
ment of the necessary techniques for control dependence checking
and loop unrolling [26] to foster parallelization among invocations
nested in loops and conditionals are part of our future work. The
main challenge in this task is to appropriately handle dynamic
XPath expressions typically used for accessing array elements used
in WS-BPEL loops [1]), while the parallelization potential of con-
trol structures must also be coupled with the adaptation of these
structures, employing techniques such as those described in [34].
WS-BPEL provides two main control flow structures for
composing operation invocations into business processes, namely
sequence and flow, which arrange for sequential and parallel
execution of the invocations they contains, respectively [1].
1. Two operation invocations op1 and op2 can be scheduled to run

in parallel, if they have been designated to be executed in par-
allel in the original WS-BPEL scenario (as crafted by the WS-
BPEL designer).

2. Operations op1 and op2 are analyzed for existence of data
dependence between them. Four types of dependencies may
exist between operation invocations [25]:
a. True (or flow) dependence: op2 uses a parameter that is

either directly returned by op1 as its result, or computed
using the result of op1. In this case, clearly op2 cannot be
executed before op1 concludes its execution, since the value
of some input parameter of op2 is yet unknown.

b. Anti-dependence: op2 modifies a variable V by assigning to
it its result value, and the same variable V is used as an
input parameter to op1. In this case the operations cannot be
executed in parallel because if op2 concludes before op1 is
processed, variable V will be modified and thus the
parameter passed to op1 will not have the correct value.

c. Output dependence: both operations store their result to the
same variable V. In a sequential execution, after op2 has
concluded the value returned by op2 will be stored in V. If
however op1 and op2 are scheduled to be executed in paral-
lel, the value of the operation invocation that concluded last
will be finally stored in V; therefore in the case that op1
concludes after op2, the execution result will be erroneous.

d. Input dependence: both operations share an input
parameter.

If true dependence, anti-dependence or output dependence is
identified between two invocations, then they cannot be sched-
uled to run in parallel; input dependence does not preclude par-
allel execution of the involved operation invocations [26].

3. Operations op1 and op2 cannot be scheduled to be executed in
parallel if the invocation of op2 either (a) incurs some cost or
(b) has some side-effect (e.g. creating a session, booking a
ticket etc.) [31], unless the results of the invocation of op2 are
undoable, through a compensation handler [1] provided in the
WS-BPEL scenario. This criterion targets the case in which an
exception is raised during the invocation of op1: if op1 failed
due to an exception and op2 were scheduled to run after op1,
then op2 would not be executed at all (and thus the associated
cost would not be incurred and/or the relevant side-effects
would not be created) since either the scenario would be termi-
nated or control would be transferred to the appropriate fault
handler. If however the invocations were executed in parallel,
op2 would run and therefore the associated cost would be in-
curred, which is undesirable; nevertheless, if the WS-BPEL
scenario included a compensation handler for op2 it would be
possible to execute the services in parallel and provide a fault
handler which would arrange for invoking op2’s compensation
handler to recuperate the cost stemming from the invocation of
op2 and/or undo the created side-effects.

4. Two invocations op1 and op2 cannot be scheduled to run in par-
allel if op1 creates a side-effect (e.g. creation of a session, send-
ing goods) and op2 depends on the existence of the side-effect.

5. In all other cases, op1 and op2 are able to run in parallel, since
conditions analogous to those used for coarse-grain parallelism
detection hold between op1 and op2 (lack of data dependence
and lack of (non-undoable) side effects) [33].

Criteria 1 and 2 in the above list, as well as the existence of the
compensation handler stated in criterion 3 can be directly evaluated
by analyzing the WS-BPEL scenario. The existence of a cost
associated with the invocation of a service mentioned in criterion 3
can be directly retrieved from the service repository (e.g.
METEOR-S [19]). Finally, side-effects either created by the service
(criteria 3 and 4) or needed by the service (criterion 4) can be
retrieved from a repository such as WSMO [27]. Obviously, instead

of using two distinct repositories, the information needed may be
stored into a single, comprehensive repository; in our
implementation we have used a unified repository. When two (or
more) operation invocations that were initially designated to run
sequentially are restructured to run in parallel, their QoS limits
regarding the response time can be relaxed. For instance, consider
the case that a WS-BPEL scenario comprises of operation
invocations O1 and O2 that are designated to be executed
sequentially, with an upper bound on the response time 3 and 7
seconds, respectively; therefore the upper bound on the scenario
execution time would be 10 seconds. If the scenario is restructured
so that O1 and O2 are executed in parallel, then the upper bound of
both operations’ execution time can be set to 10 seconds, a setting
which provides guarantees that the WS-BPEL scenario will
conclude in 10 seconds, but it also broadens the pool of operations
that the adaptation mechanism can choose from to realize O1 and
O2. Generalizing, if operations O1, O2, …, On were initially
restructured to run sequentially and are restructured to run in
parallel, then the upper bounds of their response time are set to
∑ ௜ܷ

ோ்௡
௜ୀଵ , where ௜ܷ

ோ் is the initially set upper bound for the run
time of operation Oi.
Taking the above criteria into account, the preprocessor analyzes
the structure of the WS-BPEL scenario and determines which
invocations can be parallelized. Operations within a sequential
structure that are found to be parallelizable, are organized in a flow
construct. Consider for instance the WS-BPEL scenario fragment
illustrated in listing 1 (for conciseness purposes, only the relevant
parts/attributes of the scenario are shown), which arranges for
getting a quote for a hotel room and booking it, renting a car and
then paying for both items. The invocations are arranged in a
sequential structure, however in this sequence, we can identify that
invocations to getRoomQuote and rentCar may proceed in parallel,
since they (a) have no interdependencies and (b) rentCar has an
associated cost (the cost of invoking the service e.g. a commission;
the actual fee for renting the car is paid later through
finalizeReservation) and a side-effect (recording the car rental in
the service provider’s database), however a compensation handler
exists, therefore any incurred costs and/or side effects are undoable
by invoking this compensation handler.
Contrary, the invocation to reserveRoom must strictly be performed
after the invocation to getRoomQuote has concluded, since
reserveRoom uses variable quote as its input, which is produced by
getRoomQuote (direct dependency). Similarly the invocation to
finalizeReservation should follow the conclusion of both
getRoomQuote and rentCar because variable paymentInfo (the in-
put of finalizeReservation) is indirectly dependent on the output of
rentCar (variable carRentalInfo) and getRoomQuote (variable
quote), since the copy construct in listing 1 uses the carRentalInfo
and quote variables to calculate the value to be assigned to (a part
of) reserveRoom’s input paymentInfo. A more subtle dependence
exists between services reserveRoom and finalizeReservation,
which cannot be determined by analyzing the scenario code alone:
finalizeReservation can be performed only when a room has been
reserved; this is a required side-effect for operation
finalizeReservation, and this side-effect is produced by operation
reserveRoom, hence reserveRoom must have concluded before
finalizeReservation is invoked. The information regarding the side
effects is drawn by the preprocessor from the service repository,
where it is recorded that reserveRoom creates the side effect and
finalizeReservation depends on it. After the dependence analysis
results have been computed, the WS-BPEL scenario is restructured
to accommodate the available parallelism, as shown in listing 2

(only the first part which has changed is shown; the part that has
remained intact has been omitted for brevity; [29] includes
graphical representations of the two scenario excerpts). Regarding
the upper response time bound of the services that are restructured
to be executed in parallel, the preprocessor arranges for designating
that the upper response time bound of each of the invocations to
getRoomQuote and rentCar is equal to the sum of the individual
invocations, with the sum being normalized to the [1, 10] scale.
An issue that needs to be addressed regarding these
transformations, is the fact that one of the criteria for determining
whether operations are parallelizable, and in particular the criterion
examining whether the involved service incurs some cost (criterion
3 above) is based on the service repository contents. However, the
service repository contents may change regarding this dimension
i.e. either (a) a provider may begin charging a previously free
service, hence operation invocations that were previously
parallelizable cease to be so, or (b) a provider may stop charging a

previously non-free service, in which case two invocations that
were previously non-parallelizable can now be scheduled to be
executed in parallel. A similar issue exists for side-effect creation
and requirement. To tackle this issue, the preprocessor takes the
following two measures:
1. to guard against selecting a non cost-free service, the prepro-

cessor arranges for setting the upper bound for the cost of the
particular invocation to zero (normalized to the [1, 10] scale).

2. in all cases, the preprocessor establishes redeployment triggers,
which consist of monitoring updates to the repository that fall
into the previously described categories (cost, side-effect
creation and side-effect requirement). When such a change is
detected, the affected WS-BPEL scenarios are identified and a
preprocessing and redeployment action is initiated for them, so
that the preprocessor takes into account the updated contents of
the repository (c.f. Fig. 1).

4. THE ADAPTATION ARCHITECTURE
The adaptation architecture, illustrated in Fig. 1, adds to the stand-
ard SOA architecture three additional modules, the preprocessor,
the adaptation layer and the redeployment triggers.
The preprocessor performs transformations on the original WS-
BPEL scenario by (a) restructuring service invocations to be per-
formed in parallel under the conditions described in Section 4
above (b) arranging for passing appropriate data to the adaptation
layer to drive the adaptation and (c) redirecting service invocations
to the adaptation layer, so as to be sent to the service implementa-
tions best matching the QoS specifications. The preprocessing step
produces an enhanced WS-BPEL scenario, which is then deployed
to the WS-BPEL orchestrator. Activities (b) and (c) are performed
in a similar way to [20] and are omitted in this paper due to space
limitations; details on these steps can be also found in [29].
The adaptation layer intervenes between the WS-BPEL orchestra-
tor and the actual web service implementations, arranging for for-
mulating the WS-BPEL scenario execution plan, i.e. to choose for
each operation invocation designated in the executing scenario the
most appropriate implementation with respect to the QoS policy
defined for the current execution. The adaptation layer uses integer
programming to determine the optimal execution plan for the spe-
cific WS-BPEL scenario execution, subject to the QoS policy spec-
ified by the consumer, and stores this execution plan to the session
memory. Subsequently intercepts service invocations performed in
the context of the WS-BPEL scenario execution and redirects them
to the chosen service implementations. Execution plan computation
and service invocation redirection are performed in a similar way
to [20] , while details on these steps can be also found in [29].
Finally, redeployment triggers periodically check whether changes
have occurred to the data within the repository on the basis of which
decisions regarding parallelization capability have been made. This
includes (a) cost of services (b) creation of side-effects by services
and (c) requirement of side-effects by services. When such a
modification is expected, the affected WS-BPEL scenarios are
identified and, for each of them, the preprocessor is invoked to
perform the applicable transformations, considering the updated
service repository contents. Redeployment of the new preprocessed
file is performed without affecting currently running instances of
the scenario, exploiting the hot redeployment feature of
contemporary WS-BPEL orchestrators (e.g. [30]).

5. EXPERIMENTAL EVALUATION
In this section, we report on our experiments aiming to substantiate
the feasibility of the proposed approach, both in terms of execution

<sequence>
 <invoke operation="getRoomQuote" outputVariable= "quote"

inputVariable="roomTypeAndPeriod" name= "getQuote"/>
 <invoke operation="reserveRoom" inputVariable= "quote"

outputVariable="reservationInfo" name= "reserveRoom"/>
 <invoke operation="rentCar" inputVariable= "carTypeAnd

Period" outputVariable="carRentalInfo" name="rentCar">
 <compensationHandler>
 <invoke operation="cancelRentCar" inputVariable=

"carRentalInfo">
 </compensationHandler>
 </invoke>
 <assign>
 <copy>
 <from expression="$quote.price + $rentalInfo.price" />
 <to variable="paymentInfo" part="amount" />
 </copy>
 </assign>
 <invoke operation="finalizeReservation" name="doReserve"

inputVariable="paymentInfo" outputVariable="receipt" />
</sequence>

Listing 1: Excerpt of sequential WS-BPEL scenario

<sequence>
 <flow>
 <invoke operation="getRoomQuote" inputVariable=

"roomTypeAndPeriod" outputVariable="quote"
name="getQuote" >

 <compensationHandler>
 <invoke operation="cancelRentCar"

inputVariable="carRentalInfo"/>
 </compensationHandler>
 </invoke>
 <invoke operation="rentCar"

inputVariable="carTypeAndPeriod"
outputVariable="carRentalInfo" name="rentCar" />

 </flow>
 <sequence>
 <invoke operation="reserveRoom" inputVariable="quote"

outputVariable="reservationInfo" name="reserveRoom"/>
 <assign>
 …
 </sequence>
</sequence>

Listing 2: Excerpt of transformed WS-BPEL scenario

time (quantifying the introduced overhead and performance gains)
and solution quality. For our experiments we used two machines:
(a) a workstation, equipped with one 6-core Intel Xeon E5-
2620@2.0GHz CPU and 16 GB of RAM, which hosted the prepro-
cessor and the clients and (b) a workstation with identical configu-
ration to the first, except for the memory which was 64GBytes, that
hosted the WS-BPEL orchestration engine (Apache ODE 1.3.6),
the adaptation layer, the target web services deployed on a Glass-
fish 4.1 application server and the service repository. The machines
were connected via a 1Gbps LAN. The service repository was im-
plemented as in-memory hash-based structure, which proved more
efficient than using a separate (memory or disk-based) database.
Preprocessing time is not included in the overheads, since this is
performed in an off-line fashion and does not penalize the WS-
BPEL scenario execution performance. In all experiments, the ser-
vice repository was populated with synthetic data having an overall
size of 1,000 web services; each web service included 3-8 opera-
tions and each operation was offered by a number of alternative
providers, ranging from 5 to 50. Each service had at least 5 other
services equivalent to it (i.e. having equivalents for all its opera-
tions). QoS attribute values in this repository were uniformly drawn
from the domain [0, 10]. The WS-BPEL scenarios used in the ex-
periments were synthetically generated by randomly drawing oper-
ations from the repository, and the performance evaluation tests
were run for each of the generated scenarios; 1,000 scenarios were
generated in total. We resorted to synthetic data due to the lack of
a real-world test suite. In the scenario generation process, two con-
secutive functionality invocations were selected to be executed se-
quentially (sequence construct) with a probability of 0.7 and in par-
allel (flow construct) with a probability of 0.3. In our first experi-
ment, we quantify (a) the time needed to formulate the WS-BPEL
scenario execution plan, for varying degrees of concurrency (in-
curred once per execution), (b) the overhead imposed by the mid-
dleware intervention during service invocation (incurred for each
invocation; the diagram illustrates the overhead sustained for all
invocations within the scenario executions) and (c) the overall over-
head per WS-BPEL scenario execution (Fig. 2). We can observe
that all overheads remain relatively low, even for high degrees of

concurrency, (an overall penalty of 250 msec for 200 concurrent
invocations) and scales linearly with the concurrency degree.
Fig. 3 compares the QoS of the execution plan formulated for a
number of representative trial cases and on average by (i) the sim-
ple QoS-based algorithm described in [8] and (ii) the approach pro-
posed in this paper. The average shown in the diagram has been
computed considering all 1,000 WS-BPEL scenarios used in the
experiment, while the representative trial cases were chosen so as
to include different number of operation invocations (scenarios 1-3
contain 3 invocations, scenarios 4-6 contain 6 invocations and sce-
narios 7-10 contain 8 invocations), varying settings regarding par-
allel flows (scenarios 1, 2, 4 and 7 contain no parallel flows, sce-
narios 3, 5, 8 and 9 contain one parallel flow and scenarios 6 and
10 contain two parallel flows) and different numbers of data-de-
pendent invocations (from one to seven; some data dependencies
formed chains e.g. s1 is dependent on s2  s2 is dependent on s3,
while other data dependencies were unconnected, e.g. s1 is
dependent on s2  s3 is dependent on s4).

Figure 2: Execution plan formulation overhead

We chose to compare the proposed approach against the one de-
scribed in [8], since the latter handles parallel flows and is exhaus-
tive, always thus locating the optimum solution. The lower and up-
per QoS bounds for operation invocations were randomly drawn

Figure 1: The adaptation architecture

from the domains [0,4] and [6,10, respectively]. The weights of the
QoS attributes were randomly selected from the domain [0,1]. In
all cases, a uniform distribution was used. The diagram shows that
the algorithm proposed in this paper achieves solutions whose QoS
is on average higher by 22% than the corresponding solutions for-
mulated by the algorithm described in [8]. This is due to the paral-
lelization of operation invocations, which (a) lead to reduced re-
sponse time and (b) due to the relaxation of the response time con-
straints allowed by the parallelization, the set of alternatives avail-
able to the adaptation mechanism is broadened (through allowing
for selection of implementations with higher execution times than
would be possible in the original scenario with sequential execu-
tion); this in turn provides opportunities for formulation of better
execution plans, in the cases that the implementations that can now
be selected score better in the rest QoS dimensions.

Figure 3: QoS of solutions formulated by the proposed

approach and the algorithm described in [8].

6. RELATED WORK
Insofar, WS-BPEL scenario adaptation has received considerable
research attention, with proposed adaptation methods following
either the horizontal or the vertical adaptation approach [3].
VieDAME [6] considers QoS parameters to adapt WS-BPEL
scenario execution; pluggable modules, attached to the WS-BPEL
orchestrator, provide support for the QoS parameters and the
selection strategy. VieDAME monitors the execution of WS-BPEL
scenarios and arranges for dynamic replacement of web services
that fail to meet the desired QoS levels [20]. VieDAME also uses a
monitoring mechanism, using observed service QoS levels to
predict future performance of services; these predictions are used
to improve adaptation quality. Work in [7] allows for specification
of QoS constraints, which drive the adaptation process; the
adaptation process aims to minimize an objective function for the
entire orchestration employing either brute force (OPTIM_S) or
heuristic (OPTIM_HWEIGHT) algorithms. [4] introduces AgFlow,
which performs QoS-based adaptation using a middleware
approach. AgFlow has two modes of operation: global planning,
where QoS constraints are designated for the composite service as
a whole rather than to individual tasks, and integer programming is
used to compute optimal plans for composite service executions
and local optimization, where QoS constraints are set to individual
tasks; in local optimization, execution plan optimality is not
guaranteed, but execution plan formulation is more efficient.
Moreover, AgFlow allows for execution replanning, to tackle
issues such as services becoming unavailable or changing their
predicted QoS. The work in [16] uses constraint optimization
techniques to formulate the optimal execution plan, allowing for

human user intervention to enhance the solving process. [5]
integrates QoS-based adaptation with exception resolution; the
ASOB middleware introduced in this work intercepts service
invocation failures and distinguishes business logic faults from
system faults, remedying the latter category through replacing
failed services by “next best” solutions; exceptions stemming from
business logic faults are left to the WS-BPEL scenario designer to
resolve through appropriate handlers, since they cannot be
addressed automatically. [8] extends the work in [5] by being able
to adapt scenarios that include <flow> constructs.
The issue of performance when composing (or adapting) large
composition structures has lately received research attention. [17]
uses mixed integer programming to decompose large-scale
composition structures into small-scale composition segments, and
subsequently determines a QoS-optimal composite solution for
each small-scale composition segment, reducing thus the time
needed for solving the composition problem.
Regarding the parallelization of WS-BPEL scenario execution,
although both business and scientific workflows have been
identified to be highly parallel [15], little work has been
reported. [12] presents a formal model for semantic-driven service
execution; by examining data flows, this model provides potential
for parallelizing service execution, based on the data dependencies
among services. This approach requires however extensive
semantic information (information, functional, nonfunctional and
behavioral descriptions of the web services, complementary to their
WSDL descriptions), while it also does not consider QoS aspects
and adaptation. Execution parallelization techniques have however
been studied extensively in other domains, notably in instruction-
level parallelism [24], and the data flow and dependence analysis
used in this domain can be exploited for parallelizing the execution
of WS-BPEL scenarios.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented a transformation-based approach to
exploit the potential parallelism in service invocations, so as to
minimize the overall WS-BPEL scenario execution time. Besides
improving execution time, this exploitation provides more choices
to the adaptation mechanism, enabling it to formulate execution
plans of better quality. We have also described an architecture for
realizing the parallelization and adaptation. The proposed
algorithm has been experimentally validated regarding (i) its
performance and (ii) the quality of execution plans generated.
Our future work will focus on extending the algorithm to handle
more efficiently conditional and iteration constructs in the WS-
BPEL scenario, as well as developing the relative framework; this
can be supported through branch prediction and loop unrolling
techniques [26][32], as well as by gathering statistical information
from prior scenario executions and using it as input to the
adaptation process. This information will quantify aspects
regarding the behavior of control constructs in the scenario, e.g. the
probability that a conditional branch is executed or the distribution
of the number of executions of a loop [32].

8. REFERENCES
[1] OASIS WSBPEL TC. WS-BPEL 2.0. http://docs.oasisopen.

org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[2] MP. Papazoglou, P. Traverso, F. Leymann, “Service-
Oriented Computing: State of the Art and Research
Challenges”, IEEE Computer vol. 40, no 11, 2007, pp. 38-45.

[3] V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, F. Lo
Presti, “A Performance Comparison of QoS-Driven Service

Selection Approaches”, Proceedings of ServiceWave 2011,
Abramowicz W et al. (Eds.): 2011, pp. 167–178.

[4] LB. Zeng, AHN. Benatallah, M. Dumas, J. Kalagnanam, H.
Chang, “QoS-aware middleware for web services
composition”. IEEE Transactions on Software Engineering,
vol. 30, no 5, 2004.

[5] C. Kareliotis, C. Vassilakis, S. Rouvas, P. Georgiadis. “QoS-
Driven Adaptation of BPEL Scenario Execution”,
Proceedings of ICWS 2009, pp. 271-278.

[6] O. Moser, F. Rosenberg, S. Dustdar, “Non-Intrusive
Monitoring and Service Adaptation for WS-BPEL”,
Proceedings of WWW 2008, China, 2008, pp. 815-824.

[7] Y. Xia, P. Chen, L. Bao, M. Wang, J. Yang, “A QoS-Aware
Web Service Selection Algorithm Based on Clustering”,
Proceedings of ICWS11, 2011.

[8] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated
framework for QoS-based adaptation and exception
resolution in WS-BPEL scenarios”, Proceedings of the ACM
Symposium on Applied Computing, 2013, Portugal.

[9] G. Canfora, M. Di Penta, R. Esposito, ML. Villani, “An
Approach for QoS-aware Service Composition based on
Genetic Algorithms”, Proceedings of the 2005 conference on
Genetic and evolutionary computation, 2005, pp. 1069-1075.

[10] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated
framework for adapting WS-BPEL scenario execution using
QoS and collaborative filtering techniques”, Science of
Computer Programming 98, 2015, pp. 707–734.

[11] J. O’Sullivan, D. Edmond, A. Ter Hofstede, “What is a
Service?: Towards Accurate Description of Non-Functional
Properties”, Distributed and Parallel Databases, vol. 12 2002.

[12] T. Vitvar, A. Mocan, M. Zaremba, “Formal Model for
Semantic-Driven Service Execution”, Proceedings of ISWC
2008, LNCS 5318, 2008, pp. 567–582.

[13] ITU. Recommendation E.800 Quality of service and
dependability vocabulary.

[14] J. Cardoso, “Quality of Service and Semantic Composition of
Workflows”, PhD thesis, Univ. of Georgia, 2002.

[15] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D.
Gannon, C. Goble, M. Livny, L. Moreau, J. Myers,
“Examining the Challenges of Scientific Workflows”, IEEE
Computer, vol. 40(12), December, 2007, pp. 24-32.

[16] A.B. Hassine, S. Matsubara, T. Ishida, “A Constraint-Based
Approach to Horizontal Web Service Composition”, Procs.
of the 5th International Semantic Web Conference, ISWC
2006, Athens, GA, USA, November 5-9, 2006, pp. 130-143.

[17] L. Qi, X. Xia, J. Ni, Ch. Ma, Y. Luo, “A Decomposition-
based Method for QoS-aware Web Service Composition with
Large-scale Composition Structure”, Proceedings of the Fifth
International Conferences on Advanced Service Computing,
A. Koschel, J.L. Mauri (eds), May 2013, Spain, pp. 81-86.

[18] X. Fei, S. Lu, “A Dataflow-Based Scientific Workflow
Composition Framework”, IEEE Transactions on Services
Computing 5(1), 2012, pp.45-58

[19] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S.
Oundhakar and J. Miller, METEOR-S WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication and

Discovery of Web Services, Journal of Information
Technology and Management, 6(1), 2005 pp. 17-39.

[20] D. Margaris, C. Vassilakis, P. Georgiadis, “A Hybrid
Framework for WS-BPEL Scenario Execution Adaptation,
Using Monitoring and Feedback Data”, Proceedings of the
ACM Symposium on Applied Computing, 2015, Spain

[21] M. Alrifai, T. Risse, “Combining Global Optimization with
Local Selection for Efficient QoS-aware Service
Composition”, Proc.s of the 18th international conference on
World Wide Web (WWW '09), 2009, pp. 881-890.

[22] Z.H. Du, C.C. Lim, X.F. Li, C. Yang, Q. Zhao, T.F. Ngai, “A
Cost-Driven Compilation Framework for Speculative
Parallelization of Sequential Programs”, Procs. of ACM
SIGPLAN 2004pp. 71-81.

[23] M. Chen, K. Olukotun, “The Jrpm System for Dynamically
Parallelizing Java Programs”, Proc. of the 30th annual
international symposium on computer architecture, 2003.

[24] U. Khedker, A. Sanyal, B. Sathe, “Data Flow Analysis:
Theory and Practice”, CRC Press, 2009, ISBN-10:
0849328802

[25] G. Goff, K. Kennedy, C.W. Tseng, “Practical Dependence
Testing”, Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and
implementation, 1991, pp. 15-29.

[26] A.J. Bernstein, “Analysis of Programs for Parallel
Processing”, IEEE Trans. on Electronic Computers”
Volume:EC-15(5), 1996, pp. 757–763.

[27] D. Martin, M. Paolucci, S. McIlraith, M. Burstein et al.
“Bringing Semantics to WS: The OWL-S Approach”, in
Semantic Web Services and Web Process Composition,
LNCS vol. 3387, 2005, pp. 26-42.

[28] H. Lausen, A. Polleres, D. Roman (eds), “ Web Service
Modeling Ontology (WSMO)”, W3C Member Submission 3
June 2005, http://www.w3.org/Submission/WSMO/

[29] D. Margaris, C. Vassilakis and P. Georgiadis. Preprocessor
transformations and adaptation operations for improving QoS
delivered by WS-BPEL scenario adaptation through service
execution parallelization. http://sdbs.dit.uop.gr/?q=node/287

[30] Red Hat. JBoss Enterprise SOA Platform 5: ESB Services
Guide. https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_SOA_Platform/5.

[31] S. Kona, A. Bansal, G. Gupta, and T.D. Hite, “Semantics-
based Efficient Web Service Discovery and Composition”,
2007 The University of Texas at Dallas, Texas, USA, http://
info.asprs.org/publications/proceedings/tampa2007/0019.pdf.

[32] D. Ardagna, B. Pernici, “Adaptive Service Composition in
Flexible Processes”, IEEE Transactions on Software
Engineering, vol. 33, no. 6, June 2007, 369 – 384

[33] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S-W Liao, M.
S. Lam, “Detecting Coarse-Grain Parallelism Using an
Interprocedural Parallelizing Compiler”, Proceedings of the
1995 ACM/IEEE conference on Supercomputing, 1995.

[34] D. Ardagna, B. Pernici, “Adaptive Service Composition in
Flexible Processes”. IEEE Transactions on Software
Engineering, 33, 6, June 2007

