
An integrated framework for QoS-based adaptation and
exception resolution in WS-BPEL scenarios

Margaris Dionisis
Department of Informatics and

Telecommunications, University of
Athens, Panepistimioupoli,

15784, Athens, Greece
+302107275186

margaris@di.uoa.gr

Vassilakis Costas
Department of Computer Science

and Technology, University of
Peloponnese, Terma Karaiskaki,

22100, Tripoli, Greece
+30 2710372203

costas@uop.gr

Georgiadis Panagiotis
Department of Informatics and

Telecommunications, University of
Athens, Panepistimioupoli,

15784, Athens, Greece
+302107275235

p.georgiadis@di.uoa.gr

ABSTRACT
In this paper, we present a framework which incorporates runtime
quality of service-based adaptation for BPEL scenarios, allowing
for tailoring their execution to the diverse needs of individual
users. The proposed framework also caters for automatically
resolving system-level exceptions, such as machine outages or
network partitionings, while both scenario execution adaptation
and exception resolution maintain the transactional semantics that
invocations to multiple services offered by the same provider may
bear.

Categories and Subject Descriptors

H.3.5 [Information Systems]:Online Information Services – Web-
based services. H.3.4 [Information Systems]: Systems and
Software – Distributed systems; Performance evaluation
(efficiency and effectiveness).

General Terms
Design, Performance.

Keywords
WS-BPEL, Adaptation, Exception resolution, Quality of Service.

1. INTRODUCTION
Web Services are considered as a dominant standard for
distributed application communication over the internet.
Consumer applications can remotely find and invoke complicated
functionality, through established XLM-based protocols, in a
technology agnostic manner. Towards this direction, Web
Services Business Process Execution Language [1] (WS-BPEL)
constitutes a powerful tool for composing individual web services
into business processes, by composing WS-BPEL scripts. WS-
BPEL clients can effectively define, in a single scenario, web
service invocations, enriched with business process flow
specification and data flow arrangements. WS-BPEL however
does not include provisions to allow for (a) the client to specify

the quality-of-service (QoS) requirements for a WS-BPEL
scenario invocation and (b) for the WS-BPEL execution engine to
adapt the execution of WS-BPEL scenarios, by dynamically
selecting at run-time the web services best matching the client’s
QoS requirements and invoke them. Indeed, [2] lists governance
for compliance with QoS and policy requirements as an open
issue for the SOA architecture. This shortcoming has been
identified by many researchers, and a number of approaches have
been proposed to fill this gap. [3] classifies these categories into
(i) those addressing adaptation at horizontal level where the
adaptation involves mainly service selection that determines the
binding of each task in the composite service to actual
implementations, leaving unchanged the composition logic and
(ii) those addressing adaptation at the vertical level, within which
the composition logic can be altered.

Furthermore, as identified in [4], dynamic resolution of
exceptions occurring in WS-BPEL scenario executions (as
opposed to static resolution through fault handlers provided by
WS-BPEL) is required to elevating the robustness and reliability
of business processes and simplifying the maintenance of their
specifications. This is especially true in environments supporting
QoS-based adaptation, since the selection of an alternative service
to be invoked as a replacement to the failed one should take into
account the QoS specifications effective for the particular
execution of the WS-BPEL scenario.

Finally, [5] identifies service selection affinity as an important
requirement for maintaining the transactional semantics that
invocations to operations offered by the same provider may bear.
Service selection affinity refers to cases where a service selection
in the context of adaptation implies the binding of subsequent
selections (e.g. selecting a hotel reservation from a travel agency
dictates that the payment will be made to the same travel agency).

In this paper we present a framework that extends BPEL
execution with provisions for (a) specifying QoS requirements for
invocations of web services within a WS-BPEL scenario (b)
adapting the WS-BPEL scenario execution according to the QoS
requirements while maintaining service selection affinity and (c)
automatically resolving system-level exceptions in a QoS
requirement-adhering manner (for a more detailed discussion on
the distinction between system-level and business logic-level
faults, the interested reader is referred to [6]). The system
architecture is compliant with the SOA paradigm, while all
additional information needed for adaptation purposes (i.e. the
QoS specifications for individual web service invocations) are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’13, March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03…$10.00.

expressed in standard WS-BPEL syntax. The proposed framework
also considers both sequential and parallel execution structures of
WS-BPEL (<sequence> and <flow> tags, respectively), allowing
for successful adaptation of any WS-BPEL scenario. To the best
of the authors’ knowledge, no other work supports all the above
listed features i.e. (i) QoS-based adaptation (ii) QoS-aware
exception handling (iii) maintenance of service selection affinity
and (iv) handling of both sequential and parallel execution
structures. In this work, we adopt the horizontal adaptation
approach, since (a) it respects the composition logic chosen by the
designer and (b) we consider exception handling, and the
horizontal adaptation enables the exploitation of exception
handlers which may have been carefully crafted by the BPEL
scenario designer, and integrated into the scenario.

The rest of the paper is structured as follows: In section 2 we
overview related work, while in section 3 we briefly present the
QoS aspects considered in this work. In section 4 we present the
overall framework architecture and elaborate on the functionality
of its components. In section 5 we present and discuss
experiments conducted to assess the proposed framework’s
performance. Finally, Section 6 concludes the paper and outlines
future work.

2. RELATED WORK
As stated in section 1, adaptation approaches presented insofar
follow either the horizontal and vertical level adaptation [2].
AgFlow, introduced in [7] provides WS-BPEL clients with QoS
constrains, by revising the execution plan either on a global or a
local planning. In case of local planning, web service selection is
done during execution time and conforms to a greedy strategy. On
the other hand, in case of global planning, WS-BPEL scenario is
partitioned in regions of collaboration and web service selection
strategy is concentrated on a group of actions. Work in [8],
introduces VieDAME, which adapts the execution of BPEL
scenarios according to QoS parameters; however these parameters
and the selection strategy are pre-determined through pluggable
modules. Additionally, VieDAME does not support service
selection affinity and is platform-dependent since it relies on
extensions of the ActiveBPEL engine.

Work in [9] considers service selection in the presence of QoS
constraints and aiming to minimize an objective function for the
entire orchestration employing both brute force (OPTIM_S) and
heuristic (OPTIM_HWEIGHT) algorithms. This work presents
the service selection algorithms but does not propose an
architecture on top of which the adaptation can be realized, while
it additionally does not consider service selection affinity. The
MOSES approach is introduced in [10] performs web service
selection by means of formulating and solving a linear
programming problem, considering by different patterns (par_or,
par_and etc) and monitoring QoS execution during runtime.
MOSES assumes that business processes are written as abstract
compositions (contrary to our approach where business processes
are specified through actual WS-BPEL scenarios, enabling the use
of existing ones without any modification), while QoS
requirements are stated through an SLA, giving the average value
of QoS attributes, not allowing distinct QoS specifications per
web service invocation.

Several works exist which not only optimize business processes,
but also implement exception handling mechanisms in order to
provide solutions in unpredicted run time environments. More
specifically, framework in [11] uses autonomic computing
concepts for providing execution plan formulation for business
processes, taking into account QoS parameters, monitors
dynamically QoS violations at runtime and provides
instrumentation for the handling of these exceptions. The work in
 [5] combines adaptation to QoS specifications and exception
resolution (reverting to wherever possible to suboptimal plans, in
the presence of exceptions), undertaking however a greedy
strategy to service binding, which may lead to suboptimal
solutions.

All composition and exception resolution approaches require
some repository to describe (a) the functionalities of web services
(this includes the concept of service equivalence [12], i.e. services
implementing the same functionality) and (b) their QoS
parameters. METEOR-S [13] is a suitable infrastructure for such
service discovery activities, employing ontologies where service
inputs, outputs and QoS aspects are described. Execution under
the METEOR-S framework is also monitored to allow for
updating of QoS attributes such as response time and failure rate.
WSMO [14] may provide the foundations for modeling, storing
and reasoning on the relevant web service functional and non-
functional aspects. [15] presents WSMoD (Web Services
MOdeling Design) for providing methodologies that address the
design of Web services according to specific qualities of service
(QoS) rather than functional descriptions only.

Our work extends, in terms of offered features, the work
presented in [5] by adding support for parallel execution
structures (<flow> tags) in BPEL scenarios. This extension is not
trivial, since (i) since the architecture of [5] performs a greedy-
type adaptation (intercepting and adapting individual service
calls), while the optimization of parallel execution structures
considered in this paper necessitates the knowledge of the overall
structure of the BPEL scenario, hence the adaptation algorithm is
substantially different and (ii) the aggregation functions of QoS
dimensions employed for parallel executions are substantially
different from those employed for sequential executions [16],
dictating thus the use of different adaptation algorithms in order
to achieve optimal adaptation. The difference between the
optimization strategies for sequential and parallel execution
structures is exemplified in section 3.

3. QOS ASPECTS AND DEFINITIONS
QoS may be defined in terms of attributes [17] [18], while typical
attributes considered are price, response time, availability,
reputation, security etc [19]. For conciseness purposes and
without loss of generality, in this paper we will consider only the
attributes responseTime (rt), cost (c) and reliability (rel),
adopting their definitions from [14]. In the proposed framework,
the QoS specifications for a service within the BPEL scenario
may include an upper bound and a lower bound for each QoS
attribute, plus a weight, indicating how important each qualitative
attribute is considered by the designer in the context of the
particular operation invocation. Thus, the QoS specifications may
be defined in the form of three vectors, namely MAX = (rtmax,
cmax, relmax), MIN = (rtmin, cmin, relmin) and W = (rtw, cw, relmin).

Weights may be negative to indicate that lower values are
preferable to higher ones, as is expected for attributes such as cost
and response time. For convenience reasons, we assume that all
QoS attributes are normalized in the range [0, 10].

The QoS of services composed through sequential or parallel
execution from constituent services s1, …, sn having QoS
attributes equal to (rt1, c1, av1), …, (rtn, cn, avn) is given in the
following table [20].

Table 1. QoS of composite services

 QoS attribute
 responseTime cost reliability
Sequential
composition 



n

i
irt

1



n

i
ic

1



n

i
iav

1
Parallel
composition

)max(i
i

rt
 



n

i
ic

1



n

i
iav

1

As we can see from table 1, the response time of a sequential
composition is equal to the sum of its components’ response time,
while the response time of a parallel composition is equal to the
maximum value. This difference is important in the adaptation
process, since different search strategies should be employed to
optimally adapt the scenario to the client’s QoS specification.
Consider for example the case of a BPEL scenario includes
sequential invocations to A and B, which is invoked with the
setting W=(-1, -1, 0) for both service invocations. If the repository
of available services were as listed in table 2, then the adaptation
engine should select services (A1, B1), with this composition
(scoring -17, a score higher that any other composition). In a
parallel composition however, the adaptation engine should select
either (A1, B2) or (A2, B2), since these provide an overall score of -
13, as opposed to -16 of (A1, B1).

As noted in the introduction, the framework presented in this
paper arranges for maintaining service selection affinity.
Maintenance of service selection affinity guarantees that service
invocations designated in the original BPEL scenario to be
directed to the same service provider (e.g. a hotel room
reservation and the related payment), are guaranteed to be also
directed to the same provider through the adaptation procedure;
the adaptation procedure may select a different same provider
from the one designated in the original BPEL scenario, however
the adaptation procedure guarantees that both the reservation and
the payment invocations would be directed to the same service
provider.

Table 2. Sample repository contents

Service responseTime cost reliability
A1 6 5 8
A2 8 4 7
B1 2 5 9
B2 7 1 7

4. PROPOSED FRAMEWORK
The proposed framework extends the typical WS_BPEL
execution scenario by accommodating two additional modules,
namely the BPEL scenario preprocessor and an adaptation layer.

The BPEL scenario preprocessor accepts as input the original
BPEL scenario and produces as output a transformed BPEL
scenario, which has been transformed to (i) transmit to the
adaptation layer the QoS specifications and the necessary
information regarding the scenario structure (i.e. sequential and
parallel flows) to enable the adaptation of the scenario and (ii)
redirect all service invocations to the adaptation layer, where they
will be appropriately redirected to the most suitable service
provider. The adaptation layer is deployed as a middleware,
positioned between the BPEL execution engine and the web
service providers and arranges for redirecting the web service
invocations to the web service implementations best matching the
client’s QoS specifications, and intercepting and resolving
system-level exceptions. The adaptation layer also offers two
utility web services, the first one assigning session identifiers to
BPEL scenario executions and the second one accepting the
information regarding QoS specifications and the scenario
structure. Figure 1 presents the overall architecture of the
proposed framework; in the following section we will elaborate
on (a) the specification of QoS parameters in the BPEL scenario
(b) the operation of the preprocessor and (c) the operation of the
adaptation layer.

4.1 Specifying QoS information in the
scenario
The first step towards enabling the QoS-based adaptation is the
specification of the required QoS for service invocations. In order
to provide this feature in a WS-BPEL compliant fashion, , the
proposed framework adopts the following conventions:

1. the designer should include in each invoke construct in the
WS-BPEL scenario the optional attribute name, assigning
distinct names to the invoke constructs.

2. for the invoke construct having name invX, the designer
should use the WS-BPEL variables QoSmax_invX,
QoSmin_invX and QoSweight_invX, which define the
respective QoS specifications for the particular invocation.
The BPEL designer may set the values for these variables
after inspecting input parameters to the scenario (e.g.
“choose=cheapest”), arranging thus for tailoring the QoS
specification to the invoking user’s preferences.

Figure 2 presents an excerpt of a BPEL scenario setting QoS
specifications for an invocation (named invoke1). Since variable
QoSmin_invoke1 is not set, no lower bounds will be considered
for the QoS attribute values in the process of adapting the
particular web service invocation. Additionally, since the
QoSmax_invoke1 does not include a setting for the reliability QoS
attribute, no upper bound for this attribute value will be
considered.

4.2 Preprocessing the BPEL scenario
As shown in Figure 1, before the BPEL scenario is deployed on
the web services platform, it is processed by the BPEL
preprocessor, which creates an enhanced BPEL scenario as its
output. The enhanced BPEL scenario differs from the original one
in the following aspects:

1. it includes as its first operation an invocation to the web
service getSessionId provided by the middleware; the result of
the invocation is stored in a variable for later perusal.

<assign>
 <copy>
 <from><literal>respTime:5;cost:3</literal></from>
 <to variable="QoSmax_invoke1"/>
 </copy>
 <copy>
 <from><literal>respTime:-1;cost:-2;reliability:1</literal></from>
 <to variable="QoSweight_invoke1"/>
 </copy>
</assign>
<invoke name="invoke1" partnerLink="lnk1" portType="port1"
operation="op1" inputVariable="input1" outputVariable="output2"/>

Figure 2. QoS specification in the BPEL scenario

2. it includes an invocation to the bpelScenarioInfo web service
provided by the middleware, through which the BPEL
scenario transfers to the adaptation middleware (a) the current
session identifier (b) the values of all QoS-related parameters
(QoSmax_, QoSmin_ and QoSweight_) and (c) the
information about the scenario structure. The latter effectively
is represented as a simplified XML representation of the
BPEL scenario including only the <sequence>, <flow> and
<invoke> constructs of the original BPEL scenario; for the
<invoke> constructs in particular, only the name, and
operation attributes are transmitted, coupled with the
service’s endpoint address, extracted from the relevant WSDL
file. This invocation is inserted before the first <invoke>
construct of the original WS-BPEL scenario, to ascertain that
the adaptation-related information have been transferred to
the adaptation layer before the first invocation is intercepted
and adapted.

3. The preprocessor arranges that each web service invocation is
complemented with a header including the session identifier
for the current scenario execution (the value returned by the
getSessionId WS) and the value of the name attribute of the
particular invoke construct. While header manipulation not a
standard WS-BPEL feature, most contemporary BPEL
engines provide means to set request headers, e.g. [21] [22].

4. The BPEL scenario includes as its final operation an
invocation to the releaseSession web service provided by the
middleware.

The enhanced BPEL scenario produced by the preprocessor is
then deployed to the web services platform and made available
for execution.

4.3 Executing the BPEL scenario
When the BPEL scenario starts executing, it will retrieve the
session identifier from the adaptation layer and subsequently will
transfer to the adaptation layer all information described in the
previous subsection. The adaptation layer at this stage proceeds to
the creation of the current session’s execution plan as follows:

1. for each web service invocation within the WS-BPEL
scenario, its equivalent services are retrieved from the service
repository; note that the information retrieved from the
service repository includes the values for the equivalent
services’ QoS attributes. Only equivalent services that satisfy
the QoS thresholds specified in the respective invocations’
QoSmax_ and QoSmin_are retrieved. If, for some service in
the initial WS-BPEL scenario, no candidates satisfying the
thresholds are found, then the adaptation layer returns a
QoS_PolicyFault to the web services platform. The WS-
BPEL designer may intercept the fault using the standard WS-
BPEL mechanisms (<catch> construct) and attempt to resolve
it, e.g. by relaxing the constraints and restarting the scenario,
or simply notify the requesting client of the error condition.

2. the adaptation layer formulates all candidate execution plans
for the particular execution of the BPEL scenario. Assuming
that the scenario contains N invocations {inv1, inv2, …, invN}
and that for each invocation invj there is a set of equivalent
services EQj={sj,1, sj,2, …, sj,k}, the maximal set of candidate
execution plans is EQj  EQ2  …  EQN. This set is however
pruned by removing elements that violate the service selection
affinity principle, i.e. if invocations invi and invj are directed
to the same service provider (i.e. services for which the host
part of their endpoint address is identical) in the original

BPEL Scenario
with QoS
specifications

Web Services
Platform

WS-BPEL Orchestrator

(2)

Consumer

(3)

BPEL scenario
invocation +
Parameters

Adaptation layer

(5) information
about scenario

structure, service
calls and QoS

(11)
Results

Service
repository

(e.g. Meteor-S)

WS-1 WS-n...WS-2
Web Service

Implementations

(7) Invocation (8) Results or system-related
exception or business logic exception

Enhanced
BPEL scenario

(1)

preprocessor

(6)
web service call

getSessionId WS

bpelScenarioInfo WS

adaptWSInvocation WS

(4) retrieve
session id

Session
memory

(9) Result
releaseSession WS

(10) Release
session

deployment

Figure 1. Proposed Framework Architecture

scenario, then all candidate execution plans in which
replacements to invi and invj are not directed to the same
service provider are removed from the candidate set. If the
pruning step results in an empty candidate execution plan set,
then a QoS_PolicyFault is returned to the web services
platform.

3. for each execution plan within the candidate set formulated in
step 2, an overall score is computed. The score computation
procedure proceeds in a bottom-up fashion: initially, the score
of individual invocations is computed using the formula

iaviiciirtii wavwcwrtinvsc ,,, ***)( , where

rti, ci and avi are the QoS attribute values for the service
replacing invi in the execution plan, while wrt,i, wc,i, wav,i are
the weights specified in the QoS_weight_ variable for
invocation invi. After all individual invocations’ scores have
been computed, the formulas in Table 1 are used to compute
the overall score of the execution plan. Finally, the execution
plan with the highest score is selected, and the
correspondences between the original invocations and the
services used in the selected execution plan are stored in the
session memory (cf. Figure 1), coupled with the current
session id. The correspondences are marked as unbound; this
flag will be used for exception resolution (described below).

When an invoke construct is processed within the BPEL scenario,
the outgoing request is redirected to the adaptWSInvocation web
service provided by the adaptation layer; this can be
accomplished either using a proxy setting in the web services
platform or by using a transparent redirection router (both
techniques are detailed in [4]). When the adaptWSInvocation
intercepts a request, it processes it as follows:

1. it extracts from the request headers the session identifier and
name of the invoke construct. Using these keys, it queries the
session memory for the correspondence between the invoke
construct and the actual service endpoint, selected in the
execution plan formulation phase.

2. the request is forwarded to the endpoint retrieved in the
previous step and the reply is received. If the reply is a normal
response or a business logic-level fault (cf. [6]), then the reply
is forwarded back to the web services platform. Additionally,
the host part of the endpoint to which the invocation was
made (denoted as hinv in the following) is extracted, and the
session memory is updated setting the correspondence
between invoke construct names and endpoint address to
bound, for all invocations to endpoints offered by hinv. This
update will prevent the exception resolution process
(described below) from breaking the service selection affinity.

3. if the reply received from the invocation is a system-level
fault (e.g. “host unreachable” or “connection refused”; for a
full discussion the interested reader is referred to [6]), then the
adaptation layer will try to resolve the fault by invoking a
service equivalent to the failed one. Note however that such a
resolution is possible only if no prior successful invocation
was made in the same session to a service offered by hinv. This
restriction is applied to maintain session affinity, since if a
prior invocation was made to host hinv and the current
invocation is directed to another host to resolve the system
fault, then the service selection affinity will be broken. Taking

the above into account, the adaptation layer first queries the
session memory to determine if the current invocation has
been marked as bound (recall from step 2 above that this will
be performed if any prior invocation to services offered by
hinv has concluded successfully). If it has been marked as
bound, then the fault cannot be automatically resolved and is
thus returned to the web services platform. If, however, the
current invocation is marked as unbound, then the adaptation
layer first locates in the current execution plan all services s1.
s2, …, sk offered by host hinv and then retrieves from the
repository all k-tuples (s’1. s’2, …, s’k) such that:

a. si is equivalent to s’i,  i=1, 2, …, k; this condition
guarantees the functional equivalence of the initial
execution plan to the candidate exception resolution plan.

b. s’i satisfies the QoS thresholds specified in the respective
invocations’ QoSmax_ and QoSmin_ variables,  i=1, 2, …,
k; this condition guarantees that the candidate exception
resolution plan adheres to the restrictions specified by the
client.

c. all services s’i are offered by the same host, which must be
different from hinv; this condition guarantees that the
candidate exception resolution plan maintains the service
selection affinity and that the failed host will not be retried.

Subsequently, for each k-tuple KTj, an overall score is
computed using the formula





k

i
iaviiciirtij wavwcwrtKTsc

1
,,, ***)((rti,

ci and avi denote the QoS attribute values for service s’i in KTj
and while wrt,i, wc,i, wav,i are the weights specified in the
QoS_weight_ variable for the respective invocation). The k-
tuple with the highest score is then chosen and all invocations
in the execution plan to services offered by host hinv are
replaced by the corresponding invocations to services of the
chosen k-tuple. Finally, the failed service invocation is
restarted, being now directed to the newly chosen endpoint. If
a system-level exception occurs at this point, the next-best k-
tuple is selected, the execution plan is updated and the
invocation is restarted again; this is be repeated until either a
request succeeds or an administrator-defined limit is reached;
in the latter case, the system-level exception is returned to the
web services platform.

5. EXPERIMENTAL ANALYSIS
In order to assess the performance of our approach and validate
our approach, we have conducted a set of experiments, aiming to
measure and quantify the overhead incurred due to the
introduction of the middleware. In these experiments we
measured (a) the overhead imposed by the use of the invocations
to the getSessionId and bpelScenarioInfo web services (invoked
once per execution of a WS-BPEL scenario) (b) the overhead
imposed for each web service invocation within the BPEL
scenario and (c) the overhead imposed when the exception
resolution mechanism is activated. The time taken by the
preprocessor to transform the original WS-BPEL scenario into its
enhanced form is not assessed, since preprocessing takes place in
an offline fashion, not penalizing thus the production system
performance. Finally, release session time has been found to be

negligible and metrics are not presented here due to space
limitations. Moreover, the “release session” invocation may be
implemented as an asynchronous web service call, having thus
minimal impact on the WS-BPEL scenario execution time.

For our experiments we used two machines: the first one (a
workstation equipped with one Pentium 4@2.8GHz CPU and
512MB of RAM) hosted the preprocessor and the clients, while
the second one (a workstation equipped with one Pentium i7@1.6
GHz and 4 GBytes of RAM) hosted the BPEL execution engine
(a Glassfish application server [23], the middleware and the target
web services. The repository was implemented as an HSQLDB
server, which was hosted on the second workstation ([24]). The
repository was populated with synthetic data with an overall size
of 2.000 web services. The machines were connected through a
100Mbps local area network.

40

60

80

100

120

140

10 20 50 75 100

concurrent WS-BPEL scenario executions

O
p

ti
m

iz
at

io
n

 O
ve

rh
ea

d
 (

m
s)

4 services 8 services 12 services

Figure 3. Optimization overhead

Figure 3 presents the optimization overhead (i.e. the overhead
imposed by the use of the invocations to the getSessionId and
bpelScenarioInfo web services) for varying number invocations
present in the WS-BPEL scenario and different number of
concurrent invocations (i.e. concurrent clients requesting the
execution of the WS-BPEL scenario). The overhead increase has
been found to be steeper when the number of concurrent
invocations raises from 75 to 100 concurrent invocations; this is
due to the depletion of the second workstation’s resources at this
load range; offloading specific tasks from that machine (e.g.
hosting the adaptation layer and/or the target web services in a
different machine than the WS-BPEL execution engine) is
expected to provide smoother performance scaling.

Figure 4 presents the overhead incurred for the execution of a
service invocation within the WS-BPEL scenario. This effectively
accounts for (a) the two extra network messages required to
transfer the request to the adaptation layer and return the reply
from it and (b) the time taken to lookup in the session memory the
correspondence between the particular service invocation and the
endpoint determined in the optimization stage, and adjust the
request message for forwarding to that endpoint. Even for high
concurrency levels, the overhead for service execution is small
(18.5 msec). Similarly to Figure 3, the overhead rises more
steeply when the number of concurrent executions raises from 75
to 100, which is again due to the depletion of the second
workstation’s resources.

11

13

15

17

19

21

10 20 50 75 100

concurrent WS-BPEL scenario execution

S
er

vi
ce

 e
xe

cu
ti

o
n

 o
ve

rh
ea

d
 (

m
s)

Figure 4. Service execution overhead

15

20

25

30

35

10 20 50 75 100

concurrent WS-BPEL scenario execution

E
xc

ep
ti

o
n

 r
es

o
lu

ti
o

n
 o

ve
rh

ea
d

 (
m

s)

1 exception 2 exceptions 3 exceptions

Figure 5. Exception resolution overhead

Finally, figure 5 presents the overhead incurred for resolving
system level exceptions. This overhead accounts only for the time
needed by the adaptation layer to perform the relevant tasks and
does not include the time needed to invoke the failing services,
since the latter varies significantly with the root cause of the
failure (e.g. a fault owing to a network timeout leads to
significantly higher delays than a fault owing to an invocation to a
service that has been withdrawn), and therefore no meaningful
statistics can be derived for the failing services’ invocation times.
Note also that the overheads illustrated in figure 5 refer to the
resolution of an exception occurring in the invocation of a single
service; the “1 exception” data series refers to the case of the
exception being resolved by the first alternative service, while the
data series “2 exceptions” refers to the case that the first
alternative service fails and the second one succeeds (similarly for
the data series “3 exceptions”). As described in subsection 4.3,
only the first attempt to resolve an exception involves repository
lookups and calculations of scores for alternative solutions, while
subsequent attempts simply move to the “next best” solutions
computed in the first attempt; this justifies the small time
increments between the different data series in figure 5.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented a framework enabling the WS-
BPEL designers to specify the QoS requirements for the service
invocations included in the WS-BPEL scenarios and the
subsequent adaptation of the scenarios’ execution to these
specifications. The proposed framework also supports the
automatic resolution of system-level exceptions, while it also
caters for the maintenance of service selection affinity,

ascertaining that transactional semantics of service invocations
are preserved. The proposed framework includes a scenario
preprocessing step, before the scenario is deployed and made
available for invocations, and an adaptation layer, which
undertakes the tasks of optimizing the execution plan for the WS-
BPEL scenario, adapting the execution and resolving exceptions.

The proposed framework has been experimentally evaluated to
assess its performance. The overheads for the various phases have
been quantified to be reasonable, while its performance scales
acceptably with the number of concurrent BPEL scenario
executions.

Our future work will focus on the integration of QoS-adherence
monitoring mechanisms, such as those described in [8] and the
handling of loops and conditional execution constructs in WS-
BPEL scenarios; for the latter task, statistical information from
prior scenario executions are foreseen as information sources to
the adaptation process. Finally, integration of service selection
affinity and exception resolution in vertical adaptation strategies
will be considered.

7. REFERENCES
[1] OASIS WSBPEL TC. WS-BPEL 2.0. http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[2] Papazoglou M. P., Traverso P., Leymann F. (2007), Service-
Oriented Computing: State of the Art and Research
Challenges. IEEE Computer (40) 11, pp. 38-45.

[3] Cardellini V, Di Valerio V, Grassi V, Iannucci S, Lo Presti,
F. A Performance Comparison of QoS-Driven Service
Selection Approaches. In Proceedings of ServiceWave 2011,
Abramowicz W et al. (Eds.): LNCS 6994, pp. 167–178,
2011.

[4] Kareliotis, C., Vassilakis, C., Rouvas, E., Georgiadis P.:
IQoS-aware exception resolution for BPEL processes: a
middleware-based framework and performance evaluation.
IJWGS 5(3): 284-320, 2009

[5] Kareliotis, C., Vassilakis, C., Rouvas, S., Georgiadis, P.:
QoS-Driven Adaptation of BPEL Scenario Execution. In
Proceedings of ICWS 2009: 271-278

[6] Kareliotis, C., Vassilakis, C. and Georgiadis, P. (2007)
Enhancing BPEL scenarios with dynamic relevance-based
exception handling. In Proceedings of ICWS07, Salt Lake
City, Utah, USA, 9–13 July, pp.751–758, 2007.

[7] Zeng, L.B, Benatallah, A.H.N, Dumas, M., Kalagnanam, J.,
Chang, H. QoS-aware middleware for web services
composition. IEEE Transactions on Software Engineering,
30(5), 2004.

[8] Moser, O., Rosenberg, F., Dustdar, S. Non-Intrusive
Monitoring and Service Adaptation for WS-BPEL. In
Proceedings of WWW 2008, Beijing, China, pp. 815-824,
2008.

[9] Xia, Y., Chen, P., Bao, L., Wang, M., Yang, J. A QoS-
Aware Web Service Selection Algorithm Based on
Clustering. In Proceedings of ICWS11, 2011.

[10] Cardellini, V., Iannucci, S. Designing a Broker for QoS-
driven Runtime Adaptation of SOA Applications. In
Proceedings of ICWS10, Miami, Florida, USA, pp. 504–511,
2010.

[11] Arpacı, A. E., Bener, A. B. Agent Based Dynamic Execution
of BPEL documents. Proceedings of ISCIS 2005, LNCS
3733, pp. 332 – 341, 2005.

[12] Rinderle-Ma, S., Reichert, M., Jurisch, M. Equivalence of
Web Services in Process-Aware Service Compositions. In
Proceedings of ICWS'09, 6-10 July 2009, Los Angeles, CA,
USA, 2009.

[13] J. Cardoso and A. Sheth. Semantic e-Workflow
Composition. Journal of Intelligent Information Systems,
Vol. 21(3): pp. 191-225, 2003.

[14] O’Sullivan, J., Edmond, D., Ter Hofstede, A.. What is a
Service?: Towards Accurate Description of Non-Functional
Properties, Distributed and Parallel Databases, vol. 12,
2002.

[15] Comerio, M., De Paoli, F., Grega, S., Maurino A., Batini, C.
WSMoD: A Methodology for QoS-Based Web Services
Design. Web services research, Volume 4, Issue 2, 2007

[16] Jaeger, M.C., Rojec-Goldmann, G., Muehl, G. QoS
Aggregation for Web Service Composition using Workflow
Patterns. In Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing Conference, 2004.

[17] ISO. UNI EN ISO 8402 (Part of the ISO 9000 2002): Quality
Vocabulary, 2002.

[18] ITU. Recommendation E.800 Quality of service and
dependability vocabulary.

[19] Cardoso, J. Quality of Service and Semantic Composition of
Workflows. PhD thesis, Univ. of Georgia, 2002.

[20] Canfora, G., Di Penta, M., Esposito, R., Villani, M.L. An
Approach for QoS-aware Service Composition based on
Genetic Algorithms. Proceedings of the 2005 conference on
Genetic and evolutionary computation, pp. 1069-1075, 2005.

[21] Apache ODE, Headers Handling.
http://ode.apache.org/headers-handling.html

[22] Oracle. Manipulating SOAP Headers in BPEL.
http://docs.oracle.com/cd/E14571_01/integration.1111/e1022
4/bp_manipdoc.htm#CIHFCBAD

[23] GlassFish Community. http://glassfish.java.net/

[24] HSQLDB. http://hsqldb.org/

