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A distributed recommender system architecture 

Abstract. In contemporary internet architectures, including server farms and 
blog aggregators, web log data may be scattered among multiple cooperating 
peers. In order to perform content personalization through provision of 
recommendations on such architectures, it is necessary to employ a 
recommendation algorithm; however the majority of such algorithms are 
centralized, necessitating excessive data transfers and exhibiting performance 
issues when the number of users or the volume of data increase. In this paper 
we propose an approach where the clickstream information is distributed to a 
number of peers, which cooperate for discovering frequent patterns and for 
generating recommendations, introducing (a) architectures that allow the 
distribution of both the content and the clickstream database to the participating 
peers and (b) algorithms that allow collaborative decisions on the 
recommendations to the users, in the presence of scattered log information. The 
proposed approach may be employed in various domains, including digital 
libraries, social data, server farms and content distribution networks. 

Keywords: distributed recommender system, frequent-pattern mining, 
generalized association rule mining, FP-Growth, GP-Close, FGP, load 
balancing 

1 Introduction 

The increasing popularity of social media applications has brought our attention to the 
need to personalize their content, in order for users to easily locate articles of interest, 
which can be performed, either via collaborative filtering, or frequent-pattern mining. 
However, the traditional web 2.0 recommendation-offering applications, such as blog 
aggregators, are centralized, which results in decreased performance, since a single 
server reads the provided feeds and is thus responsible for making the recommendations. 
Furthermore, we have to consider that in the typical case of a number of web 2.0 
applications, both the published material and the clickstream information are scattered on 
multiple servers, and therefore a centralized model for our recommender system does not 
fit well with the existing deployment paradigm. Finally, the single-server approach 
exhibits limited scalability when the number of users or the volume of data substantially 
increase, necessitating the adoption of distributed schemes. However, the majority of the 
existing distributed recommendation algorithms assume the existence of a centralized 
transaction database, which is partitioned among the involved processors, while only a 
few of them are able to be implemented on a shared-nothing application scenario, and 
can thus be executed on more than one processors independently (Pramudiono, et al., 
2005; Li et al., 2008). The above issues show the way for the peer-to-peer (P2P) 
paradigm, which -besides being distributed- matches the architecture of federated digital 
libraries, content distribution networks, blog aggregators and server farms, where 
participating content providers are independent of each other and no particular hierarchy 
is imposed on them.  

In a recent work, Giannikopoulos et al. (2008) have combined FP-Growth (Han et al., 
2004) a well-known frequent-pattern mining algorithm, with GP-Close (Jiang and Tan, 
2006; Jiang et al., 2007), which performs generalized association rule mining (GARM), 
into an efficient approach called FGP, incorporating the hierarchy information present in 
a taxonomy graph, exploiting the fact that the tags annotating a post are typically 
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hierarchically organized. An extension of FGP, called FGP+, where a node is allowed to 
have multiple parents within the taxonomy, has been proposed in (Giannikopoulos et al., 
2010). 

Nevertheless, the FGP algorithm was applied to a centralized web access log, which 
exhibited performance shortcomings; therefore, it would be better to utilize a P2P system, 
in order to provide a distributed recommendation engine, so as to apply FGP to each peer 
separately. 

In brief, the contributions of our work are outlined in what follows: 
 We propose a novel recommendation algorithm for the P2P domain, which 

personalizes the users’ browsing experience, taking into account the clickstream 
information present in the (distributed) web access logs. 

 We outline the architecture of a distributed recommendation system, which 
overcomes the performance bottleneck of current centralized applications. 

 We introduce a distributed frequent-pattern mining algorithm, which takes into 
account the taxonomic information inherent in social media applications, server 
farms, as well as content distribution networks. 

The rest of the paper is organized as follows: In section 2, we provide an overview of 
related research in the fields of centralized and distributed association rule mining 
(forming the basis of frequent-pattern mining and GARM) for web personalization, as 
well as P2P systems. In section 3, the architecture of our distributed recommendation 
system is described. In the following section, we focus on the experimental evaluation of 
our proposal. We conclude and present our plans for future work in the final section.  

2 Related Work 

2.1 Association rule mining 
The basis of frequent-pattern mining is association rule mining (ARM). Apriori 

(Agrawal and Srikant, 1994) is a prominent algorithm for ARM, basically consisting of 
two steps: the join step, where two elements of size i-1 are merged, in order to form a 
new one, whose size is equal to i, provided that they have only one item not in common, 
and the prune step, in which candidate itemsets, having at least one infrequent subset of 
size i-1, are excluded from the frequent itemset of size i. Besides Apriori, many 
algorithms have been proposed, following its philosophy, ranging from frequent-pattern 
mining ones to distributed and parallel extensions, with some of them incorporating 
taxonomy information. 

2.1.1 Frequent-pattern mining 
A wide range of extensions of Apriori, aiming to tackle the extraction of the so-called 

frequent patterns or episodes has been proposed in the literature, varying from merely 
providing sequential pattern mining, where the order of occurrence of items matters, to 
requiring fulfilment of certain constraints, in order to take the involved patterns into 
account. In what follows, we are going to focus on two of them, namely FP-Growth (Han 
et al., 2004), which does not generate candidate itemsets, but adopts a pattern-fragment 
growth method instead, as well as GP-Close (Jiang and Tan, 2006; Jiang et al., 2007), an 
algorithm, which adds taxonomy constraints, performing the so-called generalized 
association rule mining (GARM).  
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2.1.1.1 FP-Growth 
The FP-Growth algorithm scans the transaction database twice: once to locate the 

frequent items of each user session1, in order to store them in revised form (with its items 
in descending global frequency order), and another one, so as to generate a structure, 
which is called frequent-pattern tree (FP-tree) and is able to replace the database. In 
detail, for each revised transaction, a path in the FP-tree is created. However, in case the 
corresponding node for inclusion in the tree structure is already contained in an FP-tree 
path, its frequency is updated, without further altering the tree. Moreover, all appearances 
of the same item are connected with so-called node-links. Finally, an index called header 
table containing all frequent items sorted in descending global frequency order is created, 
which points to the first (i.e. leftmost) occurrence of each element in the tree. FP-Growth 
then uses this tree, in order to locate frequent patterns by scanning the header table from 
bottom to top, following the node-links. The items in the path from the root of the tree to 
the appropriate element form the conditional pattern base of the item and the minimum 
support of the items included in it determines the support of the suitable element. In fact, 
the conditional pattern base of each item can naturally be determined in a bottom-up 
manner, i.e. in increasing total support order [this is the approach followed by FP-
Growth, as well as the WAP -web access pattern tree- algorithm in all circumstances; c.f. 
(Pei et al., 2000)]. 

The CLOSET+ algorithm (Wang et al., 2003), which is also based on the frequent-
pattern tree data structure, adopts a different mining technique: the aforementioned 
conditional pattern base construction manner is considered for mining dense datasets only 
(i.e. datasets with long patterns), while the one for items, which belong to sparse datasets 
(i.e. datasets, where each individual transaction contains only few of the available items), 
is created, using a top-down pseudo tree-projection method. The latter technique only is 
followed by the PLWAP algorithm (Ezeife et al., 2005). Furthermore, although the FP-
tree is small enough to fit in main memory, there are cases where this is impossible, 
necessitating the use of projection techniques (either parallel projection or partition 
projection), in order for the appropriate conditional pattern base to fit in memory (Han et 
al., 2004), or the adoption of distributed schemes. In detail, the majority of distributed 
implementations of FP-Growth make the processors involved exchange some of their 
entries, prior to generating recommendations. For instance, in (Zaïane et al., 2001), a 
distributed implementation of FP-Growth in a shared-memory multiprocessor is 
considered, splitting the initial transaction database into (roughly) equal partitions, each 
one being assigned to a different processor, the latter following the two subsequent steps: 
preparation for the construction of the FP-tree, as well as building of the FP-tree in each 
processor. Moreover, a global header table is constructed, holding, for each element, its 
support in all machines, as well as the link to its leftmost occurrence in each FP-tree 
(Zaïane et al., 2001). As is probably expected, in order to generate frequent patterns, the 
FP-trees have to be mined, by creating the conditional pattern bases (Han et al., 2004) 
from the corresponding structure in each processor. A similar distributed extension of FP-
Growth is the PFP-tree algorithm (Javed & Khokhar, 2004), with the exception of each 
FP-tree residing in the address space of the corresponding processor; the distributed 

                                                           
1 A user session is considered to be all of the page accesses that occur during a single visit to a 

Web site (Cooley et al., 1999). According to Cooley et al. (1999) “the simplest method of 
achieving this (i.e. dividing page accesses of each user into individual sessions) is through a 
timeout, where if the time between page requests exceeds a certain limit, it is assumed that the 
user is starting a new session”. Catledge and Pitkow (1995) have established a timeout of 25.5 
minutes based on empirical data, while many commercial products use 30 minutes as a default 
timeout (Cooley et al. (1999)). 
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nature of PFP-tree requires the exchange of the conditional pattern bases of length 1, so 
that each machine hosts an approximately equal database fragment. 

Sucahyo et al. (2003) present an enhancement over the original FP-Growth algorithm 
using the compact transaction tree data structure, which avoids saving identical paths by 
storing their total number of appearances only in the first (leftmost) occurrence in the 
tree, thereby rendering further memory allocations for the same item combinations 
unnecessary. Since, after the creation of the parallel projections (Han et al., 2004) of the 
transaction itemsets, the created parallel projections can be partitioned among the 
processors and processed in parallel without requiring any extra communication step, 
each processor is able to generate the compact transaction tree, based on the parallel 
projection it receives and map it to a data structure called Item-TransLink (ITL), which is 
an even more compact format of storing the transaction database portion assigned 
(Sucahyo et al., 2003). The mining process from the compact transaction tree is 
straightforward and resembles the one of extracting frequent patterns from the FP-tree, 
based on the conditional pattern base concept (Han et al., 2004). After the mining process 
is complete, the master node (used initially for the distribution of the parallel projections) 
gathers the patterns generated at each processor and outputs the final frequent itemsets 
(Sucahyo et al., 2003). Finally, in case the projections are too large to fit into the memory 
of each processor, the parallel partition process is recursively applied, until the resulting 
fragments fit in the available processors. 

El-Hajj and Zaïane (2006) tackle the parallelization of a variant of FP-Growth called 
HFP-Leap in a shared-nothing scenario, which requires two database scans. In the 
parallel implementation of HFP-Leap, during the first database scan each processor is 
assigned a set of transactions, with the different sets being approximately equal-sized; the 
local support counts are computed in each one, in order to be sent to the coordinating 
machine called arbitrator (it is not required for the arbitrator to be a special machine), 
which computes the global support values. In the second database scan, each machine 
calculates the support counts for each itemset assigned, and the support counts are sent to 
the arbitrator again, which accumulates the global values. Moreover, the local headerless 
trees for a subset of the elements are constructed in each processor, catering for load 
balancing. Furthermore, the final local maximals are communicated to the arbitrator, 
which prunes the itemsets having a frequent superset. Finally, the set of maximal patterns 
is outputted. To achieve load balancing in HFP-Leap (El-Hajj & Zaïane, 2006) considers 
three techniques namely direct partitioning, round-robin partitioning and first-last. In the 
first-last technique, each processor receives the most heavily loaded among the remaining 
elements, as well as the one, whose load is the least possible. Experiments have proved 
that the first-last scheme results in better load balancing, while in direct partitioning the 
machines assigned the first items will be the system bottleneck (Zaki et al., 1996). 

Furthermore, (Yu et al., 2007) present LFP-tree, which is an improvement over PFP-
tree (Javed & Khokhar, 2004), in terms of running time, load balancing, as well as speed-
up ratio. In LFP-tree, a master node initially partitions the transaction database to the 
processors. The processors then calculate the (local) header table (local supports for the 
items) and send them to the master, in order for the master to generate the (global) header 
table (global item support). Each processor is currently ready to produce its FP-tree, 
according to the (global) f-list order (Wang et al., 2003) previously determined. 
Nevertheless, since there might be imbalances in the size of the trees created and, hence, 
in the mining time, a load degree evaluation function is used, based on the average depth 
of each item in the FP-trees, so as to lighten heavily-loaded processors, by means of 
exchanging FP-tree paths. After the exchanging process, FP-tree mining can proceed 
normally and the frequent patterns aggregated in the master processor (Yu et al., 2007). 

Moreover, (Tanbeer et al., 2009) consider another PGDP distributed FPM approach, 
employing a novel tree structure, called PP-tree (Parallel Pattern tree) that significantly 
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reduces the I/O cost by capturing the database contents with a single scan and facilitates 
the efficient FP-growth mining on it with reduced inter-processor communication 
overhead. In detail, the dataset is initially partitioned among the available processors, in 
order for each one of them to generate its (local) FP-tree, based on any (for instance, 
lexicographic) predefined order. Then, one processor is named as “master”, collects the 
support counts for the items and stores them, according to the global frequency 
descending order [global f-list order (Wang et al., 2003)]. After the (global) f-list order 
gets known to the processors, they can rearrange their (local) FP-tree, according to the 
(global) f-list order employing an appropriate technique [e.g. branch sorting mechanism 
(BSM) which saves each unsorted branch into a temporary structure, where it is merge-
sorted]. The time requirements are further reduced, thanks to the fact that not all FP-tree 
branches are unsorted (Tanbeer et al., 2009). This approach is more time-efficient than 
the alternative of a second database scan, after the global frequency descending order has 
been specified. After each FP-tree is rearranged according to the (global) f-list order, the 
processors are ready to perform frequent-pattern mining on their own tree structure. 
Nevertheless, since the real values of the support counts for the itemsets stored in other 
processors are not known, the observation that they cannot exceed the sum of the 
minimum values among the items comprising the itemset and the element(s), whose 
conditional pattern base is considered, is used, in order to generate the potential global 
support, a rather maximalistic approach on the actual itemset support value. This 
approach forces all itemsets, whose potential global support is less than the (global) 
support threshold to be pruned, which implies that there can be no false negatives 
(Tanbeer et al., 2009). After each processor has constructed its (local) frequent patterns, 
they are sent to the master node, in order for the actual support values to be computed. 
Thus, there are only three relatively small communication steps (sending the local item 
supports to the master node, the latter broadcasting the global f-list order, as well as the 
processors sending the local frequent patterns to the master node), which explains the 
superiority of PP-tree, in comparison to other parallel PGDP approaches, as far as the 
running time is concerned. The PP-tree approach is more suitable in dense, large 
datasets, low support thresholds and a substantial number of processors, compared to 
LFP-tree (Yu et al., 2007), with the gap augmenting, as the amount of processor 
increases, since LFP-tree requires a substantial time for interprocessor communication. 

Another parallel FP-Growth implementation is depicted in (Li et al., 2008), where FP-
Growth is split into five stages, namely (i) sharding, i.e. dividing the transaction database 
into successive parts, in order to store each one of them in a different computer; (ii) 
parallel counting, where the computation of the occurrence rate of the patterns in each 
shard is performed; (iii) grouping items, which takes place in a single machine and 
partitions the elements into groups called G-lists, in each one of which FP-Growth will 
be subsequently applied in the (iv) so-called parallel FP-Growth step, consisting of the 
mapper, as well as the reducer procedures. Moreover, we need to generate the final 
itemsets, considering the reducer information, which appears in all the shards; this is 
performed in the (v) aggregating step. In fact, the larger the dataset, the bigger the 
parallelizable portion of the algorithm; this implies that the so-called PFP (Parallel FP-
Growth) algorithm is scalable. Nevertheless, PFP may result in load imbalances, as far as 
the G-lists stored in different computers are concerned; hence, the requirement that each 
processor’s conditional pattern base satisfies a minimum path depth by continuing to 
generate the latter recursively, until the aforementioned condition is satisfied, is proposed 
in (Pramudiono & Kitsuregawa, 2003). However, the ideal minimum path depth remains 
an open issue. 

Naturally, sampling the original transaction database is another workaround in parallel 
extensions of FP-Growth, trading accuracy for computational overhead (Pramudiono et 
al., 2005). Furthermore, the classification of the original database into a predetermined 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

(usually 10) number of classes, so as to commence the construction of the conditional 
pattern bases in a special order is adopted in (Pramudiono et al., 2005), where it is 
reported that the ideal in terms of performance is the consideration of the third group (in 
decreasing frequency order) as the one to start generating the conditional pattern bases 
from. We simply note that, according to the aforementioned paper, sampling methods 
might perform better on data sets whose distribution is unknown. 

Finally, another interesting distributed FP-Growth extension is depicted in (Dong et 
al., 2005), where the partitioning of the transaction database is based on the clustering 
obtained with the aid of a neural network. In detail, the so-called CNFP algorithm uses a 
2-layered neural network, consisting of the input, as well as the competitive, layer, which 
are wholly connected to each other (i.e. each neuron of the input layer is joined with 
every neuron in the competitive layer), in order to determine the corresponding FP-
subtree the appropriate transaction must be inserted into. The CNFP algorithm consists of 
the following 5 steps: initialization, competition, FP-subtree construction, CNFP-
Growth, as well as global frequent-pattern construction.  

2.1.1.2 Adding taxonomy constraints: the GP-Close algorithm 
Taking the taxonomic characteristics of web 2.0 applications into account, it is worth 

considering the hierarchical structure of the categories, to which items belong. A well-
known algorithm, which in fact performs generalized association rule mining (GARM),2 
is GP-Close (Jiang and Tan, 2006; Jiang et al., 2007). Contrary to some initial proposals 
in the field [e.g. Basic (Srikant and Agrawal, 1995)], GP-Close eliminates over-
generalized (i.e. redundant) patterns by applying two efficient pruning strategies, child-
closure pruning3 and subtree pruning, the former getting rid of redundant closures, 
wherever they are encountered in the tree structure that is constructed4 and the latter 
taking care of the removal of subtrees, whose root corresponds to an over-generalized 
node. It should be noted that the elimination of redundant patterns is proven in (Jiang and 
Tan, 2006; Jiang et al., 2007) to be equivalent to closed pattern mining, that is, looking 
for itemsets, which have no proper superset, whose support value is identical to the one 
of the itemset itself. 

Considering the power of the FP-Growth algorithm previously presented, it is really 
beneficial to combine it with a GARM approach: (Pramudiono and Kitsuregawa, 2004) 
suggest extending the information stored in the appropriate frequent item list with each 
element’s ancestors in the taxonomy structure, while Giannikopoulos et al. (2010) 
propose the incorporation of the frequent-pattern tree instead of the original transaction 
database into GP-Close, which is able to provide a solution to the concept drift issue 
(Tsymbal, 2004). This corresponds to the fact that users’ interests change along the time 
axis, rendering the naïve approach of recommending the frequent itemsets only 
inadequate, since the newly-arrived documents, belonging to an important category, 
would fail to be proposed, despite being the most interesting for the average user; this is 
particularly true in news-related sites, where new content is constantly added. Moreover, 
as far as the creation of the hierarchical structure to be used as input to the GARM 
algorithm is concerned, we could either use one explicitly provided (e.g. portals typically 
use a categorization for the articles they publish), or extract it from the documents 
involved, using a similarity metric as indication of the point the newly-considered 
concept must be inserted into [the new term can be placed as a child of either (a) a node 
whose similarity distance is less than a threshold or (b) the upper-level (pseudo)root, 

                                                           
2  GARM was first presented in (Srikant and Agrawal, 1995). 
3 Child-closure pruning halves the search space, provided that it is applied as early as possible (i.e. 

at the children of the root). 
4 This tree structure is known as closure enumeration tree (Jiang and Tan, 2006; Jiang et al., 2007). 
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holding all elements together, if no such node is identified] (Heymann & Garcia-Molina, 
2006). In fact, Heymann & Garcia-Molina (2006) utilize the tagging information of the 
documents, constructing a hierarchy of tags. An alternative approach, proposed in (Dakka 
& Ipeirotis, 2008), is to extract common terms from the texts (these expressions form the 
original database), in order to enhance them with external synonyms and/ or more general 
concepts (hypernyms), using an appropriate resource (e.g. WordNet, Wikipedia); the 
result of this process is the construction of the contextualized database.5 The terms which 
appear frequently in the latter but not in the original database, are considered facets (that 
is, words or collocations that characterize the document) and are transformed to 
hierarchies [using the subsumption algorithm presented in (Sanderson & Croft, 1999), for 
instance], thereby producing a taxonomy structure. Finally, an overview of distributed 
generalized association rule mining algorithms (prior to GP-Close) is presented in 
(Shintani & Kitsuregawa, 1998), where six algorithms (NPGM, HPGM, H-HPGM, H-
HPGM-TGD, H-HPGM-PGD, H-HPGM-FGD) are outlined, whose main difference lies 
in the method the initial transaction database (kept in one processor as a whole) is 
partitioned among the available computers. 

2.2 Peer-to-peer systems 
A wide range of peer-to-peer (P2P) systems has been proposed in the literature, 

varying from unstructured approaches (Kirk, 2003), which exhibit no specific topology, 
as far as the participating peers are concerned, to structured ones such as Chord (Stoica et 
al., 2001), CAN (Ratnasamy et al., 2001) and P-Grid (Abererer al., 2005), which take 
extra care of the preservation of the network topology during updates, that guarantees 
correct answers later on, without excessive bandwidth consumption; hence, the majority 
of contemporary P2P systems, distributed hash tables (DHTs) included, fall into this 
category. Furthermore, hierarchical applications such as Edutella (Nejdl et al., 2002) and 
P2P-DIET (Idreos et al., 2004), as their name implies, partition their nodes into two 
disjoint sets: clients, which publish documents or submit queries, as well as super-peers,6 
which store information about the files, located in the underlying clients. Furthermore, 
P2P systems can be further categorized into centralized -e.g. Napster (Napster website, 
2011)-, which distinguish a peer, that stores an index of the rest ones, as well as the 
resources the latter are willing to share and decentralized [Gnutella (Kirk, 2003)],7 where 
there is no need for a master node. 

3 The Distributed Recommender System 

Our implementation corresponds to a distributed recommendation system, consisting 
of peers, each one storing a portion of the end users’ clickstream log files. Peers are 
information providers, and each one’s log file corresponds to requests for information 
items that end users have made from them. A peer may specialize in a certain taxonomy 
topic, in which case log entries within each peer include items from the specific 
taxonomy topic only. This peer setup is common in digital libraries [e.g. (Maniatis et al., 
2005; Ahlborn et al., 2002)], social media networking [e.g. (Buchegger et al., 2009; 
Pouwelse et al., 2007; Tsai et al., 2007)], news agencies [e.g. (Jelasity and van Steen, 

                                                           
5 An analogous method is described in section 3 of (Jiang et al., 2007). 
6
  Super-peers can be further split into hierarchies in turn, as far in depth as we wish; however, it is 

rare to trace an application, whose super-peers are not all equal among themselves. 
7 The two major classifications of P2P networks presented above are not mutually exclusive; that is, 

an implementation might belong to an alternative from each one simultaneously (e.g. Gnutella is 
the prototypical unstructured and decentralized system). 
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2002; Voulgaris et al., 2005; Deuze et al., 2007)], server farms [e.g. (Wang and 
Dasgupta, 2005; Li et al., 2008b)], content distribution networks [an extensive survey can 
be found in (Androutselis-Theotokis and Spinelis, 2004)] etc. In this context, opting for a 
peer-to-peer architecture for implementing the recommender system over the underlying 
content provisioning network is a natural choice, since it allows for exploitation of 
already available network topology knowledge and reuse of network connections, while 
the participating nodes have also established trust relationships of some level between 
them, which may be extended to cover the data exchanged for the purposes of the 
recommender system. 

Within such a peer network, a major issue affecting the operation of a 
recommendation algorithm is the fact that information regarding any particular session 
(cf. footnote 1 in subsection 2.1.1.1) may be scattered in the log files of multiple peers; 
therefore, performing frequent-pattern mining in individual log files will miss patterns 
that do belong to the same session but whose clickstream traces are in different log files. 
For instance, in the setup illustrated in fig. 1, it is possible that a user has requested some 
pages related to sports (with the relevant clickstream information being stored in the log 
file of peer 1) and some pages related to international politics (with the relevant 
clickstream information being stored in the log file of peer 3); if log files are mined in 
isolation, it is impossible to detect any pattern containing both sports-related and 
international politics-related pages. Therefore, session reconstruction is a first issue that 
has to be tackled. While transferring the full log files to a single server may deal with the 
session information scattering issue straightforwardly, this approach is effectively a 
centralized one, exhibiting the performance and scalability problems presented above. 
Hence, we have opted for a distributed solution to the problem, which comprises of the 
subperiod assignment phase, the log exchange phase, the local mining phase and the 
pattern/rule exchange phase, which are executed at each peer sequentially. These phases 
are described in the following subsections. 
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Log 3
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Log 2
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Fig. 1. Peer specialization and log exchange between peers 
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3.1 The subperiod assignment phase 
The first phase of the distributed algorithm is the subperiod assignment phase, within 

which the time period covered by the logs is split into N (approximately) equal sub-
periods (N is the number of peers within the P2P system), and each peer is assigned one 
such sub-period for subsequent processing. Partitioning is always performed preserving 
half-hour boundaries, e.g., in order to split a 24-hour period among 5 peers, the 
assignment {P1: [00:00-05:00), P2: [05:00-10:00), P3: [10:00-15:00), P4: [15:00-19:30), 
P5: [19:30-24:00)} is used, instead of the assignment {P1: [00:00-04:48), P2: [04:48-
9:36), P3: [9:36-14:24), P4: [14:24-19:12), P5: [19:12-24:00)} to minimize the cases that 
some sessions are split among different peers. Note that splitting sessions among peers is 
not entirely avoided, since, for instance, in the example above, a session beginning at 
19:05 and ending at 19:34 will be split among peers P4 and P5, under both the adopted 
and the alternative partitioning scheme. This may lead to missing some frequent patterns 
and consequently some association rules. We have evaluated this side-effect of the 
partitioning scheme and we have found it to be limited to tolerable levels (< 12%); details 
of this evaluation are given in section 4. 

In the current implementation, assignment of time periods to peers is coordinated by a 
super-peer called arbitrator, where all peers register; the former splits the overall time 
period to the appropriate time segments and then publishes the assignments to all peers. 
This setup has been adopted for implementation convenience, and it is straightforward to 
assign the time period partitioning responsibility to the peer network (i.e. without the 
need for a super-peer), where a coordinator for the partitioning activity can be co-decided 
using any distributed election algorithm (Tanenbaum and van Steen, 2006). 

3.2 The log exchange phase 
Once sub-period assignment has taken place, the log exchange phase commences, 

where each log file entry is transferred to the peer that has been assigned the 
corresponding time interval. At the end of the log exchange phase, each peer has obtained 
all log records that pertain to the period it has been assigned. 

Fig. 1 shows an example where three peers specializing in various topics of the 
taxonomy exchange their log records. Note that topic specialization may not be limited to 
the same level of the taxonomy (in the example, one peer specializes in topics of a top-
level branch, whereas the other two in topics of branches at level 2); moreover, a peer 
may include topics from the whole taxonomy (i.e. not specialize in any particular topic, 
such as a generic news agency). At the first step, the period covered by the logs (assumed 
to be 24 hours) is split into 3 equal-sized subperiods, and afterwards the log records are 
exchanged as illustrated by the labelled arrows. 

While the log exchange phase is executed at each peer, a separate task receives lines 
sent by other peers and appends them to the local FGP-input file. At the end of this stage, 
the FGP-input file at each peer contains all web log lines pertaining to the timeline 
segment assigned to the particular peer. 

Since the volume of the information exchanged between peers in this phase may be 
large, introducing therefore significant communication overhead, the following 
techniques may be employed to minimize the volume of data transferred between peers: 
1. A log entry typically includes the item request timestamp, the requesting IP and the 

item identifier. Items within a single session can be grouped by requesting IP, and 
therefore the address is transmitted only once. For frequent-pattern mining 
algorithms, where the order of item appearance is not significant, it is possible to 
exchange session batches, with each batch being labelled with the requesting IP and 
an identification of the particular half-hour, and using the item identifiers as the 
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batch contents, avoiding the transmission of individual timestamps as well. Note that 
in many content provisioning systems (e.g. content management systems and content 
distribution networks), items are characterized by an id, and it suffices to include this 
id in the exchange phase, instead of the whole request URI. Furthermore, the sizes of 
the requesting IP, the timestamp and the item identifier are comparable; therefore, 
these grouping techniques may reduce the size of the exchanged information by 
approximately 33% (if only grouping by IP is employed) or 66% (if both grouping 
by IP and timestamp substitution by half-hour designation are used). 

2. If the number of accesses for different periods is not uniform among the peers {e.g. 
peer 1 has considerably more accesses during the time period [08:00-16:00)}, it 
would be beneficial for each peer to be assigned the time period for which it has a 
more extensive log file. This can be accomplished by having the peers exchange 
histograms (Poosala, 1997), where the overall number of log entries for each half-
hour period is recorded; the histograms will then be used for computing a 
partitioning that minimizes data transfer. This goal can be better served by using a 
more flexible time period partitioning technique, allowing for non-consecutive 
periods to be assigned to peers. We could even make each peer store information, 
with regard to certain half-hour periods, instead of insisting on time intervals {i.e. 
peer 1 could store entries belonging to the first [00:00-00:30), the fourth [01:30-
02:00), as well as the seventh time period [03:00-03:30)}. Any method for achieving 
histogram-based load balancing in peer-to-peer systems -e.g. (Vu et al., 2009; Scholl 
et al., 2007)- can be used. 

3. Finally, to reduce the time requirements of the log exchange step, the web log entries 
could be compressed, prior to sending them to the corresponding peer. 

The last two enhancements to the basic log exchange scheme have been applied in our 
implementation and result in minimization of the data transfer among peers; hence, the 
algorithm’s overall execution time is considerably reduced, as indicated by the 
performance metrics presented in section 4. 

3.3 The local mining phase 
The log exchange phase was performed, in order to make each peer store the web log 

entries belonging to the time intervals it specializes in; hence, each node is subsequently 
ready to apply a frequent-pattern mining algorithm. In fact, given the inherent taxonomic 
nature of social data, it would be better to utilize the FGP algorithm presented in 
(Giannikopoulos et al., 2008; Giannikopoulos et al., 2010) which enhances the 
performance gains of FP-Growth (Han et al, 2004) with information about the categories 
the articles belong to, by incorporating GP-Close (Jiang and Tan, 2006; Jiang et al., 
2007). The frequent patterns produced by each peer during the frequent-pattern mining 
phase are tagged with the number of appearances of each one; however, this number 
counts only the appearances of the corresponding pattern in the time segment(s) that the 
peer has been assigned, and, therefore, the need for summing up all the counts produced 
by different peers arises. This is accomplished in a distributed fashion, within the 
pattern/rule exchange phase. 

3.4 The pattern/rule exchange phase 
Within the local mining phase, the FGP algorithm at each peer produces the frequent 

itemsets mined from its local FGP-input, with each pattern being tagged with the number 
of its local appearances (its support (Giannikopoulos et al., 2008)). It is possible however 
that the same pattern has been produced by multiple peers, and therefore each peer has 
only a partial value of the pattern’s support. Since the support metric, by virtue of its 
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definition, effectively counts each itemset’s number of appearances, it directly follows 
that the global value of the support of some pattern p is the sum of all partial support 
values that have been produced by all peers for the same pattern. 

A straightforward method for computing the sum of all partial support values for the 
generated itemsets is to collect to a single peer all frequent itemsets produced by all 
peers, and then have this peer calculate the sums of partial support values for each 
distinct itemset. This solution however is effectively centralized, exhibiting scalability 
problems and introducing a single point of failure. 

In order to accomplish the calculation of the itemsets’ global support value in a 
distributed fashion, each peer iterates over the itemsets it has produced, computing a hash 
value over the elements of the itemset (the range of the hash function is [1..N] where N is 
the number of peers in the network), and forwarding all frequent itemset records with 
hash value equal to i to the i-th peer; then the appropriate peer simply sums up the 
number of appearances of all records having a common itemset. 

Since the frequent-pattern mining phase is performed for producing association rules 
to be exploited later for formulating recommendations, a frequent pattern of the form 
{i1, i2, …, in} can be viewed as a rule [(i1, i2, …, in-1)in] if item order is significant (i.e. 
if a user has viewed items i1, i2, …, in-1  then item in is recommended), or as a set of rules 
{[(i1, i2, …, in-1)in], [(i1, i3, …, in)i2], [(i2, …, in)i1]} if the order of items is not 
significant. For each such rule, we are able to compute a hash value on its antecedent, 
which can be used to determine the peer where it will be forwarded. Each peer computes 
the hash value of all the rules it has computed, and then groups rules by their destination, 
each such group being sent to the respective peer in a single message. Subsequently, 
when a recommendation needs to be formulated for a user that has viewed items 
{i1, i2, …, in-1}, the hash value for this set can be computed and the peer corresponding to 
it can be queried to produce the required recommendation. 

3.5 Limiting recommendations within topics 
The scheme presented above for log file distribution and frequent-pattern mining 

allows for formulating association rules that span across topics of the taxonomy – e.g. if a 
user has viewed a set of pages in the politics category, then a page from the sports 
taxonomy branch may be recommended. While this could be desirable for some cases 
(e.g. a generic portal), in some other cases –such as a specialized blog aggregator– we 
might intend to limit the recommendations to certain branches of the taxonomy. Under 
such circumstances, it suffices to restrict the sources during the log exchange phase to the 
peers specializing in the specific branches of the taxonomy, while it is not necessary to 
limit the peers participating in the frequent-pattern mining phase to this subset only. For 
instance, in the example of fig. 1, the logs of peers 2 and 3 (subtopics of the politics 
branch) can be distributed among all peers and processed, so as to produce association 
rules, whose both the antecedent and the consequent are limited to the politics branch. 
This property stems from the hierarchical nature of our scheme, according to which each 
peer stores links to posts belonging to a specific topic, and is particularly beneficial when 
subscription interests of the users are available, and, therefore, limitation of 
recommendations to specific topics is implied. 

 
The pseudocode of distributed FGP is outlined in the following figures: 
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determine time period(s) for which the peer is responsible, in 
cooperation with other peers 

do in parallel 
preprocess own file, storing in local file clickstreams the 

peer is responsible for and distributing other 
clickstreams to respectively responsible peers 

receive clickstream information sent from other peers and 
append them to local file 

end parallel /* wait for both parallel tasks to finish; now 
local clickstream file contains all clickstream entries for 
period(s) of peer responsibility */ 

runFGP /* on local clickstream file */ 
generate and exchange rules 

Fig. 2. The pseudocode each peer running distributed FGP executes. 

 
The pseudocode of task preprocess own file, which realizes the log exchange step, as 

well as generate and exchange rules, which sends all appearances of a rule (no matter the 
peer, where it has been generated) into only one node, hashing on its antecedent, so that 
the occurrence metrics are accumulated, are presented in fig. 3 and 4, respectively: 

 
preprocess own file { 
    read web log 
    foreach(l log line){ 
        if(myOwn(l)){ 
            write to my log 
        } 
        else{ 
            find specializing peer P and send l to P 
        } 
    } 
} 

Fig. 3. Pseudocode for the preprocess own  file task, which caters for each peer receiving the log 
entries belonging to its specialization period(s). 

where function myOwn determines if the corresponding web log line l, which is passed 
as its sole input argument, must be processed by this peer. 

4. Experimental Evaluation 

We have implemented the distributed version of FGP in Java 1.6 and evaluated it on a 
P2P network, consisting of a varying number of peers, ranging from 2 to 24, to (a) 
compare its execution time with the one of the centralized implementation 
(Giannikopoulos et al., 2008; Giannikopoulos et al., 2010), as well as to evaluate its 
scalability and (b) assess the quality of recommendations offered by the algorithm since, 
as stated in section 3.1, due to session splitting among peers, some frequent patterns and 
association rules may be missed. The CPU frequency of the peer nodes is 2.6 Ghz, while 
the available memory at each node equals 2GB. We have first of all experimented with 
two log files of varying sizes, in order to quantify the performance gains obtained for 
different-sized log files. Each experiment was run thirty times, and then an average over 
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the thirty runs was computed. The nodes are interconnected through an 100Mbit switched 
Ethernet medium at the basic setup, a 10Mbit shared Ethernet setup being furthermore 
used in a second set of experiments to assess the effect of the communication medium 
speed on the algorithm performance. 

 
generate and exchange rules { 
    generate rules from FGP’s frequent itemsets 
    foreach (peer P) 
        rules(P) =  
    foreach(rule r in generated rules){ 
        destination =hashCode(r.antecedent) % NumPeers; 
        rules(destination) = rules(destination)  {r}; 
    } 
    foreach (peer P  self) { 
        send rules(P) to P 
        receive incomingRules(P) from P 
        foreach (rule r’ in incomingRules(P)){ 
            if (rules(self) contains r where (r’.antecedent = 
r.antecedent  r’.consequent = r.consequent)) 
                r.support = r.support + r’.support; 
            else 
                rules(self) = rules(self)  {r’}; 
        } 
    } 
} 

Fig. 4. The rule generation and exchange task. 

4.1 Performance evaluation 

Table 1 illustrates the experimental results obtained from executing the distributed 
algorithm on a medium-sized log file without applying the histogram-based load 
balancing presented in section 3.2, using 2-24 peers. Respectively, Table 2 depicts the 
results from executing the distributed algorithm on the same log file, using load balancing 
to distribute web log partitions more evenly among the peers. In each table, column 
“#lines initial” accounts for the number of lines that each peer holds prior to executing 
the distributed algorithm, while column “#lines after exchanging” corresponds to the 
number of lines that are assigned for processing to the peers after the log exchange step. 
The time needed for the aforementioned phase is depicted in column “data exchange 
time”, whereas the one required by the peers to perform the pattern mining phase is 
illustrated in column “CPU time”. Finally, column “total time” accounts for the algorithm 
completion time, and column “%gain” shows the speedup against the centralized version 
of the algorithm. For columns “#lines initial”, “#lines after exchanging”, “data exchange 
time” and “CPU time”, we list the average, minimum and maximum measurements for 
all peers in the system, to show the effect of load balancing. 

As can be seen from the figures, the algorithm scales well with the number of peers, 
with the algorithm execution time dropping approximately 40% (with a maximum 
theoretical decline of 50%) as the number of peers doubles [note that in the last two 
configurations (16 and 24 peers), the number of peers increases by 50% only, not 100%; 
therefore, in this case, the theoretical drop is 33% and the observed reduce rate in the 
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execution time reaches 24.34% on average]. The communication overhead for the data 
exchange phase is very low, accounting for no more than 8.16% of the algorithm 
execution time and, as can be seen from the table, the communication cost remains fairly 
stable as the number of peers increases. This can be explained by considering that, on 
increasing the number of peers, each of them starts off with a smaller portion of the 
overall log size (log_size/N, assuming a perfectly uniform initial distribution). Then each 
peer sends a ratio (N-1)/N of this log size to other peers (again supposing a perfectly 
uniform distribution regarding the log lines exchanged with other peers); therefore, the 
data sent by each peer is equal to [log_size*(N-1)/N2], which decreases with the value of 
N. On the other hand, the peer network setup time increases slightly with the number of 
peers (more connections need to be established), and, therefore, the sum of these 
differences leads to having very small variations on the overall communication time. 
Finally, the load-balanced version achieves 13.04%-28.09% better results, compared to 
its non load-balanced counterpart, as is depicted in Table 2. 

 
#peers #lines 

initial 
#lines after 
exchanging 

Data 
exchange 
time (sec) 

CPU time 
(sec) 

Total 
time 
(sec) 

%gain 

1 345,610 345,610 - 601.45 604.32 - 
avg 172,805 172,805 1.66 300.76 
min 172,106 120,661 1.57 107.72 2  
max 173,504 224,949 1.70 428.64 

430.34 40.43% 

avg 86,402 86,402 1.38 83.78 
min 86,079 38,205 1.30 17.94 4 
max 86,673 130,197 1.66 171.25 

172.87 249.58% 

avg 43,201 43,201 1.49 36.54 
min 42,626 12,606 1.42 4.15 8 
max 43,566 76,986 1.62 100.56 

102.02 492.35% 

avg 21,600 21,600 1.77 21.12 
min 21,328 5,107 1.23 2.64 16 
max 21,931 40,550 2.21 56.74 

58.01 941.75% 

avg 14,400 14,400 1.43 17.08 
min 14,210 3,251 1.32 2.89 24 
max 14,590 27,701 1.53 45.56 

46.93 1,187.71% 

Table 1. Experimental results for the medium-sized log file without load balancing 

Table 3 and Table 4 depict the same measurements obtained from executing the 
distributed algorithm on a large-sized log file, with the number of peers also varying from 
2 to 24. The non-balanced version exhibits the same behaviour as the medium-sized log 
file regarding its performance, i.e. there is an approximate 40% drop-off on doubling the 
number of peers, as far as the algorithm execution time is concerned. In the load-balanced 
version, the performance gains are higher, with the execution time dropping 
approximately 58% when doubling the number of peers. This can be explained by taking 
into account that, as indicated by the benchmark results presented in (Said et al., 2009), 
FP-Growth exposes super-linear sizeup ratio (that is, its execution time increases 
significantly, as the size of the log to be processed augments) and, therefore, achieving a 
better partitioning (through load balancing) for a big log file results in considerable 
performance gains, while the benefits stemming from doing so for a smaller log file are 
more limited. Therefore, the load-balanced version in this case achieves a performance 
improvement ranging from 9.92% to 48.02%, compared to its non load-balanced 
counterpart. Regarding the communication cost, the remarks made for the medium-sized 
log file hold in this case too; nevertheless, the upper bound of the quotient of the 
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communication_cost to total_time is considerably smaller (approximately equal to 1.9%, 
while the upper bound of the corresponding ratio for the medium-sized web log is 
roughly 3.5%). 

 
#peers #lines 

initial 
#lines after 
exchanging 

Data 
exchange 
time (sec) 

CPU time 
(sec) 

Total 
time 
(sec) 

%gain 

1 345,610 345,610 - 601.45 604.32 - 
avg 172,805 172,805 1.62 257.30 
min 172,106 166,989 1.56 120.44 2  
max 173,504 178,621 1.67 372.65 

374.21 61.49% 

avg 86,402 86,402 1.37 72.90 
min 86,079 79,348 1.32 48.58 4 
max 86,673 92,439 1.43 122.99 

124.31 386.14% 

avg 43,201 43,201 1.48 35.48 
min 42,626 19,676 1.31 12.67 8 
max 43,566 50,213 1.59 77.66 

79.16 663.42% 

avg 21,600 21,600 1.81 23.77 
min 21,328 13,487 1.18 10.49 16 
max 21,931 27,560 2.03 45.50 

46.94 1,187.43% 

avg 14,400 14,400 1.24 16.43 
min 14,210 5,509 0.99 4.24 24 
max 14,590 22,838 1.40 39.07 

40.30 1,399.55% 

Table 2. Experimental results for the medium-sized log file with load balancing 

 
#peers #lines 

initial 
#lines after 
exchanging 

Data 
exchange 
time (sec) 

CPU time 
(sec) 

Total 
time 
(sec) 

%gain 

1 1,213,770 1,213,770 - 2,229.47 2,232.75 - 
avg 606,885 606,885 3.84 1,033.13 
min 606,689 408,430 3.77 459.56 2  
max 607,083 805,340 4.01 1,605.71 

1,609.53 38.72% 

avg 303,442 303,442 2.73 435.69 
min 302,345 120,685 2.70 72.36 4 
max 304,144 468,338 2.76 886.06 

888.78 151.22% 

avg 151,721 151,721 2.54 180.99 
min 151,076 36,518 2.70 72.36 8 
max 152,232 277,127 2.76 494.21 

496.96 349.28% 

avg 75,860 75,860 2.05 79.53 
min 75,378 16,234 1.90 3.38 16 
max 76,144 148,456 2.18 261.64 

263.62 746.96% 

avg 50,573 50,573 1.73 55.81 
min 50,200 10,220 1.68 4.50 24 
max 51,002 97,786 1.90 190.29 

191.99 1,062.95% 

Table 3. Experimental results for the large-sized log file without load balancing 
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#peers #lines 
initial 

#lines after 
exchanging 

Data 
exchange 
time (sec) 

CPU time 
(sec) 

Total 
time 
(sec) 

%gain 

1 1,213,770 1,213,770 - 2,229.47 2,232.75 - 
avg 606,885 606,885 3.59 1,168.75 
min 606,689 595,182 3.57 891.441 2  
max 607,083 618,588 3.64 1,446.26 

1,449.86 54.00% 

avg 303,442 303,442 2.69 499.77 
min 302,345 252,304 2.60 230.56 4 
max 304,144 328,525 2.78 753.38 

756.01 195.33% 

avg 151,721 151,721 2.64 191.36 
min 151,076 74,685 2.45 38.39 8 
max 152,232 177,959 2.79 320.87 

323.34 590.53% 

avg 75,860 75,860 1.96 74.51 
min 75,378 32,685 1.76 19.76 16 
max 76,144 104,838 2.28 134.96 

137.04 1,529.27% 

avg 50,573 50,573 1.84 50.56 
min 50,200 5,048 1.63 4.36 24 
max 51,002 77,850 2.11 112.23 

114.22 1,854.78% 

Table 4. Experimental results for the large-sized log file with load balancing 

 
In Figure 5, the algorithm execution time against the number of peers for the two 

different log file sizes and the two log distribution policies (non-balanced and balanced) 
is graphically illustrated. 
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Fig. 5. Algorithm execution time against number of peers 

 
To further investigate the effect of the communication infrastructure on the algorithm 

performance, the same experiments were run a second time substituting the 100Mbit 
switched Ethernet infrastructure with a 10Mbit shared Ethernet hub, and the results of 
this experiment are depicted in Figure 6. For graph clarity purposes, only the data 
regarding the maximum communication times of the load-balanced version of the 
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algorithm is illustrated and compared with the data obtained from the experiments run on 
the 100Mbit switched Ethernet infrastructure. As can be seen in the graph, although the 
theoretical network capacity decreases 10 times, the corresponding increment in 
communication time varies between 2.5 and 3.8 times, approximately. This indicates that 
in the 100Mbit scenario, the communication means was not exploited to its full capacity, 
mainly due to the compression applied to the log data prior to sending it over the 
network. The results from the 10Mbit scenario verify that the proposed algorithm is 
applicable in wide area networks too, since nowadays 10Mbit lines are a commodity for 
connecting servers to the internet. 

4.2 Quality of recommendations assessment 

In order to assess the quality of recommendations offered by the proposed algorithm, 
we quantify the rule matching percentage against the centralized version of the algorithm 
(which produces all association rules that should be generated). As noted above, since the 
partitioning scheme may lead clickstream information pertaining to the same session to 
be processed by different peers, some frequent patterns may be missed, and this will in 
turn result in failing to produce the related association rules. Formally, for an experiment 
producing #rulesexp rules, the rule matching percentage is defined as #rulesexp / #rulescentr, 
where #rulescentr is the number of rules produced by the centralized version of the 
algorithm. Note that, since the frequent patterns identified by the distributed versions of 
the algorithm are a subset of those identified by the centralized algorithm (since patterns 
can be only missed), it is not possible for the distributed algorithms to generate patterns 
that are not produced by the centralized one. As the number of peers increases, more 
sessions are bound to be split among different peers and therefore the rule matching 
percentage is expected to drop. 
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Fig. 6. Communication time for experiments running on varying network infrastructure 

Fig. 7 illustrates the rule matching percentage for different numbers of peers (2, 4, 8, 
16 and 24) and considering both the unbalanced and the load-balanced version of the 
proposed algorithm. As can be seen from the diagram, the matching percentage is found 
to be at quite satisfactory levels (> 88%), with the minimum value being observed for the 
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load-balanced version of the algorithm when the number of peers is set to 24. The load-
balanced version of the proposed algorithm always exhibits lower matching percentage 
than its non load-balanced counterpart; this is to be expected, since the non load-balanced 
version always assigns consecutive half-hour periods to each peer, therefore creating 
fewer points where session splitting may occur. 
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Fig. 7. Matching percentage of recommendation rules 

Finally, we note that the experiments were run using 30 different random 
partitionings of the initial log file among the peers, and in all cases the matching 
percentage was in close agreement to the one illustrated in Fig. 7 ( %7.0||  xx , where 

x is any individual measurement and x is the measurement mean, shown in Fig. 7). 

4.3 Comparison with other distributed mining approaches 

First of all, it must be stressed that the particular mining technique followed in 
distributed FGP combines many contemplations and, therefore, to the best of the authors’ 
knowledge, there is no other implementation in the literature, taking all these 
characteristics into account. Our technique is in essence a distributed, taxonomy-aware 
pattern growth and database projection (PGDP) algorithm, which works in a shared-
nothing architecture. The applications, which are closer to our approach, are parallel 
(shared-memory), as well as distributed FP-Growth implementations outlined in section 
2.1.1.1, whose time requirements will be compared to our work. 

The programming easiness of the shared memory scheme, compared to the cluster 
environment, explains the early appearance of parallel FP-Growth extensions. One of the 
most prominent ones is MLFPT (Zaïane et al., 2001), which obtains a speedup up to 
15.04, in a 16-processor scenario and a comparable dataset (1M transactions, roughly 
equal to the amount of transactions of our big university web log file), which is slightly 
worse than our approach (15.29), not to mention the better frequent patterns generated, 
due to the application of taxonomy data in the mining process in distributed FGP. 

The par-ITL algorithm presented in (Sucahyo et al., 2003) has a significant speedup, 
as the number of processors increases, but only up to 12 machines. This approach is 
proved to be scalable in dense datasets, containing many transactions. Furthermore, El-
Hajj & Zaïane (2006) report a speedup gain of 8, while running on 16 processors; 
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nevertheless, their Parallel Leap algorithm performs maximal-pattern mining (i.e. not all 
frequent patterns are outputted), while it does not make use of any taxonomy information. 

Furthermore, the LFP-tree approach presented in (Yu et al., 2007) achieves a speedup 
ratio of 4.5 in a dataset similar to our small university web log file. The equivalent figure 
for distributed FGP is 11.87. Moreover, the state-of-the-art in PGDP-based distributed 
FPM algorithms is presented in (Tanbeer et al., 2009), which uses the PP-tree data 
structure and achieves a speedup of 4 for 4 processors in a dataset of 100000 transactions, 
while our implementation achieves a speedup ratio equal to 6.63 when running in our 
small university web log file, which contains an analogous number of entries. 

In short, distributed FGP outperforms other approaches proposed, while running on a 
shared-nothing scenario and using the taxonomy information inherent in FPM, in order to 
improve the frequent patterns generated. 

5. Conclusions 

In this paper we have presented an extension of the FGP algorithm into the P2P 
domain, which allows distributed web logs to be mined efficiently for frequent patterns in 
a shared-nothing scheme. A further extension was the incorporation of log distribution 
according to histogram statistics to achieve better load balancing and smaller algorithm 
completion times. The proposed extensions have been implemented and benchmarked, 
using log files of various sizes and different numbers of peers, and the performance gains 
have been quantified in different network settings; we have also assessed the quality of 
recommendations produced by the proposed algorithm. It would be interesting to enhance 
our approach, in order to take into account the information regarding the taxonomy and 
node specialization, since in the current version of the algorithm, items belonging to 
different branches of the taxonomy are not differentiated. Hence, it is possible that when 
a user navigates within the politics branch, for instance, a recommendation to a page of 
the sports category is produced, if past users had visited pages from both categories. 
Typically, however, recommendations are offered only within the categories that a user 
has visited; this can be achieved by extending node specialization in the GARM phase, so 
as to have nodes specializing in both topic categories and time intervals. Besides limiting 
the recommendations only within the categories that a user has visited, this approach 
allows the system to scale in the GARM phase beyond its current limit of 48 peers (one 
peer per half-hour period). This is particularly useful in situations where the number of 
available content providers exceeds 48, e.g. content distribution networks. The 
incorporation of topic categories into the distribution scheme may also lead to further 
reducing the need for data exchange, since each peer can be set to process mostly the data 
it specializes in. Finally, we will investigate the incorporation of privacy-preserving data 
mining techniques into the distributed data mining architecture. Currently a number of 
methods are proposed in the literature, e.g. (G. Qiong and C. Xiao-hui, 2009; M. 
Kantarcioglu and C. Clifton, 2004; C. Su and K. Sakurai, 2008); nevertheless, these 
approaches work either in different data partitioning schemes or over different 
architectures. We will therefore investigate the adaptation of these algorithms to fit the 
data mining scheme proposed in this paper. 
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