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Abstract 

Ontologies, as knowledge engineering tools, allow information to be modelled in ways 
resembling to those used by the human brain, and may be very useful in the context of personal 
information management (PIM) and Task Information Management (TIM). This work proposes 
the use of ontologies as a long-term knowledge store for PIM-related information, and the use of 
spreading activation over ontologies in order to provide context inference to tools that support 
TIM. Details on the ontology creation and content are provided, along with a full description of 
the spreading activation algorithm and its preliminary evaluation. 
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1 Introduction 

As a direct result of the rapid technological progress of the last few decades, personal computers 
are becoming an important part both of our professional and personal life. Due to the advantages 
they offer for information storage, they have become repositories for numerous and diverse data 
collections including company information and scientific data, documents, electronic mail as 
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well as personal collections of media, like photographs, video or music. These repositories offer 
the possibility of recording and storing a huge amount of information, an amount unthinkable in 
the past when only the human brain and conventional means like paper were available. However, 
in order to take advantage of this potential memory supplement, computer users have to invest 
more and more time into managing and organizing their collections and repositories because, if 
they don’t, retrieving information from them when necessary will be nearly impossible. 

Furthermore, in current computer systems, user interaction is focused on functionally defined 
applications (word processing, address management, internet browsing); in this context storage, 
organization and retrieval of information in files or other databases is determined by the units of 
operation of the applications. However, real activity, whether for work or leisure, crosses 
application boundaries, may involve portions of files, and interlinks fragments of both. Users 
should not have to focus on managing their information but rather performing the tasks this 
information is meant to be used for.  

Recent research in the domain of Personal Information Management (PIM) and Task - centered 
Information Management (TIM) has recognized the need for a paradigm shift towards more task 
and activity oriented systems, i.e. towards the management of personal interaction (Catarci, Dix, 
Katifori, Lepouras, & Poggi, 2007; Dix, Katifori, Poggi, Catarci, Ioannidis, Lepouras, & Mora, 
2007). Ontologies, as semantic networks with a structure very similar to the one used by the 
human brain for storing long-term knowledge, may be very useful as the basis of such a system. 
They offer a flexible and expressive layer of abstraction, very useful for capturing the semantics 
of information repositories and facilitating their retrieval either by the user or by the system to 
support user tasks. To this end, if combined with appropriate “intelligent” mechanisms, they may 
become useful tools to record semantics related to documents and tasks and function as an 
extension to the user’s own memory, available both for the user and the system. 

This work explores the application of the spreading activation theory of the human memory on 
ontologies in order to create a context inference model to be used in any ontology-based 
PIM/TIM prototype system. The subsequent section briefly presents the human memory theories 
which constitute the basis of this work. The following one outlines the use of an ontology in PIM 
and TIM systems and describes a personal ontology to be the basis of such a system. Next, the 
spreading activation over the personal ontology algorithm is described in detail, followed by a 
brief presentation of related work on spreading activation. Afterwards, the results of a 
preliminary evaluation of the spreading activation module are discussed. The last section 
presents the conclusions and outlines future work. 

2 The human memory and spreading activation 

The human brain is a very powerful information storage, computational and reasoning 
mechanism. Its exact structure and function is still under scrutiny by scientists in order to decode 
its secrets and probably mimic its functionality in artificial constructs. This section briefly 
outlines existing theories about the mechanism of the human memory.  



 

2.1 Different timescales of human memory 

The human memory operates on multiple timescales. According to the model that Atkinson and 
Shiffrin proposed in 1968 (Atkinson & Shiffrin, 1968), there are two distinct memory stores: 
short-term memory, and long-term memory. 

• Short-term or working memory – the things we are currently thinking about. This is short 
lived (10-30 secs) (Peterson & Peterson, 1959) unless it is constantly rehearsed. It is also 
limited to hold only 5-9 chunks of information (seven plus or minus two) (Miller,1956) where 
a chunk is any meaningful unit. A chunk could refer to digits, words, chess positions, people’s 
faces etc. The concept of chunking and the limited capacity of short-term memory became a 
basic element of all subsequent theories of memory. 

• Long-term memory – the things we have learnt and stay with us for years (possibly forever), 
but may be more or less easy to retrieve. Long-term memory appears to have an almost 
limitless capacity to retain information, but it could never be measured as it would take too 
long. This information seems to be encoded mainly in terms of meaning (semantic memory) 
but also retains procedural skills and imagery. 

Short-term memory is held in patterns of electrical activity whereas long-term memories are 
formed by actual synapse growth. However, there are things that stay around longer than the 10-
30 seconds of working memory, but are related to the current moment and task. These include 
the context of “what am I doing now” as well as recent episodic memory of “what has happened 
in the last few minutes". This in-between or “mezzanine” memory is not well dealt with in the 
literature; the main exception being work on long-term working memory focused on the ongoing 
establishment of context during text comprehension (Ericsson & Kintsch, 1995), also in the 
human factors literature there is substantial work on situation awareness in command and 
control situations. However, the mechanisms for these forms of memory are unclear as they are 
too “fast” for neuron growth. It may be in part due to more sustained electrical states or chemical 
changes in neurons called long-term potentiation or LTP (Lømo, 2003), which are known to last 
for anything from seconds to hours. 

Long-term potentiation (LTP) is an increase in the strength of a chemical synapse that lasts 
from minutes to several days. LTP was discovered in the mammalian hippocampus by Terje 
Lømo (Lømo, 2003) and has remained a popular subject of neuroscientific research since. It is 
widely considered one of the major mechanisms by which memories are formed and stored in the 
brain. 

LTP has been observed both in experimental preparations in vitro and in living animals (in vivo). 
Under experimental conditions, applying a series of short, high-frequency electric stimuli to a 
synapse can strengthen, or potentiate, the synapse for minutes to hours. In living cells, LTP 
occurs naturally and can last from hours to days, months, and years. Neurons connected by a 
synapse that has undergone LTP have a tendency to be active simultaneously: after a synapse has 
undergone LTP, subsequent stimuli applied to one cell are more likely to elicit action potentials 
in the cells to which it is connected. 



 

Because changes in synaptic strength are thought to underlie memory formation, LTP is believed 
to play a critical role in behavioral learning. In fact, most neuroscientific learning theories regard 
long-term potentiation and its opposing process, long-term depression, as the cellular bases of 
learning and memory. 

Based on the aforementioned theories and studies on human memory, for the needs of our 
research we distinguish three timescales of human memory (Dix, 2006), summarized in Table 1. 

Table 1. Different timescales of human memory 

human memory timescale mechanism brain effect 
long term indefinite physical synapse growth 
short term 

(Miller’s 7±2) 
10-30 seconds electrical neuron firing 

mezzanine 
(no “proper” name) 

minutes to hours chemical long-term potentiation 
LTP 

2.2 The Spreading Activation Theory of Memory 

The spreading activation theory (Anderson, 1983) has been proven to provide a model with a 
high degree of explanatory power in cognitive psychology (Sharifian & Samani, 1997). The 
main advantage of this model is that it captures both the way knowledge is represented and also 
the way it is processed. According to this theory, knowledge in the long-term memory is 
represented in terms of nodes and associative pathways between nodes, which form a semantic 
network of concepts. A hierarchical structure is also present in this network, classifying concepts 
in more generic and more specific ones (Sharifian & Samani, 1997). 

The strength of the connection and the distance between the nodes are determined by the 
semantic relations or associative relations between the conceptual nodes. This model assumes 
that activation spreads from one conceptual node to those around it, with greater emphasis to the 
closer ones (Gazzaniga, Ivry, & Mangun, 1998). This spread of activation serves to make related 
areas of the memory network more available for further cognitive processing. Speed and 
probability of accessing a memory is determined by its level of activation, which in turn is 
determined by how frequently and how recently it has been used (Anderson, 1995), as expressed 
by the strength of nodes and connections. This strength decays over time (Anderson, 1983). 

Empirical evidence has shown that the amount of activation of a concept node is a function of 
the strength of the associative pathway between the node and the source of activation (Lock, 
1982). Moreover, the amount of activation spreading from a given node along a pathway is a 
function of the strength of that pathway relative to the sum of the strengths of all paths 
emanating from that node (Reder & Anderson, 1980). The theory of spreading activation also 
models the fan effect. This refers to the distribution of the activation emanating from one node 
between all its associated nodes, diminishing thus the amount of activation they receive 
(Anderson, 1983). 



 

3 Ontologies and personal information management (PIM) 

Taking into account the aforementioned theories on the functionality of the human memory, this 
section presents the creation of a personal ontology which will serve as a basis of an intelligent 
mechanism to support PIM. 

Ontologies have proven to be useful tools for representing semantics both in the web and in the 
personal document collection domains. Their strength lies in the fact that they offer a layer of 
abstraction that at the same time may be interpreted by both humans and machines. Furthermore, 
the conceptual structure they offer seems to be close to the human brain semantic network 
memory model and, as a result, to be very useful and meaningful for the representation of 
concepts related to the user domain of interest. 

Using an ontology to model information related to the user personal domain has already been 
proposed for various applications like web search (Crestani, 1997a; Crestani, 1997b; Gauch, 
Chaffee, & Pretschner, 2003; Trajkova & Gauch 2004). Most of these approaches use ontologies 
only as concept hierarchies (e.g. hierarchies of user interests) without particular semantic 
complexity. The value of ontologies for PIM has also been recognized and there is on-going 
research on incorporating them in PIM/TIM systems like OntoPIM (Katifori, Poggi, 
Scannapieco, Catarci, & Ioannidis, 2005; Catarci, Dix, Katifori, Lepouras & Poggi, 2007; 
Lepouras, Dix, Katifori, Catarci, Habegger, Poggi, & Ioannidis, 2006; Catarci, Habegger, Poggi, 
Dix, Ioannidis, Katifori, & Lepouras, 2006), GNOWSIS (Sauermann, 2005) and the semantic 
desktop search environment proposed in (Chirita, Gavriloai, Ghita, Nejdl, & Paiu, 2005). 

In the context of any PIM/TIM system the personal ontology has a very important part to play. 
On one hand, it may constitute a useful repository of information related to many aspects of the 
user’s personal and professional life. There the user will be able to store and access information 
on contacts (friends, colleagues, etc), activities (like a research project or a hobby), events (such 
as project meetings, conferences, etc), documents (collected books and research papers, etc) and 
tasks. With the appropriate interface the ontology may become an easily customizable repository 
of information that may serve as a memory complement for the user. On the other hand, coupled 
with intelligent mechanisms, the ontology may become invaluable for context inference in the 
process of supporting user tasks through task inference. 
To this end, we have created an ontology for the user’s personal collection domain. This 
ontology has been created taking into account existing profile models in applications, as well as 
related research in the area of profiling. The following sections provide an ontology definition 
and introduce the personal ontology developed by our group and used for testing the spreading 
activation algorithm.  

3.1 Ontology definition 

According to (Gruber, 1993b), an ontology is an explicit specification of a conceptualization. 
The term “conceptualization” is defined as an abstract, simplified view of the world that needs to 
be represented for some purpose. It contains the objects, concepts and other entities that are 
presumed to exist in some area of interest and the relations that hold them. The term “ontology” 
is borrowed from philosophy, where an ontology is a systematic account of Existence.  



 

Therefore, as defined in (Noy & McGuiness, 2001), an ontology is a formal explicit description 
of concepts, or classes in a domain of discourse. Properties or slots of each class describe various 
features and attributes of the class, and restrictions on slots (called facets or role descriptions) 
state conditions that must always hold to guarantee the semantic integrity of the ontology. Each 
slot has a type and could have a restricted number of allowed values. Allowed classes for slots of 
type Instance are often called the range of a slot. An ontology along with a set of individual 
instances of classes constitutes a knowledge base.  
A more mathematical definition can be found in (Amann & Fundulaki, 1999) and may be 
adapted to the terminology used throughout this work as follows: 
An ontology is a triple O = (C, S, isa) where: 

(1) C = {c1, c2,…, cm} is a set of classes, where each class ci models a set of real-world objects 
(class instances), 

(2) P = {p1, p2,…, pn} is a set of properties (slots), where each property pi is either: 

• a simple-typed property of a class, taking values from a domain such as “Integer” or 
“String” or 

• a binary typed role, representing a relationship between classes. 
(3) isa ={isa1, isa2, …, isap} is a set of inheritance relationships defined between classes. 

Inheritance relationships carry subset semantics and define a partial order over classes, 
organizing classes into one or more tree structures (multiple tree structures can occur if more 
than one classes have no parent; if multiple inheritance is allowed, classes are organized in 
directed acyclic graphs instead of trees). 

In order to accommodate the individual instances (entities), this definition can be extended with 
a fourth element E = {e1, e2,…, eq}, where every ew is an instance of some class cx ∈ C. Each 
instance iw includes a concrete value for every property py associated with cx or its ancestors (as 
defined by the isa set). Ontologies can be represented as directed graphs where nodes correspond 
to classes and instances, and links to roles and isa relationships. 

Ontologies may be enriched with axioms and production rules (Corcho & Gόmez – Pérez, 2000). 
Axioms model sentences that are always true. They are included in an ontology for several 
purposes, such as constraining its information, verifying its correctness or deducing new 
information. Production rules follow the structure If… Then… and are used to express sets of 
actions and heuristics which can be represented independently from the way they will be used. 

3.2 A personal ontology to model the user domain 

Ontologies may become a very useful tool in personal information management as they offer the 
possibility for rich and flexible formalism of concepts and tangible things related to the user 
domain. Hoqwever, creating a personal ontology, either automatically, manually or semi-
automatically is not an easy task (Maedche & Staab, 2002). In order for such an ontology to be 
truly personal, it should be able to reflect the user individuality, but, on the other hand, it should 
do so in the context of a specific general model that will enable exchange of information between 
users and will be usable by computers. 



 

This is the main reason why the personal ontology model we propose is based on a basic core of 
general concepts that may be enriched to accommodate several user stereotypes or individual 
profiles. The personal ontology attempts to encompass a wide range of user characteristics, 
including personal information as well as relations to other people, preferences and interests. The 
ontology may be extended through inheritance and the addition of more classes, as well as 
concept instantiation according to the needs of user stereotypes or individuals. Besides storing 
information describing real-world concepts and things, the ontology complements each entity 
with data modeling its importance for the different timescales of human memory; the spreading 
activation algorithm for computing and exploiting this data is presented in the next section. 
For the creation of the ontology we adopted a top-to-down approach. Throughout the whole 
process, Gruber’s design criteria (Gruber, 1993a) (clarity, coherence, extensibility, minimal 
encoding bias, minimal ontological commitment) were taken into account. The ontology was 
modelled manually as automatic or semi-automatic methods were not applicable at the level of 
user information we were interested in. 

In order to create a simple yet comprehensive set of upper level concepts for the personal 
ontology, profile information models maintained by various applications, like instant messengers 
(ICQ, 2008) and community websites (Facebook, 2008; MySpace, 2008), and proposed by 
researchers, like (Tazari, Grimm, & Finke, 2003; Kobsa, 1993; Trajkova & Gauch, 2004; Gauch, 
Chaffee, & Pretschner, 2003; Gruber, 1993a) were examined and general ontologies like the ones 
presented in (Miller, 1990) were taken into account along with the MIME directory profile vCard 
(Renato, 2001). 
Details on the creation of the personal ontology may be found in (Golemati, Katifori, Vassilakis, 
Lepouras, & Halatsis, 2007). The version of the personal ontology used in this work is an 
extension of the one in (Golemati, Katifori, Vassilakis, Lepouras, & Halatsis, 2007), as it has 
been enriched with more user-related classes for the user stereotype of “Researcher” in order to 
be used for the fine tuning and evaluation of the spreading activation algorithm, to be presented 
in the next section. The ontology, along with example instances may be found in (Katifori, 
Vassilakis, Dix, Daradimos, & Lepouras, 2007). Figure 1 presents an overview of the class 
hierarchy. The personal ontology classes are divided in two main groups, which comprise the 
two upper levels of the ontology, “Value Class” and “Thing”. 



 

 

Figure 1 - Overview of the class hierarchy 

The “Value Class” subhierarchy contains a description of information items that are more 
complex than simple data types (e.g. integers or strings) because their values adhere to specific 
syntax rules and/or comprise of multiple parts, but on the other hand it would not be useful to 
place them in the main ontology as separate entities. These among others include dates, URLs, 
telephone numbers, zip codes and names and may be used as slot types for the classes of the 
“Thing” sub-hierarchy. Instances of these classes may serve as information items identified 
automatically by a PIM or TIM application. 
The class “Thing” contains both abstract and tangible things, which may be objects, living 
organisms and concepts. They may be: 

• Classes belonging that represent person characteristics (Activity, Ability, Characteristics, 
Preference, Interest, etc) 

• Classes that model things relevant to a person like events s/he was present at, his/her home, 
the university where s/he studied in, etc. This group of classes may be expanded according 
to the user’s stereotype or particular interests and activities. For example, for a researcher, 
concepts like “Project”, “Meeting” or “Conference” would be present in the ontology as 
well. 

The classes “Interest Type” and “Preference Type” model interest and preference hierarchies as 
the ones suggested in (Gauch, Chaffee, & Pretschner, 2003) and (Maedche & Staab, 2002). 
Lastly, the classes “Living Thing” and “Non Living Thing” model real-world tangible objects. 
The class “Self” (highlighted in Figure 1), a direct subclass of “Person”, models the profiled 
user. 

In an ontology modeling the user domain, relations to other people, either personal or work-
related, play a very important role. We used slot sub-classing to create a set of basic person 



 

relations slots, as shown in Figure 2, with the “acquaintance” slot sub-hierarchy. This can be 
extended or adapted according to the needs of each application.  

 

Figure 2 - “acquaintance” slot sub-hierarchy 

The ontology has been modelled using the Protégé (Protégé, 2008) ontology management tool 
and the Protégé database project format. Protégé is a widely used open source ontology 
development tool with a well-defined API for creating plug-ins. To this end it was selected for 
the implementation and testing of the spreading activation algorithm over the personal ontology. 
The following section describes the algorithm in more detail. 

4 Spreading activation through the personal ontology 

Based on the personal ontology described in the pervious section, this section outlines a basic 
spreading activation framework in order to simulate the human memory mechanism and thus 
take advantage of the ontology to support PIM and TIM. The basic idea of the algorithm is, 
given an ontology class/instance that receives activation through an external event (its 
appearance in a document or e-mail for example), to provide a list of relevant ontology 
classes/instances to be used either for the classification of the specific document in a ontology-
based PIM system or to support tasks in a TIM one. 
The first section outlines the basic idea of the algorithm and its correspondence with the human 
memory model described in previous sections, followed by a simple example, whereas the next 
presents the algorithm in detail. 

4.1 Different Timescales for Task-based Interaction 

In the course of user interaction with a system, multiple timescales can be noted, which roughly 
correspond to the ones described in Table 1. First, there are the contents of the personal ontology 
and the available information sources that roughly correspond to human long-term memory. Not 
all things in this long-term system memory are equally important and it should be noted that 
some things (such as the user’s own address) are more important than others (e.g. the address of 
the plumber). Corresponding to the short/working memory are the things the system has to store 
regarding the current user task – for example, the contents of the email the user has just opened, 



 

the text the user has just selected, the web page just visited, or the form field being completed. 
Finally, there are the things the user has been recently doing (other pages visited, documents 
seen, etc.) that roughly correspond to the mezzanine memory. This recent history is important as, 
for example, if the user has recently viewed a web site about an upcoming event and then goes to 
a travel website it is likely that the place to be visited is that of the event. 
These different levels could be dealt with in a spreading activation framework by simply fading 
memories over time so that entities recently encountered multiple times become increasingly 
highly “activated”. However, with a single mechanism it is hard to create a balance between 
having recent things be more active (the place just mentioned in an email) than important general 
things (the user’s address), whilst on the other hand not having them crowd-out the longer-term 
things. 
In order to address this issue, it seems appropriate to explicitly code the three different timescales 
in which the human brain operates using distinct activation levels with “rules” for passing 
activation between short-term to longer-term memories. The simplest such rule would be to 
define thresholds so that if the short-term activation exceeds some value then the medium-term 
activation is incremented and similarly if the medium-term memory exceeds its own threshold 
(signalling that something has been repeatedly identified as “high relevance”), then the long-term 
activation grows. In addition, certain events (e.g. explicitly interacting with an entity) may be 
regarded on their own right as sufficiently important to increase the long-term memory directly 
(just as significant events are easily remembered). 

The following section presents the algorithm and implementation for simulating the 
aforementioned human memory model through spreading activation on the personal ontology.  

4.2 Spreading Activation Algorithm 

The spreading activation through the personal ontology algorithm described below assumes, to 
avoid repetition in the formulae, that the inverse of each relation is explicitly recorded in the 
ontology schema. For a real schema, as well as in our implementation, this means that all 
qualifiers would have to range over relations and their inverses. Also the weight (strength) of a 
relation is directional, allowing different weights depending on which direction the relation is 
traversed. Again to simplify the formulae, property values will be ignored. 

Given this we have a set of relations L (note that according to the formal ontology definition 
given in section “Ontologies and Personal Information Management”, the set of relations L is a 
subset of the set of properties P, including exactly those slots that model relationships) and a set 
of entities (instances) E. In terms of these sets, we may define the set of instances of 
relationships (statements) S: 

S = L x E x E  

Every statement is a particular relation between specific entities and set S includes all possible 
(as defined by set L) relationships between the entities of set E. A statement is thus a triple of the 
form (r, e1, e2), where r is a relation and e1 and e2 are instances; for readability purposes, 
statements will be denoted as r(e1,e2). In a real ontology only some of these statements will be 
valid with respect to the rules specifying which properties are valid for which classes of entities.  



 

However, we assume that this validity checking is performed outside the spreading activation 
algorithm. 

The current state of the ontology is then simply a set of statements: 

 OntologyState ≡ OS ⊆ S 

An activation state over such an ontology is then an activation level (real number) assigned to 
each entity: 

 ActivationState: E → R 

The set of all possible activation states over an entity set E will be denoted as AS(E). We will 
refer to the three time scales of system activation as STA, MTA and LTA: 

• STA (Short-Term Activation) refers to things that are currently active,  

• MTA (Medium-Term Activation) to things that have been recently active (and most 
probably still are), whereas  

• LTA (Long-Term Activation) to things that are important to the user in the long term.  

• There is also a “trigger” activation, IA (Immediate Activation), corresponding to the things 
that are in some way important directly due to the current task/interaction; for example, the 
ontology entities (classes and instances) that are recognized in the currently viewed e-mail 
or web page. 

STA, MTA, LTA, IA ∈ AS(E) 

Also we assume that each relation, r, has a long-term weight LTW(r) that is initialized according 
to the cardinality of the relationship (1-1, 1-m, m-1, m-n). 

The basic steps of the algorithm may be summarized as follows: 

1. Initialize appropriate weights and activations 

2. Create a set with the currently active entities (entities e with IA(e) > 0), Active Set 

3. Repeat:  

Compute STA(e) for the entities in the Active Set as well as their related ones 

For the related entities whose STA exceeds a threshold, add them to the Active Set 

    Until <condition> 

4. Update MTA and LTA activation weights if appropriate 



 

We envision that the spreading activation algorithm will be triggered after each “event” in a 
system supporting PIM/TIM. With the term “event” in this case we refer to a user action that has 
resulted in the identification of ontology entities (instances and classes) related to the current 
action - for example, the user opens an e-mail, and in it the sender name has been detected as 
well as the name of a research project the user currently participates in. Bearing this in mind, we 
present in following sections in detail the algorithm steps. 

4.3 Updating Short-Term Activation 

Given a particular state of the STA, each entity e has an incoming activation IN given by 

IN(e) = ∑ [LTW’(r) × STA(e’)], r ∈ L ∧ ∃ e' ∈ E: r(e, e’) ∈ OntologyState 

The value of LTW’(r) is in fact the r relation’s LTW [i.e. LTW(r)] value divided by the number 
of entities e’ is related with through this relation, i.e. the “fan out” of the relation for entity e’. 
The formula for the STA then becomes: 

 STA(e) = S(f (IA(e), IN(e), MTA(e), LTA(e))) 

The function f will typically count IA strongly, and only take into account MTA and LTA where 
either IA(e) or IN(e) is non-zero. For example, a possible function that we have used in our 
studies is: 

f(ia, in, mta, lta) = (A × ia + B × in) * (1 + ( C × mta + D × lta)) 

The non-linear term means that long- or medium-term activation are not in themselves sufficient 
to cause short-term activation, but do strengthen the effect of STA.  

The result of the STA update function is passed through a sigmoid function (Mitchel, 

1997) S(sta) = 1− e−sta

1+ e−sta to emphasise the difference between large and small activations and to cap 

the largest. The equation for STA is recursive and is applied on the set of activated entities of 
each step. 

4.4 Spreading Activation Termination Conditions 

The value of STA for each entity cannot be computed in a single step, because by nature the 
spreading activation algorithm is recursive. Consider for example the case that entity e1 is 
connected to entity e2, which is in turn connected to entity e3. If e1 receives incoming activation, 
some of it will be transferred to e2; at this stage, however, some of e2’s activation should be 
transferred to e3 and, to this end, a second iteration of the algorithm is needed. In the general 
case, n-iterations of the algorithm enable the propagation of the activation to entities connected 
to the initially activated ones via paths of length n or less. 

For the number of iterations during the spreading activation algorithm step for STA computation, 
two options have been considered: 



 

1. Full Spreading of Activation: Repeat spreading computations for the whole ontology, until 
it reaches a stable state. 

2. Constrained Spreading of Activation: Repeat for a specific number of iterations. 

The first option was not selected for a number of reasons Firstly, bearing in mind that a personal 
ontology serving as memory aid for a user may contain thousands of instances, applying 
spreading activation on the whole ontology would not be very efficient, especially in applications 
like task information management where access to the ontology is very frequent.  

Furthermore, the existence of cyclic paths in the ontology graph means that the spreading 
activation process won’t end because of the loops. A way to go around this would be to detect 
already visited entities and avoid loops by not spreading activation to them again. However, this 
could be a problem as well, as an entity may be related to more than one active entity. For 
example, an entity e1 may receive activation from a directly connected entity e2 during the first 
iteration step and from the entity e3 that is related to e1 through e4 during the second iteration 
step (e2à e1 and e3à e4 à e1. So excluding already visited entities has also been rejected. 
Another alternative would be to consider a state as “stable” (and thus terminate the algorithm) 
when all activation transfers are below a specified threshold thstable. The threshold could be set as 
an absolute value (e.g. S(sta) < 10-4) or as a ratio of the transferred activation divided by the 
current value of the receiving entity’s STA (e.g. (S(sta) / STA(e)) < 10-3), in both cases however 
experiments are needed to set the threshold to a reasonable value that guarantees efficiency and 
does not affect the accuracy of the algorithm. 

As a result, for the needs of our implementation of spreading activation we opted for the 
constrained spreading activation, also suggested in (Lømo, 2003). We feel that this variation of 
the algorithm is closer to the human memory spreading activation process where the finite rate of 
firing and time available means that only a limited number of 'steps' are taken. To this end, we 
apply spreading activation on the ontology for a specific number of iterations. Furthermore, if the 
personal ontology is a 'small world' then it may be that activation can in principle spread across 
the network in very few iterations, before feedback loops become too powerful and start to affect 
significantly the STA weights. The optimum number of iterations is still an issue for 
experimentation and it is directly related to the needs of the specific application as well as the 
ontology weights and parameters. 

4.5 Updating Medium- and Long-Term Activation 

At the end of the spreading activation cycle, MTA and LTA are updated. We simply increment 
MTA if the STA exceeds a value: 

 if (STA(e) > thresholdSTA) MTA'(e) = MTA(e) + δMTA 

And similarly for LTA: 

 if (MTA(e) > thresholdMTA) LTA'(e) = LTA(e) + δLTA 



 

However, there are several issues to consider here. One issue is the exact values of δMTA and 
δLTA. Furthermore, each entity’s MTA and LTA values, apart from being incremented when 
active, they should also be decayed when inactive. This gradual decay should reflect the fact that 
memories tend to fade or become less readily accessible when they fall into disuse for a 
sufficient period of time. Due to the differences of medium and long-term activations, however, 
their update mechanisms should be examined separately. 

4.5.1 MTA Increase and Decay  

A non-zero MTA value for an item expresses the fact that the item is recently and currently 
“active” and may be involved the user’s current tasks. Higher MTA values imply more 
activations and/or activations of higher importance. Since any human’s capacity for dealing with 
different subjects in a period of time is limited, the number of items having MTA > 0 should be 
also limited. Moreover, the total amount of MTA weights in the ontology should remain 
relatively steady, in order to reflect the fact that the user’s divided attention among many tasks 
(and, subsequently, entities), results in less attention paid to each particular task/entity.  

To this end, we define a constant, MaxMTATotal, which represents the maximum value for the 
sum of all MTA weights in the ontology. 

The decay of MTA is performed with the following process: 

Every T steps: 

1. The total amount of MTA increase over the T steps, sMTA, is recorded 
2. We set λMTA = sMTA / MaxMTATotal as the decay factor 

3. For every entity e, the new MTA is computed: MTA’(e) = (1 – λMTA) * MTA(e)  
The frequency of the MTA decay as well as the maximum total of MTA weights should be 
adjusted according to the needs of the specific application. For a TIM system, MTA probably 
should be updated after each “event”. In special cases when IA on its own exceeds some value or 
was caused by some specific event, MTA could be increased directly. 

4.5.2 LTA Increase and Decay 

LTA reflects the long-term importance of entities: it represents the fact that some things have 
been important to the user several times in the past. Even if they are not currently active or they 
may not have been active in the recent past, they most probably will be again in the future. 
Entities like the user’s address or parents can never be entirely forgotten.  

As a result, when decaying LTA weights, it should be made sure that the decay does not result in 
important things having their LTA weight value gradually returning to zero. A way to 
accomplish this is to make sure that the LTA of an entity never decays to less than a percentage 
(n%) of its maximum value. 

We define as maxLTA(e) the maximum LTA value an entity e has ever received. Furthermore, 
we define two constants, λLTA as the decay constant that depends on the time interval between 



 

each decay and minPerc as the minimum percentage of the entity maxLTA value that the LTA of 
an entity may reach when decayed. The LTA decay is computed using the following process: 

At the designated time points, for every entity e: 

if (LTA(e) > maxLTA(e)) {maxLTA(e) = LTA(e)} 

minLTA_e = minPerc * maxLTA(e); 

if (LTA(e) > minLTA_e) { 

 delta_e = λLTA * (LTA(e) - minLTA_e) 

 LTA’(e) = LTA(e) - delta_e 

}  
An issue here is the definition of the time interval between consecutive decays. For the moment, 
events are considered as a time unit in order to measure the passage of time. The LTA decay 
time intervals in a TIM application should take into account other factors like the real time 
elapsed and the computer usage time elapsed. 

4.6 LTW and Relation Weights 

Relation weights are a very important issue in the spreading activation framework. Three levels 
of relation weights may be distinguished, which may be used as different options for regulating 
the spreading of activation between entities: 

1. The relation as a whole, which is expressed by the relation’s Long-Term Weight – LTW. 

2. Weights on a particular instance of a relation, that is for a specific e1, e2 with a relation r 
between them, we could assign a weight dependent on: 

• Whether the relation was important in spreading activation 

• Whether both e1 and e2 have received high activation.  

In this case, the user could also specify a priori the weight of a particular relation. For 
instance, if there is a “friend” relationship, the user could assign higher weights to “better” 
friends.  

3. Weights on the relation for an individual entity, that is given an entity e1 for the specific 
instance of the relation r in e1, the LTW’ is computed as the relation LTW/k, where k is the 
relation fan-out for the specific entity, i.e. the number of entities with which e1 is connected 
through the specific relation r. 

For the moment, the spreading activation algorithm has been implemented with the third option 
for LTW weights. As an example, if we look at the class-students relationship, then if a 
particular class has many students we may want to reduce the spread accordingly, closer to an 



 

activation budget model where if a node has so much activation it spreads some of it to other 
nodes, but has to share amongst the ones connected to it. A model of this form could penalise 
well-connected entities (which are likely to be central and generally important ones), but without 
some bias of this form such entities might just become 'fixations' of the ontology. 

A well-connected entity bound to be a fixation in the ontology is the instance of “Self”, which 
represents the user in the ontology. As this is the user’s personal ontology, it is natural for it to be 
the best-connected one, a focal point related to almost all entities in the ontology. This special 
characteristic of the “Self” instance affects the spreading of activation, so it has been treated as a 
special case and we have experimenting both with its inclusion and exclusion during the 
execution of the spreading activation algorithm. Combinations of the 3 previously mentioned 
options could be envisaged, as, for example, option 1 and 2 could be combined. Working with 
weights on relation instances, however, remains an open issue that requires further research, as it 
is not yet clear what would the exact effects on activation spreading be. 

As a final point, LTW weights could also be adjusted to reflect the fact that if it appears that 
usually when an entity is active so are all those it is related to through a particular relationship r, 
then this would suggest that that relationship should be given a higher weight. 

 IF foreach e ∈ dom(r), 

  (i) MTA(e) > thresholdR1 

  AND 

  (ii) for most e': r(e,e') ∈ OntologyState, MTA(e') > thresholdR2 × MTA(e) 

 THEN 

  increase LTW(r) 

However, this needs to be applied with some care as it is a positive feedback loop – stronger 
LTW leads to stronger incoming activation and hence makes it more likely that related things are 
active together, further increasing the LTW of the relation. Until the exact implications of LTW 
update have been identified, it has not been included in the spreading activation algorithm. 

4.7 LTA, STA and MTA Initialization 

For the spreading activation algorithm to yield useful and meaningful results, there are two very 
important factors. The first is a rich personal ontology and the second the correct weight and 
parameter adjustment and initialization. For testing the algorithm and after preliminary 
experimentation, we concluded at a set of default values for these parameters and weights. These 
are set as default values in the Protégé plug-in for the evaluation of the algorithm, described in 
the following section. It is obvious that a different set could be used according to the needs of the 
application that would use the algorithm. 

Recall from section “Updating Short-Term Activation” that the formula for computing STA is 



 

S (f( ia, in, mta, lta ) ) = S( ( A × ia + B × in ) * ( 1 + ( C × mta + D × lta ) ) ) 

with A, B, C and D being constant values. At the moment before each new “event” STA is 
initialized to 0. A scale of [0, 100] is used for STA activation. With this scale, we decide that an 
IA entity should receive an activation of 80 and, as a result set A=80. The rest of the parameters 
B, C, and D may be set according to the needs of each application. 

The MTA and LTA provide a non-linear factor in the STA computation function. In this case, 
they provide the factor multiplied to the sum of IA and IN. 

For the needs of our implementation, we set C=0.5 and D=0.3 and use a scale [0, 20] for MTA 
and LTA. The increase step of MTA is set to 2, the STA threshold for MTA update is set to 50 
and the maximum sum of MTA of all entities is set to 100. Finally, the number of steps T after 
which MTA decay is performed is set to 1 (we decay after every update). Regarding LTA, for 
the test implementation we used the user triggered events as a time unit, and have set the decay 
steps to 20.  
LTW weights are initialized according to the cardinality of the relation (1-1, 1-m, etc). 
Appropriate weights are assigned in the range (0, 1], in order to simulate the fact that all or part 
of an entity activation spreads to a connected entity. LTW should be further fine tuned by the 
user or have various default values, according to the specific relation. 

5 Related Work 

Spreading activation is not a new concept in semantic networks related research. There is a 
number of proposed applications of spreading activation, especially in the area of information 
retrieval (Crestani, 1997b).  
Crestani (1997a) proposes the use of spreading activation on automatically constructed hypertext 
networks in order to support web browsing. In this case, constrained spreading activation is used 
in order to avoid spreading through the whole network, as is the case with our implementation. 
Liu, Weichselbraun, Scharl & Chang (2005) use spreading activation on a semantic network of 
automatically extracted concepts in order to identify suitable candidates for expanding a specific 
domain ontology. Xue, Zeng, Chen, Ma, Xi, Fan, & Yu (2004) propose a mining algorithm to 
improve web search performance by utilizing the user click-through data. Weighted relations 
between user queries and selected web pages are created and spreading activation is performed 
on the resulting network in order to re-rank the search results of a specific query. 
Hasan (2003) proposes an indexing structure and navigational interface which integrates an 
ontology-driven knowledge-base with statistically derived indexing parameters, and the experts' 
feedback into a single spreading activation framework to harness knowledge from heterogeneous 
knowledge assets. 

Neural networks and in particular Hopfield Networks (Hopfield, 1982) attempt to approach and 
simulate the associative memory again by using weighted nodes but at a different level. In this 
case, the individual network nodes are not separate concepts by themselves, but rather, in their 
whole, are used to represented memory states. This approach corresponds to the neuron functions 



 

of the human brain, whereas ours attempts to simulate the human memory conceptual network 
functions. 

Recently, the spreading activation theory has been recognized as a candidate approach for 
supporting personal interaction with the system, in the newly emerging areas of personal 
information management (PIM) and Task Information Management (TIM). Katifori, Vassilakis 
& Dix (2008) discuss an approach for employing spreading activation to support management of 
personal information. The work presented in this paper extends the work of the previous paper, 
by refining activation processes, computing and tuning parameters related to how activation is 
spread among nodes, and addressing in detail the issue of initial value assignment for LTA, STA 
and MTA. These extensions have emerged through the process of evaluating the spreading 
activation methodology; this evaluation is another extension to the above mentioned work, and is 
described in the following section. 

6 Preliminary evaluation 

The motivation of our work on personal ontologies and spreading activation has been the vision 
of more activity-centric computing and the general aim of moving from systems focusing on the 
management of personal information (i.e. PIM) to systems focusing on the management of 
personal interaction. We define a Personal Interaction Management System (PIMS) to be a 
system that supports the user in executing tasks in an interactive and efficient way, providing at 
the same time effective and transparent mechanisms for maintaining the user’s personal 
document collection. 

In order to evaluate the spreading activation algorithm in real conditions and fine tune its 
parameters, a fully functional PIMS is required. This system should provide effective 
mechanisms for user profiling, semantic storage of documents and context inference. Figure 3 
shows a sketch view of the main components a PIMS must include to support this functionality. 
The information side (documents, emails etc.) is linked to the computation side (actions) through 
two main components: 

 

Figure 3 - Main components of a PIMS 

1. A recogniser finding suitable fragments of the raw information that are semantically 
meaningful and that can be used to initiate or feed into actions 

2. A personal ontology that contains knowledge specific to the user (people, projects, etc.). 



 

These two feed into one another. The various terms, names, emails, etc, in a personal ontology 
can yield keywords to be matched against text or semi-structured sources. So an increasingly rich 
personal ontology will lead to better identification of suitable loci for action. Furthermore, as 
users perform actions the way in which they use information, the results of their activities can be 
used to enrich the ontology. For example, if a piece of text is used to search in a gazetteer it 
suggests that (i) it is a place name - that is we know more about its type and (ii) it is a place name 
that is important to the user - so will be suggested to be added into the personal ontology. 

Figure 3 also shows a history sub-component related to the personal ontology. We need to record 
what is done in order to both (a) establish a sense of context and (b) be able to allow the system 
to gain some understanding of the user’s ongoing activities. Both of these require inference 
mechanisms which sit outside this picture, using the information from the personal ontology and 
history and then feeding this in to modify the recognition and action selection.  

At the moment a prototype PIMS (Katifori, Poggi, Scannapieco, Catarci, & Ioannidis, 2005; 
Catarci, Dix, Katifori, Lepouras, & Poggi, 2007; Dix, Katifori, Poggi, Catarci, Ioannidis, 
Lepouras, & Mora, 2007) has been designed and is being developed, based mainly on web 
technologies. The first complete version of the prototype will allow the full evaluation of the 
spreading activation algorithm and allow us to observe its effectiveness in the working 
environment of the user. For the moment, in order to achieve the fine-tuning of the algorithm 
parameters and locate problems and flaws, a testing platform has been created in Java in the form 
of a plug-in for the Protégé ontology editor (Protégé, 2008). 

The following sections present the evaluation platform as well as the results of the preliminary 
evaluation. 

6.1 The ActiveOnto Protégé Plug-in 

The ActiveOnto plug-in (Katifori, Dix & Vassilakis, 2008) allows the initialization and setting of 
all the algorithm parameters and allows the user to simulate the functionality of the algorithm in 
a PIMS. 

In the plug-in the user may select instances as “Immediately Active”, simulating thus their 
appearance in an e-mail, document or web page. Then, by pressing the “update” button, the STA, 
MTA and LTA activations are computed and the user may view the instances that received an 
STA value greater than a specific user-defined threshold (Fig. 4). In a full-scale implementation, 
these entities could appear in a designated screen area (such as the Windows Vista sidebar 
(Microsoft Corporation, 2008)), allowing the user to select an entity and navigate to it, or 
perform actions on it through a context menu. 

The plug-in may be found in (Katifori, Dix & Vassilakis, 2008) along with its installation 
instructions. In order for the plug-in to function, an ontology with specific characteristics must be 
used, as slots representing the activation weights are needed. More specifically, the ontology to 
be used with the plug-in should have the following characteristics: 



 

 

Figure 4 - Part of the plug-in window showing the STA, MTA and LTA values for the entities that received 
STA activation value greater than 12, when entity “Alan Dix” got IA = 1. 

1. All classes should conform to a meta-class having the slots IA, IN, STA, MTA, LTA and 
MAXLTA of type String. Note the spreading activation is allowed to include classes 
themselves through the is-a relation. 

2. All instances should have the slots IA, IN, STA, MTA, LTA and MAXLTA of type String. 

3. All slots should conform to a meta-slot with an LTW slot of type String. 

As an example, the personal ontology in (Katifori, Vassilakis, Dix, Daradimos, & Lepouras, 
2007) may be used. The plug-in offers the possibility to include or exclude the “Self” instance at 
will in the execution of the spreading activation algorithm, by appropriately setting or clearing a 
relevant checkbox.  

6.2 Evaluation Method and Results 

As a first step of the evaluation, one of the authors populated her personal ontology with 
instances relevant to her work and computer-related activities in general for the past six months. 
These included colleagues and friends with whom she co-operated, papers submitted to journals 
and conferences, presentations prepared, conferences she attended, etc. This personal ontology 
(Katifori, Vassilakis, Dix, Daradimos, & Lepouras, 2007) during the evaluation included 90 
classes, 211 instances and 196 slots types, of which about 60 were property ones and the rest 
relation type ones. 

This preliminary evaluation would monitor changes in ontology weights while the user 
performed a series of tasks. These tasks included realistic usage scenarios compiled in 
cooperation with the user. Each task, for example “authoring a conference paper”, was broken 
down to basic steps, like “the user is editing the paper”, “the user e-mails the co-authors”, “the 
user receives reply with attachment”, etc. For each basic step, classes and instances that appear in 
the corresponding e-mails or documents were identified. Then, for each set of identified entities 
(classes and instances), corresponding to a basic step of the task, the entities were set as 



 

“selected” in the plug-in; afterwards, the “Update STA” button was pressed to invoke the STA, 
MTA and LTA computation algorithms. The user verified to what extent the entities identified as 
most relevant according to their STA score were in fact relevant and, also, to point out entities 
that did not receive a high STA score but are in fact relevant. 

Several runs of the spreading activation algorithm were made, in order to fine-tune the algorithm 
parameters. Using the parameters of Table 2 to compute activation levels for 37 sub-tasks, the 
following results have been recorded: 

• The mean percentage of the entities that were characterized as relevant and useful 
compared to the total number of entities with STA greater than 20 was 59% 

• The mean percentage of the entities that were characterized as relevant but not useful (this 
includes trivial classes like Person and E-mail) compared to the total number of entities with 
STA greater than 20 was 33.3% 

• The mean percentage of the entities that were characterized as irrelevant compared to the 
total number of entities with STA greater than 20 was 6.1% 

• In 14 of the sub-tasks, 1 entity identified by the user as important did not receive high STA 
score whereas in 4 sub-tasks 2 important entities did not receive a sufficiently high score. In 
the remaining 19 sub-tasks all important entities were correctly identified.  

The following section presents an example of this process, highlighting the use and benefits of 
the personal ontology and spreading activation in a PIMS. 

6.3 An example of the use of spreading activation in a PIMS 

User Vivi is at the process of co-authoring a paper to submit to a PIM Workshop, along with 
researchers from other universities. The collaborative authoring is done through e-mail. We 
assume that there is already a first draft of the paper and in the ontology there is a “Conference 
Paper” instance of the paper entitled “Creating an ontology”, linked to the five authors (Alan, 
Antonella, Vivi, Costas, Ilias) as well as an instance of “Conference”, linked to the paper. For the 
portion of the authoring process described below, we will assume that only Vivi, Alan and 
Antonella take part in it. 

We also assume that our PIMS has the appropriate recognizers to identify ontology classes and 
instances inside e-mails, Microsoft Word documents and web pages. As soon as a recognizer 
identifies a class or an instance within the scanned object, the spreading activation module is 
triggered and returns a set of entities (instances and classes) that are found to be of high 
relevance with the current document and task. These entities may be proposed to the user for the 
classification of the document (Katifori, Poggi, Scannapieco, Catarci, & Ioannidis, 2005) or used 
to infer the user context in order to support the current user task, like filling in a form 
automatically as described in (Dix, Katifori, Poggi, Catarci, Ioannidis, Lepouras, & Mora, 2007). 
For the purposes of the evaluation of the spreading activation algorithm, the triggering is 
emulated rather than driven by real external events as it is essential to understand the behavior of 
the algorithm before embedding it into a live system. 



 

Instances of class “Person” (which actually correspond to real-world persons) are linked to the 
appropriate instances of the Values Classes “Person Name” and “E-mail”. The recognizers 
identify person names and e-mails as instances of these two classes. In the evaluation example 
described  below, the spreading activation algorithm has been tuned to not consider the “Self” 
instance, thus the “Self” instance does not appear in any result. Lastly, we assume that this is the 
first time the PIMS the spreading activation module is working, and consequently the STA, 
MTA and LTA weights in the personal ontology are all set to 0. In the following tables (tables 3-
6) only the entities with STA above the threshold of 20 are presented in order to make the 
presentation more concise. A more detailed presentation of the following example may be found 
in (Katifori, 2008). The spreading activation parameters of Table 2 have been employed. 

Table 2. Spreading Activation Algorithm Parameters 

A B C D Iter. STA 
Thres. 

MTA 
Delta 

MTA 
Thres 

LTA 
delta 

80 0.3 0.5 0.3 4 50 1 2 1 
 

Step 1: Vivi opens the paper draft to edit it. The instances of Person Name “Alan”, “Antonella”, 
“Costas” and “Ilias”, as well as the Paper instance “Creating an ontology” become activated. 

Table 3. A test case of applying the spreading activation algorithm when the system has no 
prior memory 

Entity Entity Type STA MTA LTA 
Creating an ontology (conference paper) Thing/Instance 98 0.94 0 
Costas Vassilakis (person name) Value Class/Instance 88 0.94 0 
Alan Dix (person name) Value Class/Instance 88 0.94 0 
Ilias Daradimos (person name) Value Class/Instance 88 0.94 0 
Antonella Poggi (person name) Value Class/Instance 88 0.94 0 
Person Name Value Class/Class 88 0.94 0 
PIM Workshop (conference) Thing/Instance 50 0.94 0 
Costas Vassilakis (person) Thing/Instance 27 0 0 
Antonella Poggi (person) Thing/Instance 27 0 0 
Ilias Daradimos (person) Thing/Instance 27 0 0 
Alan Dix (person) Thing/Instance 27 0 0 
Conference paper Thing/Class 27 0 0 
Person Thing/Class 27 0 0 

 

Table 3 presents the STA, MTA and LTA weights after the first run of the algorithm. Column 
“Entity Type” indicates whether the related entity (listed in the first column) is a descendant of 
“Value Class” or “Thing” (recall from section 3.2 that the “Value Class” hierarchy contains 
essentially data items, while class the “Thing” hierarchy contains both abstract and tangible 
things, which may be objects, living organisms and concepts and effectively describes the 
universe of discourse) and whether it corresponds to a particular instance or a class. We may 
note that apart from the immediately activated instances, relevant entities like the “PIM 
Workshop” conference have received a high STA score. All were found relevant to the Microsoft 



 

Word document containing the paper draft and would be chosen for its categorization by the 
user, except from “Person Name”, which is relevant but not useful. 

Step 2: Vivi sends an e-mail having as subject “PIM Workshop”, to the two other authors that 
participate in this stage of authoring (Antonella and Alan). The instances “PIM Workshop” 
(Conference), alan@hci-book.com (E-mail) and antonella@hotmail.com (E-mail) become 
activated. 

Table 4. Updating STA, MTA and LTA when the system has a memory of one task 

Entity Entity Type STA MTA LTA 
PIM Workshop (Conference) Thing/Instance 100 1.68 0 
alan@hci-book.com (E-mail) Value Class/Instance 88 0.88 0 
antonella@hotmail.com (E-mail) Value Class/Instance 88 0.88 0 
Creating an ontology (Conference paper) Thing/Instance 73 1.68 0 
E-mail Value Class/Class 50 0.88 0 
Antonella Poggi (Person) Thing/Instance 50 0 0 
Alan Dix (Person) Thing/Instance 27 0 0 
Conference Thing/Class 27 0 0 
5/4/2008 (Date) Value Class/Instance 27 0 0 
6/4/2008 (Date) Value Class/Instance 27 0 0 
15/6/2007 (Date) Value Class/Instance 27 0 0 

 

In this case, entities relevant to the e-mail such as the recipients’ addresses, the workshop, the 
workshop event dates and submission deadline and the paper itself receive high STA score. Note 
that other entities other entities may have received also activation through the spreading process, 
but the STA value they have amassed does not pass the threshold of 20 and are thus not included 
in table 4; one such example is the “DELOS Task 4.8 TIM” entity which is also relevant as the 
specific paper was created through collaboration in the context of this task, but its STA value is 
less than 20. The E-mail Value Class has been identified as relevant with a sufficiently high STA 
value too, but is not considered to be useful for interaction purposes. 

After several similar e-mail exchanges and editing of the draft (steps 3-12 which are omitted here 
for brevity) Vivi receives the final confirmation from one of the authors to submit the paper. 

Step 13: Vivi receives an e-mail having as subject “PIM Workshop”, from one of the two authors 
that participate at this stage of authoring, Antonella; the other author (Alan) appears in the 
recipient list of the e-mail. The instances “PIM Workshop” (Conference), alan@hci-book.com 
(E-mail) and antonella@hotmail.com (E-mail) become activated. 



 

Table 5. Updating STA, MTA and LTA when the system has a memory of numerous tasks 
having the same focus 

Entity Entity Type STA MTA LTA 
alan@hci-book.com (E-mail) Value Class/Instance 100 2.35 2 
antonella@hotmail.com (E-mail) Value Class/Instance 100 2.35 2 
PIM Workshop (Conference) Thing/Instance 100 2.77 8 
Creating an ontology (Conference Paper) Thing/Instance 100 2.77 8 
Alan Dix (Person) Thing/Instance 50 1.95 0 
Conference Paper Thing/Class 50 2.11 1 
Person Thing/Class 27 0.26 0 
Antonella Poggi (Person) Thing/Instance 27 0.26 0 
5/4/2008 (Date) Value Class/Instance 27 0 0 
6/4/2008 (Date) Value Class/Instance 27 0 0 
15/6/2007 (Date) Value Class/Instance 27 0 0 

 

As before, all concepts are found relevant, except “Person”, which seems redundant. We note 
that “PIM Workshop” and “Creating an ontology” have received high MTA and LTA scores, 
which is to be expected, as they have been the focus of this task. The paper co-authors, have 
received high MTA activation, but despite this they did not receive as high LTA one as the paper 
and workshop. This can be attributed to the fact that a considerable portion of the author’s 
activation was withheld during the successive runs of the algorithm for each sub-task by two 
Value Class instances linked to the author, namely Person Name and E-mail. This suggests that 
Value Classes, necessary for the recognizer modules of the PIMS to work properly, should pass 
their whole activation through to the instances the values of which they represent. To this end, 
the LTW value of the relation from the Value Class instances to the corresponding Thing 
instances should be set to a high value. As a next step, the user visits the PIM Workshop website 
in order to submit the paper. 

Step 14: In the submission web page, the user is presented with appropriate forms where she has 
to fill in, among other details, the paper title. As soon as the title is recognized and activated in 
the ontology, the paper authors are activated as well and their information may be automatically 
filled-in, in the appropriate forms. As a final step, the user receives an e-mail from one of the 
authors, Costas, asking if everything was OK with the paper submission. 

Step 15: In the received e-mail the activated entities are the class “Paper”, mentioned in the e-
mail and Costas’ E-mail and Person Name. 

Table 6. The final state of STA, MTA and LTA in the experiment. As in this case few 
entities received activation above 20, those above 10 are presented also. 

Entity Entity Type STA MTA LTA 
Costas Vassilakis (person name) Value Class/Instance 100 1.8 0 
costas@di.uoa.gr (E-mail) Value Class/Instance 100 1.92 0 
Costas Vassilakis (person) Thing/Instance 50 1.71 0 
Paper Thing/Class 73 0.76 0 
DELOS Task 4.8 meeting (Meeting) Thing/Instance 27 0.55 0 
PIM Workshop (Conference) Thing/Instance 27 1.15 10 
Creating an ontology (Conference Paper) Thing/Instance 12 1.15 10 
Conference Paper Thing/Class 12 1.01 2 



 

 

As we may note, apart from “Costas” and “Paper”, which are the immediately activated entities, 
“PIM Workshop” and “Creating an ontology” also receive an amount of STA, small but 
sufficient to include them in the activated concepts. DELOS Task 4.8 meeting is an irrelevant 
concept to this sub-task, having received an amount of activation from Costas. 

7 Conclusions and Future Work 
This work outlines a spreading activation over a personal ontology framework to be used in the 
context of a Personal Interaction Management System. The human brain and the theories related 
to the different levels of human memory and spreading activation have been the incentive of this 
work. 

The proposed personal ontology model along with the mechanism that implements the spreading 
activation will be incorporated in the PIMS prototype currently under development to provide 
context inference to support user actions, as well as act as a memory supplement for the user. By 
mimicking the way that the human brain recalls and activates concepts related to the current 
situation we envision to provide users of the PIMS with rapid access to activities that are most 
likely to be taken in the context of the task at hand. A prominent way to incorporate this feature 
in the user interface can be by listing related entities in a designated area and including 
applicable actions in context menus. 

Very important for the algorithm effectiveness in identifying “active” entities that are relevant to 
the ones appearing in the user’s current task are the parameters for updating the weights. These 
parameters have been fine-tuned to an extent through a process of preliminary testing, but there 
is still work to be done in this direction. There is also a number of issues to be further 
investigated: 

Weights on relation instances. To this end, an extension for the Protégé ontology model has 
been created, allowing the existence of weighted relations to be defined as slot types (Vassilakis, 
Lepouras & Katifori, 2007). The incorporation of these weights in the algorithm is still being 
investigated, in order to decide if they offer some added value to the algorithm effectiveness. 

LTW update. The LTW relation weights are at the moment static. Their update according to 
occurring events and/or connected entities’ STA, MTA and LTA variations, is being 
investigated. 

Automatic tuning of spreading activation parameters, e.g. automatic alteration for the 
number of iterations. 

Results of the preliminary, informal evaluation of the algorithm have shown it to be effective in 
inferring the context of user tasks. A more effective and thorough task-based evaluation is being 
designed in order to evaluate the update of MTA and LTA weights. However, in order to fully 
evaluate the algorithm, it should be incorporated in the PIMS prototype under development. 
There are various issues relevant to this incorporation, such as: 



 

User interaction with the weighted ontology. Bearing in mind that the ontology will be a 
simplification of the user’s semantic network on some aspects of his/her life, his/her contribution 
on defining the ontology entities and relations, as well as fine-tuning the weights will be 
invaluable. Although for an experienced user doing this directly on an ontology editor like 
Protégé would be possible, non-expert users would have trouble coping with such an editor 
interface, as well as the concept of the ontology itself. Furthermore, editing the ontology would 
add to the user’s work a substantial overhead. To this end, semi-automatic methods for updating 
and personalizing the ontology (Golemati, Katifori, Vassilakis, Lepouras & Halatsis, 2007) as 
well as visualization approaches (Katifori, Torou, Halatsis, Lepouras & Vassilakis 2006) are 
being investigated, taking additionally into account the relation weights.  

Representation of tasks/activities. Should ‘types’ of tasks and actual instances of things done 
be represented within the ontology as concepts, just like a friend's name, or should they be 
placed in some parallel but linked representation? On the one hand, including such concepts in 
the ontology makes the ontology a single, complete repository of all information needed to 
support the spreading activation framework. On the other hand, if users –especially novice ones– 
are presented with an ontology containing an overwhelming amount of information, they may 
easily be discouraged from using the system. A user interface that will be able to hide the 
ontology complexity from the user and present the level of detail that the user is able to handle 
can be a step towards alleviating such problems. 

Scalability. The spreading activation so far has been created and tested for a personal ontology, 
but the personal ontology may well include links to external ontologies, even the whole web. 
Should we and how do we do this form of reasoning over very large ontologies? This issue 
includes considerations on amount of processing that must take place, memory and disk 
requirements for storing the personal ontology, as well as system effectiveness, since (a) the 
related concepts must be almost instantly presented to the user (if presentation is delayed, the 
user may have switched task in the meantime thus the presented entities will be out-of-context) 
and (b) the incorporation of the spreading activation framework in the system must not hinder 
the normal flow of operations. 

Tests on the algorithm are being continued with different sets of parameters, while using 
different ontologies and users is considered. A testing platform is being created that will allow 
the use of the spreading activation module for context inference in a more realistic environment 
where the user is evaluating the algorithm when actually performing the tasks. The first version 
of this environment will focus on selected applications, including word processing and e-mail 
management, by building appropriate functionality into specific applications. More generic 
mechanisms that will employ operating-system level mechanisms so as to seamlessly support all 
applications will be investigated at a later stage. 

The first results of our evaluation are promising, since the spreading activation algorithm 
recognizes with ample accuracy the entities related to the current user’s activity, as the latter are 
derived by the entities receiving immediate activation. It is expected that the incorporation of 
additional features in the algorithm, including the weights on relation instances, dynamic LTW 
relation weights and automatic tuning of spreading activation parameters will further increase the 
algorithm’s accuracy. Fine tuning of the spreading activation algorithm parameters and 
adaptation to individual user profile is also expected to contribute to the same effect. Finally, the 



 

development of user-friendly and efficient mechanisms for personal ontology population and 
user interaction with the entities identified as relevant will allow the system to be used in 
everyday tasks by non-expert users. 
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