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ABSTRACT 
Abstract—WS-BPEL scenario execution adaptation has been 
proposed by researchers as a response to the need of users to tailor 
the WS-BPEL scenario execution to their individual preferences; 
these preferences are typically expressed through Quality of 
Service (QoS) policies, which the adaptation mechanism considers 
in order to select the services that will ultimately be invoked to 
realize the desired business process. In this paper, we study the 
potential to parallelize the execution of the WS-BPEL scenario in 
order to minimize its response time and/or achieving higher scores 
in the other qualitative dimensions, such as cost, reliability, etc., at 
the same time. We also describe, develop and validate a 
parallelization algorithm for realizing the proposed enhancements. 
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1. INTRODUCTION 
Web Services are the dominant standard for building distributed 
applications. Service providers make available functionalities that 
can be invoked through well-defined XML-based protocols, and 
consumer applications may locate and invoke them using standard 
representations and interfaces, regardless of internal implementa-
tion or infrastructure details on the side of the service provider. WS-
BPEL (Web Services Business Process Execution Language) al-

lows for building high-level business processes through orchestrat-
ing individual services. WS-BPEL programs (scripts or scenarios) 
are made available for execution through deployment on WS-BPEL 
execution engines. WS-BPEL has been designed to model business 
processes that are fairly stable, therefore the WS-BPEL program-
mer specifies at the exact services to be invoked for the realization 
of the business process at scenario development time. This arrange-
ment however is not adequate in the current web: the functionality 
offered by services invoked within the scenario (e.g. booking an air 
flight ticket) are typically offered by numerous providers (different 
airlines and travel agencies), and different providers may offer this 
functionality with diverse quality of service (QoS) parameters. 
Considering this, it would be desirable to enable consumers to adapt 
the WS-BPEL scenario execution to suit their QoS requirements; 
according to [2], governance for compliance with QoS and policy 
requirements is an open issue for the SOA architecture. 
To foster this requirement, a number of approaches have been 
proposed following two main strategies [3]: (i) horizontal 
adaptation, where the composition logic is not modified and the 
main adaptation task is to select and invoke, on a per-service basis, 
the service implementation that delivers the requested functionality 
and best matches the client’s QoS requirements; the selected 
services are substituted for either abstract tasks (e.g. [3]) or 
concrete service invocations (e.g. [5]) and (ii) vertical adaptation, 
where the composition logic may be changed. 
In this paper we propose a transformation-based approach to ex-
ploit the potential parallelism in service invocations, so as to mini-
mize the overall WS-BPEL scenario execution time. Exploitation 
of parallelism can serve as an aid to the adaptation process by 
broadening the set of alternatives available to the adaptation mech-
anism: since parallelism reduces the overall execution time, in the 
parallelized scenario it is possible to choose operations with higher 
response times but better values in other QoS dimensions (e.g. 
cost), with the composition respecting the overall WS-BPEL sce-
nario execution time limits, but scoring higher in the other dimen-
sions (e.g. lower costs). We present an algorithm based on data flow 
analysis combined with side-effect analysis, to identify cases where 
services for sequential execution in the WS-BPEL scenario can run 
in parallel; the WS-BPEL scenario is then restructured to utilize the 
available parallelism. Since the WS-BPEL scenario is restructured, 
the presented approach does not strictly follow the horizontal adap-
tation paradigm [3], however the changes to the composition logic 
are limited and performed in a fashion that enables the exploitation 
of exception handlers provided by the scenario designer, which 
may have been elaborately crafted to correspond to the particulari-
ties of the business process modeled by the WS-BPEL scenario. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from 
Permissions@acm.org. 
SAC 2016, April 4-8, 2016, Pisa, Italy. 
Copyright is held by the owner/author(s). Publication rights licensed to 
ACM. 
ACM 978-1-4503-3739-7/16/04…$15.00 
DOI: http://dx.doi.org/10.1145/2851613.2851805 



Finally, we present a middleware-based architecture which enables 
the realization of the tasks presented above and validate the applica-
bility of the proposed approach through experiments, concerning 
both the overhead introduced by the adaptation mechanism and the 
QoS of the formulated adaptations. 
The contribution of this work is: (a) the introduction of an algorithm 
to exploit the parallel execution potentials and (b) the design, 
development and evaluation of an architecture to perform the QoS-
based adaptation, incorporating the parallelization algorithm. 
The rest of this paper is structured as follows: Section 2 presents 
fundamental concepts regarding the QoS. Section 3 presents the 
parallelization algorithm, and Section 4 outlines the overall 
architecture used for service execution parallelization and WS-
BPEL scenario adaptation. Section 5 evaluates the proposed 
approach, both in terms of performance and adaptation quality, 
while Section 6 overviews related work and Section 7 concludes 
the paper and outlines future work. 

2. QoS CONCEPTS  
QoS is generally defined in terms of attributes corresponding to 
non-functional aspects of services [13], with typical attributes be-
ing response time, availability, price, reputation, security etc [14]. 
In this paper, we will limit our discussion to attributes response 
time (rt), availability (av) and cost (c), for brevity reasons, adopting 
their definitions from [11]. This limitation does not lead to loss of 
generality since the extension of the proposed algorithm to include 
more QoS attributes is straightforward. Taking the above into ac-
count, each functionality implementation (realized as a service op-
eration) considered in the adaptation process has a known QoS vec-
tor QoSS=(rts, avs, cs) which is recorded in an appropriate repository 
(e.g. METEOR-S [19] or WSMO [28]). The same repository should 
also provide information regarding which operations are equiva-
lent. Within a WS-BPEL scenario, individual functionalities are 
composed into sequential or parallel flows to implement the busi-
ness process. Considering the QoS parameters of the individual 
functionalities invoked and the type of their compositions (sequen-
tial or parallel), it is possible to compute the QoS value of the over-
all composition using the formulas shown in Table I [8]. As we can 
see from Table 1, the response time (rt) of a sequential composition 
is equal to the sum of its components’ rt, while the rt of a parallel 
composition is equal to the maximum value. This difference is im-
portant in the context of this work, since the exploitation of availa-
ble parallelization can lead to reduction of the overall rt. 
 

Table 1: QoS of composite services 

 QoS attribute 

 response time cost availability 

Sequential 
composition ෍ ௜ݐݎ

௡

௜ୀଵ
 ෍ ܿ௜

௡

௜ୀଵ
 ෑ ௜ݒܽ

௡

௜ୀଵ
 

Parallel 
composition 

max
௜
௜ ෍ݐݎ ܿ௜

௡

௜ୀଵ
 ෑ ௜ݒܽ

௡

௜ୀଵ
 

In the context of adaptation, selection of the concrete service that 
will realize some functionality is typically driven by parameters 
specifying the upper and lower bounds for each QoS attribute. QoS 
bounds may either be defined as global constraints (i.e. express the 
desired values for the whole WS-BPEL scenario) or as local con-
straints (each such constraint expresses the desired values for a par-
ticular service invocation) [9]. When adaptation problems need to 
address global constraints performance is poor [21], therefore ei-
ther local constraints are directly used (e.g. [8]) or methods for 
mapping global constraints to local constraints are employed 

(e,g, [21]). Complementary to QoS bounds, a weight is assigned to 
each QoS attribute, indicating how important each QoS attribute is 
considered in the context of the particular business process. 
Weights always apply to the whole composition, rather than to in-
dividual services, since they reflect the perceived importance of 
each QoS attribute dimension on the process as a whole [18]. In the 
proposed algorithm, QoS specifications for a service within the 
WS-BPEL scenario may include an upper bound and a lower bound 
for each QoS attribute, i.e. for service sj included in a WS-BPEL 
scenario, the designer formulates two vectors MINj(minrt,j, minav,j, 
minc,j) and MAXj(maxrt,j, maxav,j, maxc,j). Additionally the designer 
formulates a weight vector W = (rtw, avw, cw), indicating how im-
portant each QoS attribute is considered by the designer in the con-
text of the particular operation invocation. The values of the QoS 
attributes are assumed to be expressed in a “larger values are better” 
setup, e.g. a service having cost = 6 means that that it is cheaper 
than a service having cost = 4 [8],[10]. 

3. THE PARALLELIZATION ALGORITHM 
Although WS-BPEL provides the mechanisms to designate parallel 
execution of operation invocations, WS-BPEL scenario designers 
may not fully exploit the potential for arranging operations into 
parallel execution structures, similarly to the case that programmers 
typically write programs in a single-threaded fashion [22][23]. This 
is due to the fact that parallelization is a laborious task and WS-
BPEL designers mostly focus on accurately realizing the business 
logic behind WS-BPEL scenarios, rather than pursue execution 
time optimizations. To this end, a tool that would detect and exploit 
the parallelization opportunities available in WS-BPEL scenarios, 
would deliver the benefits of parallel execution without placing the 
parallelization burden on WS-BPEL scenario designers. 
In our approach, WS-BPEL scenario parallelization is undertaken 
by a preprocessor, which preprocesses the scenario before it is de-
ployed to the WS-BPEL execution engine. Parallelization is be 
driven by data flow and dependence analysis used in instruction-
level parallelism [24], supplemented with techniques addressing 
the particularities of WS-BPEL execution (exceptions, compensa-
tions and side-effects) and aspects related to the QoS of the invoked 
services. The criteria for identifying invocations that can be exe-
cuted in parallel are detailed in the following paragraphs. In these 
paragraphs, we will consider that operation invocation op1 appears 
in the WS-BPEL scenario before invocation op2. At the current de-
velopment stage, only invocations belonging either to (i) the same 
sequence structured activity or (ii) nested sequence and flow activ-
ities, with no intervening conditional (if) or loop structured activi-
ties (while, repeatUntil, foreach) [1] are considered. The develop-
ment of the necessary techniques for control dependence checking 
and loop unrolling [26] to foster parallelization among invocations 
nested in loops and conditionals are part of our future work. The 
main challenge in this task is to appropriately handle dynamic 
XPath expressions typically used for accessing array elements used 
in WS-BPEL loops [1]), while the parallelization potential of con-
trol structures must also be coupled with the adaptation of these 
structures, employing techniques such as those described in [34]. 
WS-BPEL provides two main control flow structures for 
composing operation invocations into business processes, namely 
sequence and flow, which arrange for sequential and parallel 
execution of the invocations they contains, respectively [1]. 
1. Two operation invocations op1 and op2 can be scheduled to run 

in parallel, if they have been designated to be executed in par-
allel in the original WS-BPEL scenario (as crafted by the WS-
BPEL designer). 



2. Operations op1 and op2 are analyzed for existence of data 
dependence between them. Four types of dependencies may 
exist between operation invocations [25]: 
a. True (or flow) dependence: op2 uses a parameter that is 

either directly returned by op1 as its result, or computed 
using the result of op1. In this case, clearly op2 cannot be 
executed before op1 concludes its execution, since the value 
of some input parameter of op2 is yet unknown. 

b. Anti-dependence: op2 modifies a variable V by assigning to 
it its result value, and the same variable V is used as an 
input parameter to op1. In this case the operations cannot be 
executed in parallel because if op2 concludes before op1 is 
processed, variable V will be modified and thus the 
parameter passed to op1 will not have the correct value. 

c. Output dependence: both operations store their result to the 
same variable V. In a sequential execution, after op2 has 
concluded the value returned by op2 will be stored in V. If 
however op1 and op2 are scheduled to be executed in paral-
lel, the value of the operation invocation that concluded last 
will be finally stored in V; therefore in the case that op1 
concludes after op2, the execution result will be erroneous. 

d. Input dependence: both operations share an input 
parameter. 

If true dependence, anti-dependence or output dependence is 
identified between two invocations, then they cannot be sched-
uled to run in parallel; input dependence does not preclude par-
allel execution of the involved operation invocations [26]. 

3. Operations op1 and op2 cannot be scheduled to be executed in 
parallel if the invocation of op2 either (a) incurs some cost or 
(b) has some side-effect (e.g. creating a session, booking a 
ticket etc.) [31], unless the results of the invocation of op2 are 
undoable, through a compensation handler [1] provided in the 
WS-BPEL scenario. This criterion targets the case in which an 
exception is raised during the invocation of op1: if op1 failed 
due to an exception and op2 were scheduled to run after op1, 
then op2 would not be executed at all (and thus the associated 
cost would not be incurred and/or the relevant side-effects 
would not be created) since either the scenario would be termi-
nated or control would be transferred to the appropriate fault 
handler. If however the invocations were executed in parallel, 
op2 would run and therefore the associated cost would be in-
curred, which is undesirable; nevertheless, if the WS-BPEL 
scenario included a compensation handler for op2 it would be 
possible to execute the services in parallel and provide a fault 
handler which would arrange for invoking op2’s compensation 
handler to recuperate the cost stemming from the invocation of 
op2 and/or undo the created side-effects.  

4. Two invocations op1 and op2 cannot be scheduled to run in par-
allel if op1 creates a side-effect (e.g. creation of a session, send-
ing goods) and op2 depends on the existence of the side-effect. 

5. In all other cases, op1 and op2 are able to run in parallel, since 
conditions analogous to those used for coarse-grain parallelism 
detection hold between op1 and op2 (lack of data dependence 
and lack of (non-undoable) side effects) [33]. 

Criteria 1 and 2 in the above list, as well as the existence of the 
compensation handler stated in criterion 3 can be directly evaluated 
by analyzing the WS-BPEL scenario. The existence of a cost 
associated with the invocation of a service mentioned in criterion 3 
can be directly retrieved from the service repository (e.g. 
METEOR-S [19]). Finally, side-effects either created by the service 
(criteria 3 and 4) or needed by the service (criterion 4) can be 
retrieved from a repository such as WSMO [27]. Obviously, instead 

of using two distinct repositories, the information needed may be 
stored into a single, comprehensive repository; in our 
implementation we have used a unified repository. When two (or 
more) operation invocations that were initially designated to run 
sequentially are restructured to run in parallel, their QoS limits 
regarding the response time can be relaxed. For instance, consider 
the case that a WS-BPEL scenario comprises of operation 
invocations O1 and O2 that are designated to be executed 
sequentially, with an upper bound on the response time 3 and 7 
seconds, respectively; therefore the upper bound on the scenario 
execution time would be 10 seconds. If the scenario is restructured 
so that O1 and O2 are executed in parallel, then the upper bound of 
both operations’ execution time can be set to 10 seconds, a setting 
which provides guarantees that the WS-BPEL scenario will 
conclude in 10 seconds, but it also broadens the pool of operations 
that the adaptation mechanism can choose from to realize O1 and 
O2. Generalizing, if operations O1, O2, …, On were initially 
restructured to run sequentially and are restructured to run in 
parallel, then the upper bounds of their response time are set to 
∑ ௜ܷ

ோ்௡
௜ୀଵ , where ௜ܷ

ோ் is the initially set upper bound for the run 
time of operation Oi. 
Taking the above criteria into account, the preprocessor analyzes 
the structure of the WS-BPEL scenario and determines which 
invocations can be parallelized. Operations within a sequential 
structure that are found to be parallelizable, are organized in a flow 
construct. Consider for instance the WS-BPEL scenario fragment 
illustrated in listing 1 (for conciseness purposes, only the relevant 
parts/attributes of the scenario are shown), which arranges for 
getting a quote for a hotel room and booking it, renting a car and 
then paying for both items. The invocations are arranged in a 
sequential structure, however in this sequence, we can identify that 
invocations to getRoomQuote and rentCar may proceed in parallel, 
since they (a) have no interdependencies and (b) rentCar has an 
associated cost (the cost of invoking the service e.g. a commission; 
the actual fee for renting the car is paid later through 
finalizeReservation) and a side-effect (recording the car rental in 
the service provider’s database), however a compensation handler 
exists, therefore any incurred costs and/or side effects are undoable 
by invoking this compensation handler. 
Contrary, the invocation to reserveRoom must strictly be performed 
after the invocation to getRoomQuote has concluded, since 
reserveRoom uses variable quote as its input, which is produced by 
getRoomQuote (direct dependency). Similarly the invocation to 
finalizeReservation should follow the conclusion of both 
getRoomQuote and rentCar because variable paymentInfo (the in-
put of finalizeReservation) is indirectly dependent on the output of 
rentCar (variable carRentalInfo) and getRoomQuote (variable 
quote), since the copy construct in listing 1 uses the carRentalInfo 
and quote variables to calculate the value to be assigned to (a part 
of) reserveRoom’s input paymentInfo. A more subtle dependence 
exists between services reserveRoom and finalizeReservation, 
which cannot be determined by analyzing the scenario code alone: 
finalizeReservation can be performed only when a room has been 
reserved; this is a required side-effect for operation 
finalizeReservation, and this side-effect is produced by operation 
reserveRoom, hence reserveRoom must have concluded before 
finalizeReservation is invoked. The information regarding the side 
effects is drawn by the preprocessor from the service repository, 
where it is recorded that reserveRoom creates the side effect and 
finalizeReservation depends on it. After the dependence analysis 
results have been computed, the WS-BPEL scenario is restructured 
to accommodate the available parallelism, as shown in listing 2 



(only the first part which has changed is shown; the part that has 
remained intact has been omitted for brevity; [29] includes 
graphical representations of the two scenario excerpts). Regarding 
the upper response time bound of the services that are restructured 
to be executed in parallel, the preprocessor arranges for designating 
that the upper response time bound of each of the invocations to 
getRoomQuote and rentCar is equal to the sum of the individual 
invocations, with the sum being normalized to the [1, 10] scale. 
An issue that needs to be addressed regarding these 
transformations, is the fact that one of the criteria for determining 
whether operations are parallelizable, and in particular the criterion 
examining whether the involved service incurs some cost (criterion 
3 above) is based on the service repository contents. However, the 
service repository contents may change regarding this dimension 
i.e. either (a) a provider may begin charging a previously free 
service, hence operation invocations that were previously 
parallelizable cease to be so, or (b) a provider may stop charging a 

previously non-free service, in which case two invocations that 
were previously non-parallelizable can now be scheduled to be 
executed in parallel. A similar issue exists for side-effect creation 
and requirement. To tackle this issue, the preprocessor takes the 
following two measures: 
1. to guard against selecting a non cost-free service, the prepro-

cessor arranges for setting the upper bound for the cost of the 
particular invocation to zero (normalized to the [1, 10] scale). 

2. in all cases, the preprocessor establishes redeployment triggers, 
which consist of monitoring updates to the repository that fall 
into the previously described categories (cost, side-effect 
creation and side-effect requirement). When such a change is 
detected, the affected WS-BPEL scenarios are identified and a 
preprocessing and redeployment action is initiated for them, so 
that the preprocessor takes into account the updated contents of 
the repository (c.f. Fig. 1).  

4. THE ADAPTATION ARCHITECTURE 
The adaptation architecture, illustrated in Fig. 1, adds to the stand-
ard SOA architecture three additional modules, the preprocessor, 
the adaptation layer and the redeployment triggers. 
The preprocessor performs transformations on the original WS-
BPEL scenario by (a) restructuring service invocations to be per-
formed in parallel under the conditions described in Section 4 
above (b) arranging for passing appropriate data to the adaptation 
layer to drive the adaptation and (c) redirecting service invocations 
to the adaptation layer, so as to be sent to the service implementa-
tions best matching the QoS specifications. The preprocessing step 
produces an enhanced WS-BPEL scenario, which is then deployed 
to the WS-BPEL orchestrator. Activities (b) and (c) are performed 
in a similar way to [20] and are omitted in this paper due to space 
limitations; details on these steps can be also found in [29]. 
The adaptation layer intervenes between the WS-BPEL orchestra-
tor and the actual web service implementations, arranging for for-
mulating the WS-BPEL scenario execution plan, i.e. to choose for 
each operation invocation designated in the executing scenario the 
most appropriate implementation with respect to the QoS policy 
defined for the current execution. The adaptation layer uses integer 
programming to determine the optimal execution plan for the spe-
cific WS-BPEL scenario execution, subject to the QoS policy spec-
ified by the consumer, and stores this execution plan to the session 
memory. Subsequently intercepts service invocations performed in 
the context of the WS-BPEL scenario execution and redirects them 
to the chosen service implementations. Execution plan computation 
and service invocation redirection are performed in a similar way 
to [20] , while details on these steps can be also found in [29]. 
Finally, redeployment triggers periodically check whether changes 
have occurred to the data within the repository on the basis of which 
decisions regarding parallelization capability have been made. This 
includes (a) cost of services (b) creation of side-effects by services 
and (c) requirement of side-effects by services. When such a 
modification is expected, the affected WS-BPEL scenarios are 
identified and, for each of them, the preprocessor is invoked to 
perform the applicable transformations, considering the updated 
service repository contents. Redeployment of the new preprocessed 
file is performed without affecting currently running instances of 
the scenario, exploiting the hot redeployment feature of 
contemporary WS-BPEL orchestrators (e.g. [30]). 

5.  EXPERIMENTAL EVALUATION 
In this section, we report on our experiments aiming to substantiate 
the feasibility of the proposed approach, both in terms of execution 

<sequence> 
  <invoke operation="getRoomQuote" outputVariable= "quote"  

inputVariable="roomTypeAndPeriod" name= "getQuote"/>  
  <invoke operation="reserveRoom" inputVariable= "quote" 

outputVariable="reservationInfo" name= "reserveRoom"/> 
  <invoke operation="rentCar" inputVariable= "carTypeAnd 

Period" outputVariable="carRentalInfo" name="rentCar"> 
    <compensationHandler> 
      <invoke operation="cancelRentCar" inputVariable= 

"carRentalInfo"> 
   </compensationHandler> 
  </invoke> 
  <assign> 
    <copy> 
      <from expression="$quote.price + $rentalInfo.price" /> 
      <to variable="paymentInfo" part="amount" /> 
    </copy> 
  </assign> 
  <invoke operation="finalizeReservation" name="doReserve" 

inputVariable="paymentInfo" outputVariable="receipt" /> 
</sequence> 
 

Listing 1: Excerpt of sequential WS-BPEL scenario 

<sequence> 
  <flow> 
    <invoke operation="getRoomQuote" inputVariable= 

"roomTypeAndPeriod" outputVariable="quote" 
name="getQuote" > 

      <compensationHandler> 
        <invoke operation="cancelRentCar" 

inputVariable="carRentalInfo"/> 
      </compensationHandler> 
    </invoke> 
    <invoke operation="rentCar" 

inputVariable="carTypeAndPeriod" 
outputVariable="carRentalInfo" name="rentCar" /> 

  </flow> 
  <sequence> 
    <invoke operation="reserveRoom" inputVariable="quote" 

outputVariable="reservationInfo" name="reserveRoom"/> 
    <assign> 
      … 
  </sequence> 
</sequence> 
 
Listing 2: Excerpt of transformed WS-BPEL scenario 



time (quantifying the introduced overhead and performance gains) 
and solution quality. For our experiments we used two machines: 
(a) a workstation, equipped with one 6-core Intel Xeon E5-
2620@2.0GHz CPU and 16 GB of RAM, which hosted the prepro-
cessor and the clients and (b) a workstation with identical configu-
ration to the first, except for the memory which was 64GBytes, that 
hosted the WS-BPEL orchestration engine (Apache ODE 1.3.6), 
the adaptation layer, the target web services deployed on a Glass-
fish 4.1 application server and the service repository. The machines 
were connected via a 1Gbps LAN. The service repository was im-
plemented as in-memory hash-based structure, which proved more 
efficient than using a separate (memory or disk-based) database. 
Preprocessing time is not included in the overheads, since this is 
performed in an off-line fashion and does not penalize the WS-
BPEL scenario execution performance. In all experiments, the ser-
vice repository was populated with synthetic data having an overall 
size of 1,000 web services; each web service included 3-8 opera-
tions and each operation was offered by a number of alternative 
providers, ranging from 5 to 50. Each service had at least 5 other 
services equivalent to it (i.e. having equivalents for all its opera-
tions). QoS attribute values in this repository were uniformly drawn 
from the domain [0, 10]. The WS-BPEL scenarios used in the ex-
periments were synthetically generated by randomly drawing oper-
ations from the repository, and the performance evaluation tests 
were run for each of the generated scenarios; 1,000 scenarios were 
generated in total. We resorted to synthetic data due to the lack of 
a real-world test suite. In the scenario generation process, two con-
secutive functionality invocations were selected to be executed se-
quentially (sequence construct) with a probability of 0.7 and in par-
allel (flow construct) with a probability of 0.3. In our first experi-
ment, we quantify (a) the time needed to formulate the WS-BPEL 
scenario execution plan, for varying degrees of concurrency (in-
curred once per execution), (b) the overhead imposed by the mid-
dleware intervention during service invocation (incurred for each 
invocation; the diagram illustrates the overhead sustained for all 
invocations within the scenario executions) and (c) the overall over-
head per WS-BPEL scenario execution (Fig. 2). We can observe 
that all overheads remain relatively low, even for high degrees of 

concurrency, (an overall penalty of 250 msec for 200 concurrent 
invocations) and scales linearly with the concurrency degree.  
Fig. 3 compares the QoS of the execution plan formulated for a 
number of representative trial cases and on average by (i) the sim-
ple QoS-based algorithm described in [8] and (ii) the approach pro-
posed in this paper. The average shown in the diagram has been 
computed considering all 1,000 WS-BPEL scenarios used in the 
experiment, while the representative trial cases were chosen so as 
to include different number of operation invocations (scenarios 1-3 
contain 3 invocations, scenarios 4-6 contain 6 invocations and sce-
narios 7-10 contain 8 invocations), varying settings regarding par-
allel flows (scenarios 1, 2, 4 and 7 contain no parallel flows, sce-
narios 3, 5, 8 and 9 contain one parallel flow and scenarios 6 and 
10 contain two parallel flows) and different numbers of data-de-
pendent invocations (from one to seven; some data dependencies 
formed chains e.g. s1 is dependent on s2  s2 is dependent on s3, 
while other data dependencies were unconnected, e.g. s1 is 
dependent on s2  s3 is dependent on s4). 

 
Figure 2: Execution plan formulation overhead 

We chose to compare the proposed approach against the one de-
scribed in [8], since the latter handles parallel flows and is exhaus-
tive, always thus locating the optimum solution. The lower and up-
per QoS bounds for operation invocations were randomly drawn 

 
Figure 1: The adaptation architecture 



from the domains [0,4] and [6,10, respectively]. The weights of the 
QoS attributes were randomly selected from the domain [0,1]. In 
all cases, a uniform distribution was used. The diagram shows that 
the algorithm proposed in this paper achieves solutions whose QoS 
is on average higher by 22% than the corresponding solutions for-
mulated by the algorithm described in [8]. This is due to the paral-
lelization of operation invocations, which (a) lead to reduced re-
sponse time and (b) due to the relaxation of the response time con-
straints allowed by the parallelization, the set of alternatives avail-
able to the adaptation mechanism is broadened (through allowing 
for selection of implementations with higher execution times than 
would be possible in the original scenario with sequential execu-
tion); this in turn provides opportunities for formulation of better 
execution plans, in the cases that the implementations that can now 
be selected score better in the rest QoS dimensions. 

 
Figure 3: QoS of solutions formulated by the proposed 

approach and the algorithm described in [8]. 

6. RELATED WORK 
Insofar, WS-BPEL scenario adaptation has received considerable 
research attention, with proposed adaptation methods following 
either the horizontal or the vertical adaptation approach [3]. 
VieDAME [6] considers QoS parameters to adapt WS-BPEL 
scenario execution; pluggable modules, attached to the WS-BPEL 
orchestrator, provide support for the QoS parameters and the 
selection strategy. VieDAME monitors the execution of WS-BPEL 
scenarios and arranges for dynamic replacement of web services 
that fail to meet the desired QoS levels [20]. VieDAME also uses a 
monitoring mechanism, using observed service QoS levels to 
predict future performance of services; these predictions are used 
to improve adaptation quality. Work in [7] allows for specification 
of QoS constraints, which drive the adaptation process; the 
adaptation process aims to minimize an objective function for the 
entire orchestration employing either brute force (OPTIM_S) or 
heuristic (OPTIM_HWEIGHT) algorithms. [4] introduces AgFlow, 
which performs QoS-based adaptation using a middleware 
approach. AgFlow has two modes of operation: global planning, 
where QoS constraints are designated for the composite service as 
a whole rather than to individual tasks, and integer programming is 
used to compute optimal plans for composite service executions 
and local optimization, where QoS constraints are set to individual 
tasks; in local optimization, execution plan optimality is not 
guaranteed, but execution plan formulation is more efficient. 
Moreover, AgFlow allows for execution replanning, to tackle 
issues such as services becoming unavailable or changing their 
predicted QoS. The work in [16] uses constraint optimization 
techniques to formulate the optimal execution plan, allowing for 

human user intervention to enhance the solving process. [5] 
integrates QoS-based adaptation with exception resolution; the 
ASOB middleware introduced in this work intercepts service 
invocation failures and distinguishes business logic faults from 
system faults, remedying the latter category through replacing 
failed services by “next best” solutions; exceptions stemming from 
business logic faults are left to the WS-BPEL scenario designer to 
resolve through appropriate handlers, since they cannot be 
addressed automatically. [8] extends the work in [5] by being able 
to adapt scenarios that include <flow> constructs.  
The issue of performance when composing (or adapting) large 
composition structures has lately received research attention. [17] 
uses mixed integer programming to decompose large-scale 
composition structures into small-scale composition segments, and 
subsequently determines a QoS-optimal composite solution for 
each small-scale composition segment, reducing thus the time 
needed for solving the composition problem. 
Regarding the parallelization of WS-BPEL scenario execution, 
although both business and scientific workflows have been 
identified to be highly parallel [15], little work has been 
reported. [12] presents a formal model for semantic-driven service 
execution; by examining data flows, this model provides potential 
for parallelizing service execution, based on the data dependencies 
among services. This approach requires however extensive 
semantic information (information, functional, nonfunctional and 
behavioral descriptions of the web services, complementary to their 
WSDL descriptions), while it also does not consider QoS aspects 
and adaptation. Execution parallelization techniques have however 
been studied extensively in other domains, notably in instruction-
level parallelism [24], and the data flow and dependence analysis 
used in this domain can be exploited for parallelizing the execution 
of WS-BPEL scenarios.  

7. CONCLUSION AND FUTURE WORK 
In this paper we have presented a transformation-based approach to 
exploit the potential parallelism in service invocations, so as to 
minimize the overall WS-BPEL scenario execution time. Besides 
improving execution time, this exploitation provides more choices 
to the adaptation mechanism, enabling it to formulate execution 
plans of better quality. We have also described an architecture for 
realizing the parallelization and adaptation. The proposed 
algorithm has been experimentally validated regarding (i) its 
performance and (ii) the quality of execution plans generated. 
Our future work will focus on extending the algorithm to handle 
more efficiently conditional and iteration constructs in the WS-
BPEL scenario, as well as developing the relative framework; this 
can be supported through branch prediction and loop unrolling 
techniques [26][32], as well as by gathering statistical information 
from prior scenario executions and using it as input to the 
adaptation process. This information will quantify aspects 
regarding the behavior of control constructs in the scenario, e.g. the 
probability that a conditional branch is executed or the distribution 
of the number of executions of a loop [32]. 
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