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ABSTRACT 
In this paper, we present a framework which incorporates runtime 
quality of service-based adaptation for BPEL scenarios, allowing 
for tailoring their execution to the diverse needs of individual 
users. The proposed framework also caters for automatically 
resolving system-level exceptions, such as machine outages or 
network partitionings, while both scenario execution adaptation 
and exception resolution maintain the transactional semantics that 
invocations to multiple services offered by the same provider may 
bear.  

Categories and Subject Descriptors 

H.3.5 [Information Systems]:Online Information Services – Web-
based services. H.3.4 [Information Systems]: Systems and 
Software – Distributed systems; Performance evaluation 
(efficiency and effectiveness). 

General Terms 
Design, Performance. 

Keywords 
WS-BPEL, Adaptation, Exception resolution, Quality of Service. 

1. INTRODUCTION 
Web Services are considered as a dominant standard for 
distributed application communication over the internet. 
Consumer applications can remotely find and invoke complicated 
functionality, through established XLM-based protocols, in a 
technology agnostic manner. Towards this direction, Web 
Services Business Process Execution Language  [1] (WS-BPEL) 
constitutes a powerful tool for composing individual web services 
into business processes, by composing WS-BPEL scripts. WS-
BPEL clients can effectively define, in a single scenario, web 
service invocations, enriched with business process flow 
specification and data flow arrangements. WS-BPEL however 
does not include provisions to allow for (a) the client to specify 

the quality-of-service (QoS) requirements for a WS-BPEL 
scenario invocation and (b) for the WS-BPEL execution engine to 
adapt the execution of WS-BPEL scenarios, by dynamically 
selecting at run-time the web services best matching the client’s 
QoS requirements and invoke them. Indeed,  [2] lists governance 
for compliance with QoS and policy requirements as an open 
issue for the SOA architecture. This shortcoming has been 
identified by many researchers, and a number of approaches have 
been proposed to fill this gap.  [3] classifies these categories into 
(i) those addressing adaptation at horizontal level where the 
adaptation involves mainly service selection that determines the 
binding of each task in the composite service to actual 
implementations, leaving unchanged the composition logic and 
(ii) those addressing adaptation at the vertical level, within which 
the composition logic can be altered. 

Furthermore, as identified in  [4], dynamic resolution of 
exceptions occurring in WS-BPEL scenario executions (as 
opposed to static resolution through fault handlers provided by 
WS-BPEL) is required to elevating the robustness and reliability 
of business processes and simplifying the maintenance of their 
specifications. This is especially true in environments supporting 
QoS-based adaptation, since the selection of an alternative service 
to be invoked as a replacement to the failed one should take into 
account the QoS specifications effective for the particular 
execution of the WS-BPEL scenario. 

Finally,  [5] identifies service selection affinity as an important 
requirement for maintaining the transactional semantics that 
invocations to operations offered by the same provider may bear. 
Service selection affinity refers to cases where a service selection 
in the context of adaptation implies the binding of subsequent 
selections (e.g. selecting a hotel reservation from a travel agency 
dictates that the payment will be made to the same travel agency). 

In this paper we present a framework that extends BPEL 
execution with provisions for (a) specifying QoS requirements for 
invocations of web services within a WS-BPEL scenario (b) 
adapting the WS-BPEL scenario execution according to the QoS 
requirements while maintaining service selection affinity and (c) 
automatically resolving system-level exceptions in a QoS 
requirement-adhering manner (for a more detailed discussion on 
the distinction between system-level and business logic-level 
faults, the interested reader is referred to  [6]). The system 
architecture is compliant with the SOA paradigm, while all 
additional information needed for adaptation purposes (i.e. the 
QoS specifications for individual web service invocations) are 
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expressed in standard WS-BPEL syntax. The proposed framework 
also considers both sequential and parallel execution structures of 
WS-BPEL (<sequence> and <flow> tags, respectively), allowing 
for successful adaptation of any WS-BPEL scenario. To the best 
of the authors’ knowledge, no other work supports all the above 
listed features i.e. (i) QoS-based adaptation (ii) QoS-aware 
exception handling (iii) maintenance of service selection affinity 
and (iv) handling of both sequential and parallel execution 
structures. In this work, we adopt the horizontal adaptation 
approach, since (a) it respects the composition logic chosen by the 
designer and (b) we consider exception handling, and the 
horizontal adaptation enables the exploitation of exception 
handlers which may have been carefully crafted by the BPEL 
scenario designer, and integrated into the scenario. 

The rest of the paper is structured as follows: In section 2 we 
overview related work, while in section 3 we briefly present the 
QoS aspects considered in this work. In section 4 we present the 
overall framework architecture and elaborate on the functionality 
of its components. In section 5 we present and discuss 
experiments conducted to assess the proposed framework’s 
performance. Finally, Section 6 concludes the paper and outlines 
future work. 

2. RELATED WORK 
As stated in section 1, adaptation approaches presented insofar 
follow either the horizontal and vertical level adaptation  [2]. 
AgFlow, introduced in  [7] provides WS-BPEL clients with QoS 
constrains, by revising the execution plan either on a global or a 
local planning. In case of local planning, web service selection is 
done during execution time and conforms to a greedy strategy. On 
the other hand, in case of global planning, WS-BPEL scenario is 
partitioned in regions of collaboration and web service selection 
strategy is concentrated on a group of actions. Work in  [8], 
introduces VieDAME, which adapts the execution of BPEL 
scenarios according to QoS parameters; however these parameters 
and the selection strategy are pre-determined through pluggable 
modules. Additionally, VieDAME does not support service 
selection affinity and is platform-dependent since it relies on 
extensions of the ActiveBPEL engine. 

Work in  [9] considers service selection in the presence of QoS 
constraints and aiming to minimize an objective function for the 
entire orchestration employing both brute force (OPTIM_S) and 
heuristic (OPTIM_HWEIGHT) algorithms. This work presents 
the service selection algorithms but does not propose an 
architecture on top of which the adaptation can be realized, while 
it additionally does not consider service selection affinity. The 
MOSES approach is introduced in  [10] performs web service 
selection by means of formulating and solving a linear 
programming problem, considering by different patterns (par_or, 
par_and etc) and monitoring QoS execution during runtime. 
MOSES assumes that business processes are written as abstract 
compositions (contrary to our approach where business processes 
are specified through actual WS-BPEL scenarios, enabling the use 
of existing ones without any modification), while QoS 
requirements are stated through an SLA, giving the average value 
of QoS attributes, not allowing distinct QoS specifications per 
web service invocation. 

Several works exist which not only optimize business processes, 
but also implement exception handling mechanisms in order to 
provide solutions in unpredicted run time environments. More 
specifically, framework in  [11] uses autonomic computing 
concepts for providing execution plan formulation for business 
processes, taking into account QoS parameters, monitors 
dynamically QoS violations at runtime and provides 
instrumentation for the handling of these exceptions. The work in 
 [5] combines adaptation to QoS specifications and exception 
resolution (reverting to wherever possible to suboptimal plans, in 
the presence of exceptions), undertaking however a greedy 
strategy to service binding, which may lead to suboptimal 
solutions. 

All composition and exception resolution approaches require 
some repository to describe (a) the functionalities of web services 
(this includes the concept of service equivalence  [12], i.e. services 
implementing the same functionality) and (b) their QoS 
parameters. METEOR-S  [13] is a suitable infrastructure for such 
service discovery activities, employing ontologies where service 
inputs, outputs and QoS aspects are described. Execution under 
the METEOR-S framework is also monitored to allow for 
updating of QoS attributes such as response time and failure rate. 
WSMO  [14] may provide the foundations for modeling, storing 
and reasoning on the relevant web service functional and non-
functional aspects.  [15] presents WSMoD (Web Services 
MOdeling Design) for providing methodologies that address the 
design of Web services according to specific qualities of service 
(QoS) rather than functional descriptions only. 

Our work extends, in terms of offered features, the work 
presented in  [5] by adding support for parallel execution 
structures (<flow> tags) in BPEL scenarios. This extension is not 
trivial, since (i) since the architecture of  [5] performs a greedy-
type adaptation (intercepting and adapting individual service 
calls), while the optimization of parallel execution structures 
considered in this paper necessitates the knowledge of the overall 
structure of the BPEL scenario, hence the adaptation algorithm is 
substantially different and (ii) the aggregation functions of QoS 
dimensions employed for parallel executions are substantially 
different from those employed for sequential executions  [16], 
dictating thus the use of different adaptation algorithms in order 
to achieve optimal adaptation. The difference between the 
optimization strategies for sequential and parallel execution 
structures is exemplified in section 3. 

3. QOS ASPECTS AND DEFINITIONS 
QoS may be defined in terms of attributes  [17]  [18], while typical 
attributes considered are price, response time, availability, 
reputation, security etc  [19]. For conciseness purposes and 
without loss of generality, in this paper we will consider only the 
attributes responseTime (rt), cost (c) and reliability (rel), 
adopting their definitions from  [14]. In the proposed framework, 
the QoS specifications for a service within the BPEL scenario 
may include an upper bound and a lower bound for each QoS 
attribute, plus a weight, indicating how important each qualitative 
attribute is considered by the designer in the context of the 
particular operation invocation. Thus, the QoS specifications may 
be defined in the form of three vectors, namely MAX = (rtmax, 
cmax, relmax), MIN = (rtmin, cmin, relmin) and W = (rtw, cw, relmin). 



Weights may be negative to indicate that lower values are 
preferable to higher ones, as is expected for attributes such as cost 
and response time. For convenience reasons, we assume that all 
QoS attributes are normalized in the range [0, 10]. 

The QoS of services composed through sequential or parallel 
execution from constituent services s1, …, sn having QoS 
attributes equal to (rt1, c1, av1), …, (rtn, cn, avn) is given in the 
following table  [20]. 
 

Table 1. QoS of composite services 
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As we can see from table 1, the response time of a sequential 
composition is equal to the sum of its components’ response time, 
while the response time of a parallel composition is equal to the 
maximum value. This difference is important in the adaptation 
process, since different search strategies should be employed to 
optimally adapt the scenario to the client’s QoS specification. 
Consider for example the case of a BPEL scenario includes 
sequential invocations to A and B, which is invoked with the 
setting W=(-1, -1, 0) for both service invocations. If the repository 
of available services were as listed in table 2, then the adaptation 
engine should select services (A1, B1), with this composition 
(scoring -17, a score higher that any other composition). In a 
parallel composition however, the adaptation engine should select 
either (A1, B2) or (A2, B2), since these provide an overall score of -
13, as opposed to -16 of (A1, B1). 

As noted in the introduction, the framework presented in this 
paper arranges for maintaining service selection affinity. 
Maintenance of service selection affinity guarantees that service 
invocations designated in the original BPEL scenario to be 
directed to the same service provider (e.g. a hotel room 
reservation and the related payment), are guaranteed to be also 
directed to the same provider through the adaptation procedure; 
the adaptation procedure may select a different same provider 
from the one designated in the original BPEL scenario, however 
the adaptation procedure guarantees that both the reservation and 
the payment invocations would be directed to the same service 
provider. 
 

Table 2. Sample repository contents 

Service responseTime cost reliability 
A1 6 5 8 
A2 8 4 7 
B1 2 5 9 
B2 7 1 7 
 

4. PROPOSED FRAMEWORK 
The proposed framework extends the typical WS_BPEL 
execution scenario by accommodating two additional modules, 
namely the BPEL scenario preprocessor and an adaptation layer. 

The BPEL scenario preprocessor accepts as input the original 
BPEL scenario and produces as output a transformed BPEL 
scenario, which has been transformed to (i) transmit to the 
adaptation layer the QoS specifications and the necessary 
information regarding the scenario structure (i.e. sequential and 
parallel flows) to enable the adaptation of the scenario and (ii) 
redirect all service invocations to the adaptation layer, where they 
will be appropriately redirected to the most suitable service 
provider. The adaptation layer is deployed as a middleware, 
positioned between the BPEL execution engine and the web 
service providers and arranges for redirecting the web service 
invocations to the web service implementations best matching the 
client’s QoS specifications, and intercepting and resolving 
system-level exceptions. The adaptation layer also offers two 
utility web services, the first one assigning session identifiers to 
BPEL scenario executions and the second one accepting the 
information regarding QoS specifications and the scenario 
structure. Figure 1 presents the overall architecture of the 
proposed framework; in the following section we will elaborate 
on (a) the specification of QoS parameters in the BPEL scenario 
(b) the operation of the preprocessor and (c) the operation of the 
adaptation layer. 

4.1 Specifying QoS information in the 
scenario 
The first step towards enabling the QoS-based adaptation is the 
specification of the required QoS for service invocations. In order 
to provide this feature in a WS-BPEL compliant fashion, , the 
proposed framework adopts the following conventions: 

1. the designer should include in each invoke construct in the 
WS-BPEL scenario the optional attribute name, assigning 
distinct names to the invoke constructs. 

2. for the invoke construct having name invX, the designer 
should use the WS-BPEL variables QoSmax_invX, 
QoSmin_invX and QoSweight_invX, which define the 
respective QoS specifications for the particular invocation. 
The BPEL designer may set the values for these variables 
after inspecting input parameters to the scenario (e.g. 
“choose=cheapest”), arranging thus for tailoring the QoS 
specification to the invoking user’s preferences. 

Figure 2 presents an excerpt of a BPEL scenario setting QoS 
specifications for an invocation (named invoke1). Since variable 
QoSmin_invoke1 is not set, no lower bounds will be considered 
for the QoS attribute values in the process of adapting the 
particular web service invocation. Additionally, since the 
QoSmax_invoke1 does not include a setting for the reliability QoS 
attribute, no upper bound for this attribute value will be 
considered. 

4.2 Preprocessing the BPEL scenario 
As shown in Figure 1, before the BPEL scenario is deployed on 
the web services platform, it is processed by the BPEL 
preprocessor, which creates an enhanced BPEL scenario as its 
output. The enhanced BPEL scenario differs from the original one 
in the following aspects: 

1. it includes as its first operation an invocation to the web 
service getSessionId provided by the middleware; the result of 
the invocation is stored in a variable for later perusal. 



<assign> 
 <copy> 
  <from><literal>respTime:5;cost:3</literal></from> 
  <to variable="QoSmax_invoke1"/> 
 </copy> 
 <copy> 
  <from><literal>respTime:-1;cost:-2;reliability:1</literal></from> 
  <to variable="QoSweight_invoke1"/> 
 </copy> 
</assign> 
<invoke name="invoke1" partnerLink="lnk1" portType="port1" 
operation="op1" inputVariable="input1" outputVariable="output2"/> 

Figure 2. QoS specification in the BPEL scenario 
 

2. it includes an invocation to the bpelScenarioInfo web service 
provided by the middleware, through which the BPEL 
scenario transfers to the adaptation middleware (a) the current 
session identifier (b) the values of all QoS-related parameters 
(QoSmax_, QoSmin_ and QoSweight_) and (c) the 
information about the scenario structure. The latter effectively 
is represented as a simplified XML representation of the 
BPEL scenario including only the <sequence>, <flow> and 
<invoke> constructs of the original BPEL scenario; for the 
<invoke> constructs in particular, only the name, and 
operation attributes are transmitted, coupled with the 
service’s endpoint address, extracted from the relevant WSDL 
file. This invocation is inserted before the first <invoke> 
construct of the original WS-BPEL scenario, to ascertain that 
the adaptation-related information have been transferred to 
the adaptation layer before the first invocation is intercepted 
and adapted. 

3. The preprocessor arranges that each web service invocation is 
complemented with a header including the session identifier 
for the current scenario execution (the value returned by the 
getSessionId WS) and the value of the name attribute of the 
particular invoke construct. While header manipulation not a 
standard WS-BPEL feature, most contemporary BPEL 
engines provide means to set request headers, e.g.  [21] [22]. 

4. The BPEL scenario includes as its final operation an 
invocation to the releaseSession web service provided by the 
middleware. 

The enhanced BPEL scenario produced by the preprocessor is 
then deployed to the web services platform and made available 
for execution. 

4.3 Executing the BPEL scenario 
When the BPEL scenario starts executing, it will retrieve the 
session identifier from the adaptation layer and subsequently will 
transfer to the adaptation layer all information described in the 
previous subsection. The adaptation layer at this stage proceeds to 
the creation of the current session’s execution plan as follows: 

1. for each web service invocation within the WS-BPEL 
scenario, its equivalent services are retrieved from the service 
repository; note that the information retrieved from the 
service repository includes the values for the equivalent 
services’ QoS attributes. Only equivalent services that satisfy 
the QoS thresholds specified in the respective invocations’ 
QoSmax_ and QoSmin_are retrieved. If, for some service in 
the initial WS-BPEL scenario, no candidates satisfying the 
thresholds are found, then the adaptation layer returns a 
QoS_PolicyFault to the web services platform. The WS-
BPEL designer may intercept the fault using the standard WS-
BPEL mechanisms (<catch> construct) and attempt to resolve 
it, e.g. by relaxing the constraints and restarting the scenario, 
or simply notify the requesting client of the error condition. 

2. the adaptation layer formulates all candidate execution plans 
for the particular execution of the BPEL scenario. Assuming 
that the scenario contains N invocations {inv1, inv2, …, invN} 
and that for each invocation invj there is a set of equivalent 
services EQj={sj,1, sj,2, …, sj,k}, the maximal set of candidate 
execution plans is EQj  EQ2  …  EQN. This set is however 
pruned by removing elements that violate the service selection 
affinity principle, i.e. if invocations invi and invj are directed 
to the same service provider (i.e. services for which the host 
part of their endpoint address is identical) in the original 

BPEL Scenario 
with QoS 
specifications

Web Services 
Platform

WS-BPEL Orchestrator

(2)

Consumer

(3)

BPEL scenario 
invocation +
Parameters

Adaptation layer

(5) information 
about scenario 

structure, service 
calls and QoS

(11)
Results 

Service
repository

(e.g. Meteor-S)

WS-1 WS-n...WS-2
Web Service 

Implementations

(7) Invocation (8) Results or system-related 
exception or business logic exception

Enhanced
BPEL scenario

(1)

preprocessor

(6)
web service call

getSessionId WS

bpelScenarioInfo WS

adaptWSInvocation WS

(4) retrieve 
session id

Session 
memory

(9) Result
releaseSession WS

(10) Release 
session

deployment

 

Figure 1. Proposed Framework Architecture 



scenario, then all candidate execution plans in which 
replacements to invi and invj are not directed to the same 
service provider are removed from the candidate set. If the 
pruning step results in an empty candidate execution plan set, 
then a QoS_PolicyFault is returned to the web services 
platform. 

3. for each execution plan within the candidate set formulated in 
step 2, an overall score is computed. The score computation 
procedure proceeds in a bottom-up fashion: initially, the score 
of individual invocations is computed using the formula 

iaviiciirtii wavwcwrtinvsc ,,, ***)(  , where 

rti, ci and avi are the QoS attribute values for the service 
replacing invi in the execution plan, while wrt,i, wc,i, wav,i are 
the weights specified in the QoS_weight_ variable for 
invocation invi. After all individual invocations’ scores have 
been computed, the formulas in Table 1 are used to compute 
the overall score of the execution plan. Finally, the execution 
plan with the highest score is selected, and the 
correspondences between the original invocations and the 
services used in the selected execution plan are stored in the 
session memory (cf. Figure 1), coupled with the current 
session id. The correspondences are marked as unbound; this 
flag will be used for exception resolution (described below). 

When an invoke construct is processed within the BPEL scenario, 
the outgoing request is redirected to the adaptWSInvocation web 
service provided by the adaptation layer; this can be 
accomplished either using a proxy setting in the web services 
platform or by using a transparent redirection router (both 
techniques are detailed in  [4]). When the adaptWSInvocation 
intercepts a request, it processes it as follows: 

1. it extracts from the request headers the session identifier and 
name of the invoke construct. Using these keys, it queries the 
session memory for the correspondence between the invoke 
construct and the actual service endpoint, selected in the 
execution plan formulation phase. 

2. the request is forwarded to the endpoint retrieved in the 
previous step and the reply is received. If the reply is a normal 
response or a business logic-level fault (cf.  [6]), then the reply 
is forwarded back to the web services platform. Additionally, 
the host part of the endpoint to which the invocation was 
made (denoted as hinv in the following) is extracted, and the 
session memory is updated setting the correspondence 
between invoke construct names and endpoint address to 
bound, for all invocations to endpoints offered by hinv. This 
update will prevent the exception resolution process 
(described below) from breaking the service selection affinity. 

3. if the reply received from the invocation is a system-level 
fault (e.g. “host unreachable” or “connection refused”; for a 
full discussion the interested reader is referred to  [6]), then the 
adaptation layer will try to resolve the fault by invoking a 
service equivalent to the failed one. Note however that such a 
resolution is possible only if no prior successful invocation 
was made in the same session to a service offered by hinv. This 
restriction is applied to maintain session affinity, since if a 
prior invocation was made to host hinv and the current 
invocation is directed to another host to resolve the system 
fault, then the service selection affinity will be broken. Taking 

the above into account, the adaptation layer first queries the 
session memory to determine if the current invocation has 
been marked as bound (recall from step 2 above that this will 
be performed if any prior invocation to services offered by 
hinv has concluded successfully). If it has been marked as 
bound, then the fault cannot be automatically resolved and is 
thus returned to the web services platform. If, however, the 
current invocation is marked as unbound, then the adaptation 
layer first locates in the current execution plan all services s1. 
s2, …, sk offered by host hinv and then retrieves from the 
repository all k-tuples (s’1. s’2, …, s’k) such that: 

a. si is equivalent to s’i,  i=1, 2, …, k; this condition 
guarantees the functional equivalence of the initial 
execution plan to the candidate exception resolution plan. 

b. s’i satisfies the QoS thresholds specified in the respective 
invocations’ QoSmax_ and QoSmin_ variables,  i=1, 2, …, 
k; this condition guarantees that the candidate exception 
resolution plan adheres to the restrictions specified by the 
client. 

c. all services s’i are offered by the same host, which must be 
different from hinv; this condition guarantees that the 
candidate exception resolution plan maintains the service 
selection affinity and that the failed host will not be retried. 

Subsequently, for each k-tuple KTj, an overall score is 
computed using the formula 





k

i
iaviiciirtij wavwcwrtKTsc

1
,,, ***)( (rti, 

ci and avi denote the QoS attribute values for service s’i in KTj 
and while wrt,i, wc,i, wav,i are the weights specified in the 
QoS_weight_ variable for the respective invocation). The k-
tuple with the highest score is then chosen and all invocations 
in the execution plan to services offered by host hinv are 
replaced by the corresponding invocations to services of the 
chosen k-tuple. Finally, the failed service invocation is 
restarted, being now directed to the newly chosen endpoint. If 
a system-level exception occurs at this point, the next-best k-
tuple is selected, the execution plan is updated and the 
invocation is restarted again; this is be repeated until either a 
request succeeds or an administrator-defined limit is reached; 
in the latter case, the system-level exception is returned to the 
web services platform. 

5. EXPERIMENTAL ANALYSIS 
In order to assess the performance of our approach and validate 
our approach, we have conducted a set of experiments, aiming to 
measure and quantify the overhead incurred due to the 
introduction of the middleware. In these experiments we 
measured (a) the overhead imposed by the use of the invocations 
to the getSessionId and bpelScenarioInfo web services (invoked 
once per execution of a WS-BPEL scenario) (b) the overhead 
imposed for each web service invocation within the BPEL 
scenario and (c) the overhead imposed when the exception 
resolution mechanism is activated. The time taken by the 
preprocessor to transform the original WS-BPEL scenario into its 
enhanced form is not assessed, since preprocessing takes place in 
an offline fashion, not penalizing thus the production system 
performance. Finally, release session time has been found to be 



negligible and metrics are not presented here due to space 
limitations. Moreover, the “release session” invocation may be 
implemented as an asynchronous web service call, having thus 
minimal impact on the WS-BPEL scenario execution time. 

For our experiments we used two machines: the first one (a 
workstation equipped with one Pentium 4@2.8GHz CPU and 
512MB of RAM) hosted the preprocessor and the clients, while 
the second one (a workstation equipped with one Pentium i7@1.6 
GHz and 4 GBytes of RAM) hosted the BPEL execution engine 
(a Glassfish application server  [23], the middleware and the target 
web services. The repository was implemented as an HSQLDB 
server, which was hosted on the second workstation ( [24]). The 
repository was populated with synthetic data with an overall size 
of 2.000 web services. The machines were connected through a 
100Mbps local area network. 
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Figure 3. Optimization overhead 

 

Figure 3 presents the optimization overhead (i.e. the overhead 
imposed by the use of the invocations to the getSessionId and 
bpelScenarioInfo web services) for varying number invocations 
present in the WS-BPEL scenario and different number of 
concurrent invocations (i.e. concurrent clients requesting the 
execution of the WS-BPEL scenario). The overhead increase has 
been found to be steeper when the number of concurrent 
invocations raises from 75 to 100 concurrent invocations; this is 
due to the depletion of the second workstation’s resources at this 
load range; offloading specific tasks from that machine (e.g. 
hosting the adaptation layer and/or the target web services in a 
different machine than the WS-BPEL execution engine) is 
expected to provide smoother performance scaling. 

Figure 4 presents the overhead incurred for the execution of a 
service invocation within the WS-BPEL scenario. This effectively 
accounts for (a) the two extra network messages required to 
transfer the request to the adaptation layer and return the reply 
from it and (b) the time taken to lookup in the session memory the 
correspondence between the particular service invocation and the 
endpoint determined in the optimization stage, and adjust the 
request message for forwarding to that endpoint. Even for high 
concurrency levels, the overhead for service execution is small 
(18.5 msec). Similarly to Figure 3, the overhead rises more 
steeply when the number of concurrent executions raises from 75 
to 100, which is again due to the depletion of the second 
workstation’s resources. 
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Figure 4. Service execution overhead 
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Figure 5. Exception resolution overhead 

 

Finally, figure 5 presents the overhead incurred for resolving 
system level exceptions. This overhead accounts only for the time 
needed by the adaptation layer to perform the relevant tasks and 
does not include the time needed to invoke the failing services, 
since the latter varies significantly with the root cause of the 
failure (e.g. a fault owing to a network timeout leads to 
significantly higher delays than a fault owing to an invocation to a 
service that has been withdrawn), and therefore no meaningful 
statistics can be derived for the failing services’ invocation times. 
Note also that the overheads illustrated in figure 5 refer to the 
resolution of an exception occurring in the invocation of a single 
service; the “1 exception” data series refers to the case of the 
exception being resolved by the first alternative service, while the 
data series “2 exceptions” refers to the case that the first 
alternative service fails and the second one succeeds (similarly for 
the data series “3 exceptions”). As described in subsection 4.3, 
only the first attempt to resolve an exception involves repository 
lookups and calculations of scores for alternative solutions, while 
subsequent attempts simply move to the “next best” solutions 
computed in the first attempt; this justifies the small time 
increments between the different data series in figure 5. 

6. CONCLUSION AND FUTURE WORK 
In this paper we have presented a framework enabling the WS-
BPEL designers to specify the QoS requirements for the service 
invocations included in the WS-BPEL scenarios and the 
subsequent adaptation of the scenarios’ execution to these 
specifications. The proposed framework also supports the 
automatic resolution of system-level exceptions, while it also 
caters for the maintenance of service selection affinity, 



ascertaining that transactional semantics of service invocations 
are preserved. The proposed framework includes a scenario 
preprocessing step, before the scenario is deployed and made 
available for invocations, and an adaptation layer, which 
undertakes the tasks of optimizing the execution plan for the WS-
BPEL scenario, adapting the execution and resolving exceptions. 

The proposed framework has been experimentally evaluated to 
assess its performance. The overheads for the various phases have 
been quantified to be reasonable, while its performance scales 
acceptably with the number of concurrent BPEL scenario 
executions. 

Our future work will focus on the integration of QoS-adherence 
monitoring mechanisms, such as those described in [8] and the 
handling of loops and conditional execution constructs in WS-
BPEL scenarios; for the latter task, statistical information from 
prior scenario executions are foreseen as information sources to 
the adaptation process. Finally, integration of service selection 
affinity and exception resolution in vertical adaptation strategies 
will be considered. 
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